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Baryon and DM Number 
Related?

Accidental, or 
dynamically 
related?
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New scale, 100’s GeV set by SM

Abundance of new stable states set by 
interaction rates

Why the Weak Scale is 
Compelling

Γ = nσv = H

Measured by WMAP + LSS
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Magic thermal cross-section

Annihilation cross-section sets abundance

Same cross-section sets size of indirect 
detection signals

Why a weak scale 
WIMP?

Ωch
2 = 0.114± 0.003

σv ≈ g4

1 TeV2 ≈ 3× 10−26 cm3

s
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SUSY produces such a 
candidate

SUSY + R-parity

Production and decay at colliders

ν̃ B̃, W̃3, H̃

χ̃
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Leading DM 
Candidates ....

... have very particular properties

DM typically its own anti-particle

Sets indirect detection prospects

Relic density considerations

Cosmological constraints
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Extremely different 
from the visible sector

Baryons are not their own 
antiparticles

Have chemical potentials that 
set the abundance

Large annihilation cross-
sections

Complex dynamics, multiple 
forces and multiple mass scales

Matter   Anti-Matter
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Relating DM to the 
Baryon Asymmetry

In standard picture, DM abundance set by thermal freezeout, 

What if instead set by baryon density?

Γann ! H

nDM ≈ nb

ΩDM ≈ 5ΩbExperimentally,
Find mechanism

mDM ≈ 5mp

Nussinov, S.M. Barr, D.B. 
Kaplan
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Asymmetric Dark 
Matter

Visible Dark

Matter    Anti-matter Matter   Anti-Matter
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Relating DM to the 
baryon asymmetry
First models used EW sphalerons to transfer 
the asymmetry

These models no longer work because a) DM 
cannot be > 45 GeV b) coupling to the Z rules 
them out

DM carries EW 
quantum numbers

Visible sector

S. Barr (1992) and D. B. Kaplan (1993)

DM number anomalous under SU(2)
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Relating DM to the baryon 
asymmetry

The dark matter can be heavier if it 
becomes non-relativistic just as B or L 
violating operators decouple

e.g. sphalerons transfer the 
asymmetry, mDM > Tsph

ρDM = mDMnDM
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Relating DM to the baryon 
asymmetry

The dark matter can be heavier if it 
becomes non-relativistic just as B or L 
violating operators decouple
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Technibaryon and 
Quirky dark matter
Use sphalerons to transfer asymmetry

First used in the context of technicolor, by Barr, 
Chivukula, Farhi

Sphalerons mix SM fields carrying B,L with 
technifermions
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Technicolor and 
technibaryons
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Difficulties with TB DM
Couple inherently to Technicolor 
problems

Difficult to get enough Boltzmann 
suppression: DM mass set by Higgs vev 
which is too small

Must tune B and DM global charges

Halo shape bounds problematic
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A simple prescription:
Asymmetric DM

Avoids the pitfalls of models which have 
their asymmetry related to the baryon 
asymmetry via EW quantum numbers

Essential idea is to use higher dimension 
operators to transfer the asymmetry 
between sectors 

Luty, Kaplan, KZ ’09
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Asymmetric DM
Integrate out heavy state

Effective operators:

Luty, Kaplan, KZ ’09

Standard Model
Dark Matter

Mp ∼ 1 GeV

N
X

X

W = Xucdcdc

Inaccessibility

En
er

gy
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Asymmetric DM

1. Transfer lepton or baryon asymmetry to DM 
through higher dimension operator

2. Have asymmetry transferring operator 
decouple before DM becomes non-relativistic 
(Otherwise allows DM asymmetry to wash-out)

3. Annihilate away symmetric abundance of DM

nX − nX̄ ≈ 10−10nX
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Asymmetric DM

Integrate out heavy state
Effective operators:ar
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We propose a novel framework in which the observed baryon and dark matter abundances are
simultaneously generated via the Affleck-Dine mechanism. In its simplest realization, Affleck-Dine
cogenesis is accomplished by a single superpotential operator and its A-term counterpart. These
operators explicitly break B − L and X, the dark matter number, to the diagonal B − L +X. In
the early universe these operators stabilize supersymmetric flat directions carrying non-zero B − L
and X, and impart the requisite CP violation for asymmetry generation. Because B − L + X is
preserved, the resulting B − L and X asymmetries are equal and opposite, though this precise
relation may be relaxed if B − L and X are violated separately by additional operators. Our dark
matter candidate is stabilized by R-parity and acquires an asymmetric abundance due to its non-
zero X number. For a dark matter mass of order a few GeV, one naturally obtains the observed
ratio of energy densities today, ΩDM/ΩB ∼ 5. These theories typically predict macroscopic lifetimes
for the lightest observable supersymmetric particle as it decays to the dark matter.

I. INTRODUCTION

The existence of the baryon asymmetry and dark mat-
ter (DM) are key pieces of evidence for physics beyond
the standard model (SM). In particular, the SM pro-
vides neither enough CP violation to generate the ob-
served baryon asymmetry nor a viable DM candidate.
On the other hand, supersymmetry can accommodate
both, albeit through unrelated mechanisms. The baryon
asymmetry is set by new CP violating phases and out of
equilibrium dynamics, while the DM density arises from
thermal freeze out.
In this paper we unify the production of baryon and

DM number through a simple extension of the Affleck-
Dine mechanism [1, 2] which exploits the fact that super-
symmetric flat directions can also carry DM number. In
particular, we consider a setup with the usual U(1)B−L

symmetry carried by MSSM fields and a U(1)X symme-
try carried by additional states which we refer to col-
lectively as the DM sector. Typically, there exists an
operator

OB−LOX , (1)

where OB−L and OX are gauge invariant products of
chiral superfields which carry B − L and X number, re-
spectively. In general, we are interested in operators of
the form

OB−L = LHu, LLE
c, QLDc, U cDcDc, (2)

which have charge −1 under U(1)B−L, while we choose
X charges such that OX has charge +1 under U(1)X . In
this convention, OB−LOX explicitly breaks B−L and X
number down to an exact, diagonal B − L+X number.
As in canonical AD, inflation induces supersymmetry

breaking effects proportional to the Hubble parameter
which can efficiently drive 〈B − L〉 and 〈X〉 to non-zero
values in the early universe. As the universe cools, these
operators become ineffective and the vacuum settles to

the present day B−L and X preserving minimum. Dur-
ing this transition, the A-term counterpart of the opera-
tor in Eq. (1) enters into the scalar potential and induces
a “torque” on the phases of the complex scalar fields.
This A-term provides the required CP violation needed
to generate B−L and X asymmetries. Because the the-
ory preserves B − L + X , the resulting asymmetry has
vanishing B − L+X number, so

− nB−L = nX $= 0. (3)

Since the baryon and DM asymmetries are produced si-
multaneously, we refer to this mechanism as AD “coge-
nesis.” The relation in Eq. (3) can be modified in the
presence of additional operators which separately violate
B − L and X .
As we will see, the DM sector is thermalized after infla-

tion, albeit at a low temperature, and chemical equilib-
rium distributes the initial nX asymmetry among all X
charged states which are sufficiently long-lived to freeze
out. An example of such a state is the lightestX number
charged particle (LXP), which is often meta-stable, but
will in general decay late to B − L charged SM states
via OB−LOX . In this paper, we will assume that the
lightest supersymmetric particle (LSP) carries X num-
ber and it thus attains an asymmetric relic abundance
from the initial X asymmetry. Moreover, because the
lightest observable supersymmetric particle (LOSP) and
the LXP are typically long-lived, this class of theories
accommodates an interesting collider phenomenology.
Operators of the form OB−LOX were considered more

generally in Asymmetric DM [3], which relates a present
day asymmetry in baryons and DM via similar symmetry
considerations. However, while in [3] the baryon asym-
metry was assumed initially and then shared with the
DM, in the present work the baryon and DM asym-
metries are generated dynamically and simultaneously.
Other types of mechanisms for generating or transferring
an asymmetry between sectors have been discussed in the
literature, from electroweak sphalerons [4], to out of equi-
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We propose a novel framework in which the observed baryon and dark matter abundances are
simultaneously generated via the Affleck-Dine mechanism. In its simplest realization, Affleck-Dine
cogenesis is accomplished by a single superpotential operator and its A-term counterpart. These
operators explicitly break B − L and X, the dark matter number, to the diagonal B − L +X. In
the early universe these operators stabilize supersymmetric flat directions carrying non-zero B − L
and X, and impart the requisite CP violation for asymmetry generation. Because B − L + X is
preserved, the resulting B − L and X asymmetries are equal and opposite, though this precise
relation may be relaxed if B − L and X are violated separately by additional operators. Our dark
matter candidate is stabilized by R-parity and acquires an asymmetric abundance due to its non-
zero X number. For a dark matter mass of order a few GeV, one naturally obtains the observed
ratio of energy densities today, ΩDM/ΩB ∼ 5. These theories typically predict macroscopic lifetimes
for the lightest observable supersymmetric particle as it decays to the dark matter.

I. INTRODUCTION

The existence of the baryon asymmetry and dark mat-
ter (DM) are key pieces of evidence for physics beyond
the standard model (SM). In particular, the SM pro-
vides neither enough CP violation to generate the ob-
served baryon asymmetry nor a viable DM candidate.
On the other hand, supersymmetry can accommodate
both, albeit through unrelated mechanisms. The baryon
asymmetry is set by new CP violating phases and out of
equilibrium dynamics, while the DM density arises from
thermal freeze out.
In this paper we unify the production of baryon and

DM number through a simple extension of the Affleck-
Dine mechanism [1, 2] which exploits the fact that super-
symmetric flat directions can also carry DM number. In
particular, we consider a setup with the usual U(1)B−L

symmetry carried by MSSM fields and a U(1)X symme-
try carried by additional states which we refer to col-
lectively as the DM sector. Typically, there exists an
operator

OB−LOX , (1)

where OB−L and OX are gauge invariant products of
chiral superfields which carry B − L and X number, re-
spectively. In general, we are interested in operators of
the form

OB−L = LHu, LLE
c, QLDc, U cDcDc, (2)

which have charge −1 under U(1)B−L, while we choose
X charges such that OX has charge +1 under U(1)X . In
this convention, OB−LOX explicitly breaks B−L and X
number down to an exact, diagonal B − L+X number.
As in canonical AD, inflation induces supersymmetry

breaking effects proportional to the Hubble parameter
which can efficiently drive 〈B − L〉 and 〈X〉 to non-zero
values in the early universe. As the universe cools, these
operators become ineffective and the vacuum settles to

the present day B−L and X preserving minimum. Dur-
ing this transition, the A-term counterpart of the opera-
tor in Eq. (1) enters into the scalar potential and induces
a “torque” on the phases of the complex scalar fields.
This A-term provides the required CP violation needed
to generate B−L and X asymmetries. Because the the-
ory preserves B − L + X , the resulting asymmetry has
vanishing B − L+X number, so

− nB−L = nX $= 0. (3)

Since the baryon and DM asymmetries are produced si-
multaneously, we refer to this mechanism as AD “coge-
nesis.” The relation in Eq. (3) can be modified in the
presence of additional operators which separately violate
B − L and X .
As we will see, the DM sector is thermalized after infla-

tion, albeit at a low temperature, and chemical equilib-
rium distributes the initial nX asymmetry among all X
charged states which are sufficiently long-lived to freeze
out. An example of such a state is the lightestX number
charged particle (LXP), which is often meta-stable, but
will in general decay late to B − L charged SM states
via OB−LOX . In this paper, we will assume that the
lightest supersymmetric particle (LSP) carries X num-
ber and it thus attains an asymmetric relic abundance
from the initial X asymmetry. Moreover, because the
lightest observable supersymmetric particle (LOSP) and
the LXP are typically long-lived, this class of theories
accommodates an interesting collider phenomenology.
Operators of the form OB−LOX were considered more

generally in Asymmetric DM [3], which relates a present
day asymmetry in baryons and DM via similar symmetry
considerations. However, while in [3] the baryon asym-
metry was assumed initially and then shared with the
DM, in the present work the baryon and DM asym-
metries are generated dynamically and simultaneously.
Other types of mechanisms for generating or transferring
an asymmetry between sectors have been discussed in the
literature, from electroweak sphalerons [4], to out of equi-

OX = X, X2

Standard Model Dark Matter
Mp ∼ 1 GeV

Inaccessibility
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Asymmetric DM
A model

One example, many possibilities

DM carries lepton or 
baryon number

DM carries lepton 
number L = 1/2

1. Operator transfer lepton asymmetry to 
DM
2. Detailed calculation

W =
X2LH

M
2(nX − nX̄) ≈ nL − nL̄

mX ! 2.4 GeV
ΩDM

Ωb
! 11 GeV

Z2 symmetry to stabilize DM
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Asymmetric DM

W =
X2LH

M

3.  Operator goes out of equilibrium before 
DM becomes non-relativistic, preventing 
XX -> nu nu, washing out asymmetry 

4.  Annihilate thermal abundance:

nDM ∼ T 3 → 10−10T 3

A model
One example, many possibilities

DM carries lepton or 
baryon number

DM carries lepton 
number L = 1/2

Z2 symmetry to stabilize DM
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Annihilating thermal 
abundance

nDM ∼ T 3 → 10−10T 3

Dark

Matter   Anti-Matter
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Annihilating thermal 
abundance

Extra relativistic states (Goldstone)

Through heavy mediators

Tight constraints!

nDM ∼ T 3 → 10−10T 3

mXX̄Xeia/s s < 200 GeV sufficient

mH′/y′ ! 200 GeV
e+ e−

H ′±

X X̄

Wednesday, August 24, 2011



Annihilating Thermal 
Abundance

In general difficult to do via higher 
dimension operators 4
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FIG. 1: Constraints on the scale Λ as a function of dark matter mass mχ for the eight operators of Eqs. (1)-(8) (in order left
to right and descending). Solid blue curve is the upper bound on Λ from the requirement that the symmetric component of
dark matter compose less than 10% of the measured value in the Universe (dotted blue is the value of Λ that gives the total
amount, i.e. in a thermal dark matter scenario). Solid red is the lower bound on Λ from direct detection experiments. Dashed
red is the lower bound on Λ from Tevatron monojet searches, taken from Ref. [26] (see also [24, 25]). Black solid line shows the
lower bound from the requirement that Λ > mχ/2π. Regions above the monojet and direct detection minimum mχ which are
allowed after all constraints are shown in grey. See text for further details.

involved in the annihilation process, each particle which
does interact must do so more efficiently. Thus, Λ must
be lower. Combined with the Λ > mχ/2π bound, this
can completely exclude scalar and pseudoscalar media-
tors, for example if the dark matter couples only to u

and d quarks.
The changes to direct detection bounds in a flavor-

dependent scenario are more complicated. Vector medi-
ators depend only on the couplings to u and d quarks,
so restricting couplings only to these two flavors will not

M. Buckley
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Annihilating Thermal 
Abundance

Alternative: light states that the DM 
can annihilate to that rapidly decay

Much more robust!

The fact that the X mass is somewhat larger than the näıve estimate of 5 GeV is due
to X < B, which in turn can be traced to the fact that the model contains more ba-
ryons than X particles: in relativistic equilibrium conserved charges are proportional

to the number of degrees of freedom carrying that charge.3

It is also possible that the interactions Eq. (2.1) decouple below the electroweak

phase transition. In this case, integrating out both the top and the superpartners,
we obtain

X

B
=

13

40
(2.12)

and therefore

mX ! 13 GeV. (2.13)

We now discuss the origin of the dark matter mass. This is a supersymmetric Dirac
mass arising from a superpotential term ∆W = mXX̄X. The question of why mX is

close to the weak scale is similar to the “µ problem” of supersymmetric models, which
is explaining the origin of the supersymmetric Higgs mass term ∆Weff = µHuHd.
Perhaps the simplest solution is the next-to-minimal supersymmetric standard model

(NMSSM) in which the required mass terms are given by the VEV of a singlet field
S:

∆W = λXSXX̄ + λHSHuHd +
κ

3
S3. (2.14)

This model naturally generates a VEV for S of order the electroweak scale and gives
the required mass terms for Higgs and X particles. Very importantly for dark matter
phenomenology, it also gives a direct coupling of X to the standard model, allowing

the dark matter to be directly detected.

The final ingredient is that the thermal abundance of X particles and antiparticles

must efficiently annihilate, so that the relic density of dark matter is given by the X
particle-antiparticle asymmetry. This requires 〈σannv〉 >∼ pb. In the context of the

NMSSM, a simple possibility is X̄X → aa, where a is the lightest pseudoscalar in
the Higgs sector. This is unsuppressed in the early universe as long as ma <∼ mX .
It is natural for a to be light if A terms are small, in which case a is a pseudo

Nambu-Goldstone boson of a global U(1)R symmetry. The annihiation comes from
the coupling

∆Leff = mXX̄Xeia/s + h.c., (2.15)

3We must also impose the condition that the universe has no net electric charge. Since X does
not carry charge, this condition restricts only the relative number of standard model particles, and
does not affect the scaling argument above.
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Summary
The presence of the light DM states also 
implies the need for other light states

Hidden Valley
Could be complex!

Multiple resonances

Standard Model

Dark Matter

Mp ∼ 1 GeV

Inaccessibility

En
er

gy
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Astrophysical 
Implications

DM does not annihilate

It can accumulate in the center of 
stars

Notable case: neutron stars

Elastically scatter, come to rest in 
core

High density!
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ADM, Black Hole and 
Neutron Stars

Scalar case can lead to BH formation

DM continues to accumulate until there 
are enough that they self-gravitate

OR, they first form Bose-Einstein 
condensate and then self-gravitate

Once they self-gravitate, they can 
collapse to form a BH!
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ADM, Black Hole and 
Neutron Stars

Figure 2. Regions (colored) excluded by the nearby pulsars J0437-4715 (left) and J2124-3358

(right). The shaded, diagonal and square cross-hatched, and black regions are as in Fig. 1.

With the formation of a BEC, it is also sensitive to the mass range mX ∼ 5 MeV− 13 GeV.
The captured scalar ADM cannot form a BEC in the pulsar J2124-3358. This is because it
has a relatively high central temperature, and the formation of a BEC requires a DM-nucleon
cross section larger than the saturation cross section σmax # 2.1× 10−45 cm2.

Since the bound is sensitive to the DM density, we also consider neutron stars in regions
with high ρX . Globular clusters offer this type of environment, and observations of Pulsar
B1620-26 place it in the globular cluster M4 [47] with an age of 2.82× 108 years [44]. Since
it is far away from us, its surface temperature is unknown, and we are not able to calculate
its central temperature. In our analysis, we take T = 106 K as a reasonable approximation
due to its advanced age. We take ρX = 103 GeV/cm3 for the DM density and v̄ = 20 km/s,
motivated by simulations [24, 37]. Note that the exact value of DM density in globular
clusters is uncertain; see discussions in Refs. [24, 25, 37], and references therein. In Fig. (3),
we show the constraints on the DM-nucleon scattering cross section of scalar ADM from the
pulsar B1620-26 in the globular cluster M4. Note that when the DM mass is larger than
∼ 4.7× 103 GeV, NBEC ! Nself and all captured DM particles collapse before a BEC forms.

VII. CONCLUSIONS

We have studied the consequences of scalar ADM accumulation in neutron stars. Neutron
stars have high density and are ideal objects for capturing DM at high rates. Since ADM
does not self-annihilate, a high mass of DM can accrete in the neutron star, and, lacking
Fermi degeneracy pressure, rapidly self-gravitate and exceed the Chandrasekhar limit. Fur-

18

McDermott, Yu, KZ, ’11

Seems to strongly constrain a scalar ADM 
explanation for CoGeNT!

Wednesday, August 24, 2011



Dark Sector 
Baryogenesis

With  DM sectors a possibility opens:

Baryogenesis in the hidden sector?

Opens a wide range of possibilities 

Generate in dark sector then transfer = darkogenesis

Generate dark and visible asymmetries simultaneously = 
cogenesis

Wednesday, August 24, 2011



Cogenesis
Simultaneously generate a DM and 
baryon asymmetry

Make use of Affleck-Dine mechanism

ADM has operators of form:

Breaks B-L, X, preserves B-L+X!
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We propose a novel framework in which the observed baryon and dark matter abundances are
simultaneously generated via the Affleck-Dine mechanism. In its simplest realization, Affleck-Dine
cogenesis is accomplished by a single superpotential operator and its A-term counterpart. These
operators explicitly break B − L and X, the dark matter number, to the diagonal B − L +X. In
the early universe these operators stabilize supersymmetric flat directions carrying non-zero B − L
and X, and impart the requisite CP violation for asymmetry generation. Because B − L + X is
preserved, the resulting B − L and X asymmetries are equal and opposite, though this precise
relation may be relaxed if B − L and X are violated separately by additional operators. Our dark
matter candidate is stabilized by R-parity and acquires an asymmetric abundance due to its non-
zero X number. For a dark matter mass of order a few GeV, one naturally obtains the observed
ratio of energy densities today, ΩDM/ΩB ∼ 5. These theories typically predict macroscopic lifetimes
for the lightest observable supersymmetric particle as it decays to the dark matter.

I. INTRODUCTION

The existence of the baryon asymmetry and dark mat-
ter (DM) are key pieces of evidence for physics beyond
the standard model (SM). In particular, the SM pro-
vides neither enough CP violation to generate the ob-
served baryon asymmetry nor a viable DM candidate.
On the other hand, supersymmetry can accommodate
both, albeit through unrelated mechanisms. The baryon
asymmetry is set by new CP violating phases and out of
equilibrium dynamics, while the DM density arises from
thermal freeze out.
In this paper we unify the production of baryon and

DM number through a simple extension of the Affleck-
Dine mechanism [1, 2] which exploits the fact that super-
symmetric flat directions can also carry DM number. In
particular, we consider a setup with the usual U(1)B−L

symmetry carried by MSSM fields and a U(1)X symme-
try carried by additional states which we refer to col-
lectively as the DM sector. Typically, there exists an
operator

OB−LOX , (1)

where OB−L and OX are gauge invariant products of
chiral superfields which carry B − L and X number, re-
spectively. In general, we are interested in operators of
the form

OB−L = LHu, LLE
c, QLDc, U cDcDc, (2)

which have charge −1 under U(1)B−L, while we choose
X charges such that OX has charge +1 under U(1)X . In
this convention, OB−LOX explicitly breaks B−L and X
number down to an exact, diagonal B − L+X number.
As in canonical AD, inflation induces supersymmetry

breaking effects proportional to the Hubble parameter
which can efficiently drive 〈B − L〉 and 〈X〉 to non-zero
values in the early universe. As the universe cools, these
operators become ineffective and the vacuum settles to

the present day B−L and X preserving minimum. Dur-
ing this transition, the A-term counterpart of the opera-
tor in Eq. (1) enters into the scalar potential and induces
a “torque” on the phases of the complex scalar fields.
This A-term provides the required CP violation needed
to generate B−L and X asymmetries. Because the the-
ory preserves B − L + X , the resulting asymmetry has
vanishing B − L+X number, so

− nB−L = nX $= 0. (3)

Since the baryon and DM asymmetries are produced si-
multaneously, we refer to this mechanism as AD “coge-
nesis.” The relation in Eq. (3) can be modified in the
presence of additional operators which separately violate
B − L and X .
As we will see, the DM sector is thermalized after infla-

tion, albeit at a low temperature, and chemical equilib-
rium distributes the initial nX asymmetry among all X
charged states which are sufficiently long-lived to freeze
out. An example of such a state is the lightestX number
charged particle (LXP), which is often meta-stable, but
will in general decay late to B − L charged SM states
via OB−LOX . In this paper, we will assume that the
lightest supersymmetric particle (LSP) carries X num-
ber and it thus attains an asymmetric relic abundance
from the initial X asymmetry. Moreover, because the
lightest observable supersymmetric particle (LOSP) and
the LXP are typically long-lived, this class of theories
accommodates an interesting collider phenomenology.
Operators of the form OB−LOX were considered more

generally in Asymmetric DM [3], which relates a present
day asymmetry in baryons and DM via similar symmetry
considerations. However, while in [3] the baryon asym-
metry was assumed initially and then shared with the
DM, in the present work the baryon and DM asym-
metries are generated dynamically and simultaneously.
Other types of mechanisms for generating or transferring
an asymmetry between sectors have been discussed in the
literature, from electroweak sphalerons [4], to out of equi-
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We propose a novel framework in which the observed baryon and dark matter abundances are
simultaneously generated via the Affleck-Dine mechanism. In its simplest realization, Affleck-Dine
cogenesis is accomplished by a single superpotential operator and its A-term counterpart. These
operators explicitly break B − L and X, the dark matter number, to the diagonal B − L +X. In
the early universe these operators stabilize supersymmetric flat directions carrying non-zero B − L
and X, and impart the requisite CP violation for asymmetry generation. Because B − L + X is
preserved, the resulting B − L and X asymmetries are equal and opposite, though this precise
relation may be relaxed if B − L and X are violated separately by additional operators. Our dark
matter candidate is stabilized by R-parity and acquires an asymmetric abundance due to its non-
zero X number. For a dark matter mass of order a few GeV, one naturally obtains the observed
ratio of energy densities today, ΩDM/ΩB ∼ 5. These theories typically predict macroscopic lifetimes
for the lightest observable supersymmetric particle as it decays to the dark matter.

I. INTRODUCTION

The existence of the baryon asymmetry and dark mat-
ter (DM) are key pieces of evidence for physics beyond
the standard model (SM). In particular, the SM pro-
vides neither enough CP violation to generate the ob-
served baryon asymmetry nor a viable DM candidate.
On the other hand, supersymmetry can accommodate
both, albeit through unrelated mechanisms. The baryon
asymmetry is set by new CP violating phases and out of
equilibrium dynamics, while the DM density arises from
thermal freeze out.
In this paper we unify the production of baryon and

DM number through a simple extension of the Affleck-
Dine mechanism [1, 2] which exploits the fact that super-
symmetric flat directions can also carry DM number. In
particular, we consider a setup with the usual U(1)B−L

symmetry carried by MSSM fields and a U(1)X symme-
try carried by additional states which we refer to col-
lectively as the DM sector. Typically, there exists an
operator

OB−LOX , (1)

where OB−L and OX are gauge invariant products of
chiral superfields which carry B − L and X number, re-
spectively. In general, we are interested in operators of
the form

OB−L = LHu, LLE
c, QLDc, U cDcDc, (2)

which have charge −1 under U(1)B−L, while we choose
X charges such that OX has charge +1 under U(1)X . In
this convention, OB−LOX explicitly breaks B−L and X
number down to an exact, diagonal B − L+X number.
As in canonical AD, inflation induces supersymmetry

breaking effects proportional to the Hubble parameter
which can efficiently drive 〈B − L〉 and 〈X〉 to non-zero
values in the early universe. As the universe cools, these
operators become ineffective and the vacuum settles to

the present day B−L and X preserving minimum. Dur-
ing this transition, the A-term counterpart of the opera-
tor in Eq. (1) enters into the scalar potential and induces
a “torque” on the phases of the complex scalar fields.
This A-term provides the required CP violation needed
to generate B−L and X asymmetries. Because the the-
ory preserves B − L + X , the resulting asymmetry has
vanishing B − L+X number, so

− nB−L = nX $= 0. (3)

Since the baryon and DM asymmetries are produced si-
multaneously, we refer to this mechanism as AD “coge-
nesis.” The relation in Eq. (3) can be modified in the
presence of additional operators which separately violate
B − L and X .
As we will see, the DM sector is thermalized after infla-

tion, albeit at a low temperature, and chemical equilib-
rium distributes the initial nX asymmetry among all X
charged states which are sufficiently long-lived to freeze
out. An example of such a state is the lightestX number
charged particle (LXP), which is often meta-stable, but
will in general decay late to B − L charged SM states
via OB−LOX . In this paper, we will assume that the
lightest supersymmetric particle (LSP) carries X num-
ber and it thus attains an asymmetric relic abundance
from the initial X asymmetry. Moreover, because the
lightest observable supersymmetric particle (LOSP) and
the LXP are typically long-lived, this class of theories
accommodates an interesting collider phenomenology.
Operators of the form OB−LOX were considered more

generally in Asymmetric DM [3], which relates a present
day asymmetry in baryons and DM via similar symmetry
considerations. However, while in [3] the baryon asym-
metry was assumed initially and then shared with the
DM, in the present work the baryon and DM asym-
metries are generated dynamically and simultaneously.
Other types of mechanisms for generating or transferring
an asymmetry between sectors have been discussed in the
literature, from electroweak sphalerons [4], to out of equi-
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We propose a novel framework in which the observed baryon and dark matter abundances are
simultaneously generated via the Affleck-Dine mechanism. In its simplest realization, Affleck-Dine
cogenesis is accomplished by a single superpotential operator and its A-term counterpart. These
operators explicitly break B − L and X, the dark matter number, to the diagonal B − L +X. In
the early universe these operators stabilize supersymmetric flat directions carrying non-zero B − L
and X, and impart the requisite CP violation for asymmetry generation. Because B − L + X is
preserved, the resulting B − L and X asymmetries are equal and opposite, though this precise
relation may be relaxed if B − L and X are violated separately by additional operators. Our dark
matter candidate is stabilized by R-parity and acquires an asymmetric abundance due to its non-
zero X number. For a dark matter mass of order a few GeV, one naturally obtains the observed
ratio of energy densities today, ΩDM/ΩB ∼ 5. These theories typically predict macroscopic lifetimes
for the lightest observable supersymmetric particle as it decays to the dark matter.

I. INTRODUCTION

The existence of the baryon asymmetry and dark mat-
ter (DM) are key pieces of evidence for physics beyond
the standard model (SM). In particular, the SM pro-
vides neither enough CP violation to generate the ob-
served baryon asymmetry nor a viable DM candidate.
On the other hand, supersymmetry can accommodate
both, albeit through unrelated mechanisms. The baryon
asymmetry is set by new CP violating phases and out of
equilibrium dynamics, while the DM density arises from
thermal freeze out.
In this paper we unify the production of baryon and

DM number through a simple extension of the Affleck-
Dine mechanism [1, 2] which exploits the fact that super-
symmetric flat directions can also carry DM number. In
particular, we consider a setup with the usual U(1)B−L

symmetry carried by MSSM fields and a U(1)X symme-
try carried by additional states which we refer to col-
lectively as the DM sector. Typically, there exists an
operator

OB−LOX , (1)

where OB−L and OX are gauge invariant products of
chiral superfields which carry B − L and X number, re-
spectively. In general, we are interested in operators of
the form

OB−L = LHu, LLE
c, QLDc, U cDcDc, (2)

which have charge −1 under U(1)B−L, while we choose
X charges such that OX has charge +1 under U(1)X . In
this convention, OB−LOX explicitly breaks B−L and X
number down to an exact, diagonal B − L+X number.
As in canonical AD, inflation induces supersymmetry

breaking effects proportional to the Hubble parameter
which can efficiently drive 〈B − L〉 and 〈X〉 to non-zero
values in the early universe. As the universe cools, these
operators become ineffective and the vacuum settles to

the present day B−L and X preserving minimum. Dur-
ing this transition, the A-term counterpart of the opera-
tor in Eq. (1) enters into the scalar potential and induces
a “torque” on the phases of the complex scalar fields.
This A-term provides the required CP violation needed
to generate B−L and X asymmetries. Because the the-
ory preserves B − L + X , the resulting asymmetry has
vanishing B − L+X number, so

− nB−L = nX $= 0. (3)

Since the baryon and DM asymmetries are produced si-
multaneously, we refer to this mechanism as AD “coge-
nesis.” The relation in Eq. (3) can be modified in the
presence of additional operators which separately violate
B − L and X .
As we will see, the DM sector is thermalized after infla-

tion, albeit at a low temperature, and chemical equilib-
rium distributes the initial nX asymmetry among all X
charged states which are sufficiently long-lived to freeze
out. An example of such a state is the lightestX number
charged particle (LXP), which is often meta-stable, but
will in general decay late to B − L charged SM states
via OB−LOX . In this paper, we will assume that the
lightest supersymmetric particle (LSP) carries X num-
ber and it thus attains an asymmetric relic abundance
from the initial X asymmetry. Moreover, because the
lightest observable supersymmetric particle (LOSP) and
the LXP are typically long-lived, this class of theories
accommodates an interesting collider phenomenology.
Operators of the form OB−LOX were considered more

generally in Asymmetric DM [3], which relates a present
day asymmetry in baryons and DM via similar symmetry
considerations. However, while in [3] the baryon asym-
metry was assumed initially and then shared with the
DM, in the present work the baryon and DM asym-
metries are generated dynamically and simultaneously.
Other types of mechanisms for generating or transferring
an asymmetry between sectors have been discussed in the
literature, from electroweak sphalerons [4], to out of equi-
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Map onto simple mechanical analog: 
pseudo-particle in two dimensions

B-L and X asymmetry --> torque on 
mechanical analog
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librium decay of heavy particles [5], and phase transitions
in hidden sectors [6]. Other works on DM with an asym-
metry and their phenomenological implications include
[7]. A common origin of DM and the baryon asymmetry
through the AD mechanism has also been considered via
fragmentation of the AD condensate into Q-balls [8, 9],
via a sneutrino condensate [10], as well as more recently
in [11].
The outline of this paper is as follows. In Sec. II we de-

scribe the mechanism of AD cogenesis in general terms.
This will include a discussion of the formation of the AD
condensate in the inflationary epoch, as well as its sub-
sequent cosmological evolution after inflation ends. We
then go on in Sec. III to discuss the decay of the inflaton
and the AD condensate, followed by the ensuing thermal
histories of the MSSM and DM sectors. Afterwards we
present a number of simple explicit models of AD cogene-
sis and their associated variations in Sec. IV, and discuss
the collider phenomenology of these theories in Sec. V.
Finally, we conclude in Sec. VI.

II. COGENESIS IN THE EARLY UNIVERSE

Our aim is to simultaneously generate a B −L and X
asymmetry at the end of inflation via the evolution of AD
condensates which carry B − L and X . To understand
what is required in order to achieve this, let us map our
system onto a simple mechanical analog. In particular,
by parameterizing a scalar field φ in polar coordinates,

φ =
1√
2
rφe

iθφ , (4)

one finds that the charge density of φ is

nφ = j0 = i(φφ̇† − φ†φ̇) = r2φθ̇φ, (5)

that is, identical to the angular momentum of a pseudo-
particle in two dimensions.
It is convenient to reinterpret the scalar sector of the

MSSM during inflation as a system of coupled pseudo-
particles in two dimensions with a time dependent po-
tential. Thus to produce a B − L and X asymmetry
we must have a setup in which the initial angular mo-
menta of all the pseudo-particles are vanishing but the
final angular momenta in the B−L and X directions are
non-zero. Hence, the essential ingredients of our setup
are:

i) Stabilization. Since a torque requires a lever arm,
scalar fields must be stabilized away from the origin
in the early universe in such a way that both B−L
and X are spontaneously broken.

ii) Torque. For a torque to be exerted, the scalar
potential must vary in time and depend explicitly
on the phases of fields which are B − L and X
covariant.

These criteria are of course equivalent to the Sakharov
conditions requiring i) B −L and X symmetry violation
and ii) CP violation. Let us now discuss how each of
these elements are accommodated during the formation
and evolution of the AD condensate.

A. Stabilization

The first phase of the AD mechanism, stabilization,
occurs during the initial inflationary epoch of the early
universe. As discussed thoroughly in [12, 13], the expan-
sion of the universe affects the evolution of scalar fields
through Hubble friction and through the scalar potential,
which takes the form

V = VF + VD + Vsoft, (6)

where VF and VD arise from supersymmetric F -terms
and D-terms. Here Vsoft will vary explicitly in time via
the Hubble parameter because supersymmetry is bro-
ken by the vacuum energy of the universe during infla-
tion. Indeed, Hubble dependent potential terms should
be present as a consequence of interactions between the
scalar fields and the inflaton induced by Planck scale dy-
namics. The presence of these Hubble induced interac-
tions along with Hubble friction implies that the scalar
fields are critically damped during the inflationary phase
[12, 13].
Typically, Vsoft will induce additional minima far from

the origin. For example, the AD mechanism exploits the
existence of soft mass terms of the form [12, 13]

Vsoft ⊃
∑

φ

(aφm
2 + bφH

2)|φ|2, (7)

where m is the scale of soft masses at zero temperature
and H is the Hubble parameter. The dimensionless pa-
rameters aφ and bφ are generated by the couplings of the
field φ to the goldstino and the inflaton, respectively. In
general, it is possible that bφ < 0 in Eq. (7), in which case
a tachyon is induced for φ during inflation, causing φ to
roll away from the origin and be stabilized at φ-breaking
minimum.
We should also expect a contribution to the potential

from the A-term version of OB−LOX of the form

Vsoft ⊃ (fm+ gH)
OB−LOX

Md−4
. (8)

where f and g are dimensionless coefficients andM is the
scale suppressing the dimension d operator in Eq. (1). As
we will see in explicit models in Sec. IV, this operator in-
troduces additional vacua at non-zero field values. To our
knowledge, the possibility that the A-term alone, with-
out Hubble tachyons, can drive the AD evolution has not
before been pointed out in the literature. Be it through
contributions from Eq. (7) or Eq. (8), φ will be naturally
pushed along D-flat directions until it is lifted by higher
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III. COSMOLOGY AFTER COGENESIS

Thus far we have established how an initial asymme-
try in B − L and X number can be generated via AD
cogenesis in the early universe. It now remains to dis-
cuss the effects of inflaton and AD condensate decays on
the MSSM and dark sector evolution. We discuss these
aspects next before moving on to specific models.

A. Inflaton Decay

During AD cogenesis, stabilization and torque are con-
veniently provided by Hubble induced potential terms
generated by the inflaton, which dominates the energy
density of the universe as it oscillates towards the ori-
gin. Eventually, however, the inflaton will decay at a
reheating temperature TR defined as the temperature at
which the Hubble parameter is equal to the inflaton decay
rate. This subsequently reheats, to some extent, both the
MSSM and DM sectors. This reheating process is highly
sensitive to the couplings of the inflaton to the various
fields. For example, one expects Kahler operators of the
form

K ⊃
∑

φ

bφ
M2

Pl

χ†χφ†φ, (21)

where χ is the inflaton chiral superfield and bφ is the same
coefficient fixing the Hubble soft mass of φ in Eq. (7).
In this paper we take the natural assumption that bφ
is comparable for MSSM and DM sector fields, since it
is generated by unspecified Planck scale physics. Thus,
the inflaton will decay to both sectors at a similar rate,
and both sectors will be comparably reheated. Relaxing
this assumption, especially in cases where the DM sector
is reheated very little, leads to interesting cosmological
scenarios. We leave an exploration of these possibilities
to future work, and instead focus here on the case where
both sectors are reheated equally.
Naively, an equal degree of reheating into the MSSM

and DM sectors has cosmological dangers, given stringent
bounds from big bang nucleosynthesis (BBN) constrain-
ing the number of light degrees of freedom present at
MeV temperatures. As we will see explicitly in Sec. III C,
however, the two sectors can in general be thermally
decoupled from each other immediately after reheating,
henceforth evolving to different temperatures. Indeed,
variations in the number of degrees of freedom in the
MSSM and DM sectors during the evolution of the uni-
verse can substantially alter the relative temperatures of
the MSSM and DM sectors [14]. Thus, if the DM sec-
tor is even modestly cooler than the MSSM during BBN,
say even by an order of magnitude in temperature, then
these BBN bounds permit many hundreds of degrees of
freedom in the DM sector.
Another cosmological pitfall arising from inflaton de-

cays to the MSSM is the overproduction of weakly cou-
pled, stable particles, e.g. the gravitino problem [15] and

the axino problem [16]. For example, as is well-known,
gravitino overclosure places a bound of at least TR ! 1010

GeV which becomes even more stringent for lower super-
symmetry breaking scales. This is an important con-
straint on the AD mechanism in general.
Importantly, TR is also constrained via the observed

baryon and DM densities produced in AD cogenesis ac-
cording to the usual expression for the asymmetric yield
[13],

ηB =
nB

s
∼

nB

ρχ/TR
, (22)

where the inflaton energy density ρχ sets the expansion
rate during inflaton dominated reheating, ρχ ∼ H2M2

Pl.
Here nB and ρχ should be evaluated shortly after AD co-
genesis, when Hubble is of order the scale of soft masses.
Because the present day asymmetric yield of baryons is
measured to be ηB ∼ 10−10, this relation effectively fixes
TR in terms of the number asymmetry generated by AD
cogenesis, which is in turn fixed by the strength of the
OB−LOX operator. Lastly, note one final constraint on
TR, which is that the Hubble parameter during reheat-
ing must be smaller than the scale of soft masses, taken
to be of order the weak scale. If this is not the case,
then the inflaton will have decayed too soon to be able
to generate the Hubble induced potential terms which
drive the AD condensate evolution. This places a bound
of approximately TR ! 1010 GeV.

B. Condensate Decay

After the initial asymmetry is produced, the universe
cools and the AD condensate in-spirals towards the ori-
gin, as dictated by the zero temperature scalar potential.
As discussed in [8, 17, 18], if the scalar potential is shal-
lower than quadratic near the origin, then it supports
a class of non-topologically stabilized solitons known as
Q-balls. If formed, Q-balls will be cosmologically stable
if their energy density per unit charge is less than that
of the lightest B − L or X charged particle. It has been
shown that theories of gauge mediated supersymmetry
breaking generally allow for Q-ball formation [8, 17]. On
the other hand, whether this occurs in the case of grav-
ity mediation depends sensitively on the precise form of
the radiative potential and is thus very model dependent
[18]. Throughout this work, we assume a gravity me-
diated scenario in which the potential does not permit
Q-ball formation.
In the absence of Q-balls, the AD condensate eventu-

ally “evaporates” as a consequence of scattering with the
thermalized decay products of the inflaton. This evapo-
ration yields symmetric and asymmetric abundances of
DM sector particles, with relative sizes determined by the
radial and angular velocities of the condensate. The sym-
metric component is absorbed by the DM sector bath,
but eventually freezes out once the universe sufficiently
cools. In order for AD cogenesis to successfully explain

U(1)B−L+X → U(1)B−L × U(1)X
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We propose a novel framework in which the observed baryon and dark matter abundances are
simultaneously generated via the Affleck-Dine mechanism. In its simplest realization, Affleck-Dine
cogenesis is accomplished by a single superpotential operator and its A-term counterpart. These
operators explicitly break B − L and X, the dark matter number, to the diagonal B − L +X. In
the early universe these operators stabilize supersymmetric flat directions carrying non-zero B − L
and X, and impart the requisite CP violation for asymmetry generation. Because B − L + X is
preserved, the resulting B − L and X asymmetries are equal and opposite, though this precise
relation may be relaxed if B − L and X are violated separately by additional operators. Our dark
matter candidate is stabilized by R-parity and acquires an asymmetric abundance due to its non-
zero X number. For a dark matter mass of order a few GeV, one naturally obtains the observed
ratio of energy densities today, ΩDM/ΩB ∼ 5. These theories typically predict macroscopic lifetimes
for the lightest observable supersymmetric particle as it decays to the dark matter.

I. INTRODUCTION

The existence of the baryon asymmetry and dark mat-
ter (DM) are key pieces of evidence for physics beyond
the standard model (SM). In particular, the SM pro-
vides neither enough CP violation to generate the ob-
served baryon asymmetry nor a viable DM candidate.
On the other hand, supersymmetry can accommodate
both, albeit through unrelated mechanisms. The baryon
asymmetry is set by new CP violating phases and out of
equilibrium dynamics, while the DM density arises from
thermal freeze out.
In this paper we unify the production of baryon and

DM number through a simple extension of the Affleck-
Dine mechanism [1, 2] which exploits the fact that super-
symmetric flat directions can also carry DM number. In
particular, we consider a setup with the usual U(1)B−L

symmetry carried by MSSM fields and a U(1)X symme-
try carried by additional states which we refer to col-
lectively as the DM sector. Typically, there exists an
operator

OB−LOX , (1)

where OB−L and OX are gauge invariant products of
chiral superfields which carry B − L and X number, re-
spectively. In general, we are interested in operators of
the form

OB−L = LHu, LLE
c, QLDc, U cDcDc, (2)

which have charge −1 under U(1)B−L, while we choose
X charges such that OX has charge +1 under U(1)X . In
this convention, OB−LOX explicitly breaks B−L and X
number down to an exact, diagonal B − L+X number.
As in canonical AD, inflation induces supersymmetry

breaking effects proportional to the Hubble parameter
which can efficiently drive 〈B − L〉 and 〈X〉 to non-zero
values in the early universe. As the universe cools, these
operators become ineffective and the vacuum settles to

the present day B−L and X preserving minimum. Dur-
ing this transition, the A-term counterpart of the opera-
tor in Eq. (1) enters into the scalar potential and induces
a “torque” on the phases of the complex scalar fields.
This A-term provides the required CP violation needed
to generate B−L and X asymmetries. Because the the-
ory preserves B − L + X , the resulting asymmetry has
vanishing B − L+X number, so

− nB−L = nX $= 0. (3)

Since the baryon and DM asymmetries are produced si-
multaneously, we refer to this mechanism as AD “coge-
nesis.” The relation in Eq. (3) can be modified in the
presence of additional operators which separately violate
B − L and X .
As we will see, the DM sector is thermalized after infla-

tion, albeit at a low temperature, and chemical equilib-
rium distributes the initial nX asymmetry among all X
charged states which are sufficiently long-lived to freeze
out. An example of such a state is the lightestX number
charged particle (LXP), which is often meta-stable, but
will in general decay late to B − L charged SM states
via OB−LOX . In this paper, we will assume that the
lightest supersymmetric particle (LSP) carries X num-
ber and it thus attains an asymmetric relic abundance
from the initial X asymmetry. Moreover, because the
lightest observable supersymmetric particle (LOSP) and
the LXP are typically long-lived, this class of theories
accommodates an interesting collider phenomenology.
Operators of the form OB−LOX were considered more

generally in Asymmetric DM [3], which relates a present
day asymmetry in baryons and DM via similar symmetry
considerations. However, while in [3] the baryon asym-
metry was assumed initially and then shared with the
DM, in the present work the baryon and DM asym-
metries are generated dynamically and simultaneously.
Other types of mechanisms for generating or transferring
an asymmetry between sectors have been discussed in the
literature, from electroweak sphalerons [4], to out of equi-Wednesday, August 24, 2011
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Usual mechanism: mass terms

New mechanism: A-terms
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librium decay of heavy particles [5], and phase transitions
in hidden sectors [6]. Other works on DM with an asym-
metry and their phenomenological implications include
[7]. A common origin of DM and the baryon asymmetry
through the AD mechanism has also been considered via
fragmentation of the AD condensate into Q-balls [8, 9],
via a sneutrino condensate [10], as well as more recently
in [11].
The outline of this paper is as follows. In Sec. II we de-

scribe the mechanism of AD cogenesis in general terms.
This will include a discussion of the formation of the AD
condensate in the inflationary epoch, as well as its sub-
sequent cosmological evolution after inflation ends. We
then go on in Sec. III to discuss the decay of the inflaton
and the AD condensate, followed by the ensuing thermal
histories of the MSSM and DM sectors. Afterwards we
present a number of simple explicit models of AD cogene-
sis and their associated variations in Sec. IV, and discuss
the collider phenomenology of these theories in Sec. V.
Finally, we conclude in Sec. VI.

II. COGENESIS IN THE EARLY UNIVERSE

Our aim is to simultaneously generate a B −L and X
asymmetry at the end of inflation via the evolution of AD
condensates which carry B − L and X . To understand
what is required in order to achieve this, let us map our
system onto a simple mechanical analog. In particular,
by parameterizing a scalar field φ in polar coordinates,

φ =
1√
2
rφe

iθφ , (4)

one finds that the charge density of φ is

nφ = j0 = i(φφ̇† − φ†φ̇) = r2φθ̇φ, (5)

that is, identical to the angular momentum of a pseudo-
particle in two dimensions.
It is convenient to reinterpret the scalar sector of the

MSSM during inflation as a system of coupled pseudo-
particles in two dimensions with a time dependent po-
tential. Thus to produce a B − L and X asymmetry
we must have a setup in which the initial angular mo-
menta of all the pseudo-particles are vanishing but the
final angular momenta in the B−L and X directions are
non-zero. Hence, the essential ingredients of our setup
are:

i) Stabilization. Since a torque requires a lever arm,
scalar fields must be stabilized away from the origin
in the early universe in such a way that both B−L
and X are spontaneously broken.

ii) Torque. For a torque to be exerted, the scalar
potential must vary in time and depend explicitly
on the phases of fields which are B − L and X
covariant.

These criteria are of course equivalent to the Sakharov
conditions requiring i) B −L and X symmetry violation
and ii) CP violation. Let us now discuss how each of
these elements are accommodated during the formation
and evolution of the AD condensate.

A. Stabilization

The first phase of the AD mechanism, stabilization,
occurs during the initial inflationary epoch of the early
universe. As discussed thoroughly in [12, 13], the expan-
sion of the universe affects the evolution of scalar fields
through Hubble friction and through the scalar potential,
which takes the form

V = VF + VD + Vsoft, (6)

where VF and VD arise from supersymmetric F -terms
and D-terms. Here Vsoft will vary explicitly in time via
the Hubble parameter because supersymmetry is bro-
ken by the vacuum energy of the universe during infla-
tion. Indeed, Hubble dependent potential terms should
be present as a consequence of interactions between the
scalar fields and the inflaton induced by Planck scale dy-
namics. The presence of these Hubble induced interac-
tions along with Hubble friction implies that the scalar
fields are critically damped during the inflationary phase
[12, 13].
Typically, Vsoft will induce additional minima far from

the origin. For example, the AD mechanism exploits the
existence of soft mass terms of the form [12, 13]

Vsoft ⊃
∑

φ

(aφm
2 + bφH

2)|φ|2, (7)

where m is the scale of soft masses at zero temperature
and H is the Hubble parameter. The dimensionless pa-
rameters aφ and bφ are generated by the couplings of the
field φ to the goldstino and the inflaton, respectively. In
general, it is possible that bφ < 0 in Eq. (7), in which case
a tachyon is induced for φ during inflation, causing φ to
roll away from the origin and be stabilized at φ-breaking
minimum.
We should also expect a contribution to the potential

from the A-term version of OB−LOX of the form

Vsoft ⊃ (fm+ gH)
OB−LOX

Md−4
. (8)

where f and g are dimensionless coefficients andM is the
scale suppressing the dimension d operator in Eq. (1). As
we will see in explicit models in Sec. IV, this operator in-
troduces additional vacua at non-zero field values. To our
knowledge, the possibility that the A-term alone, with-
out Hubble tachyons, can drive the AD evolution has not
before been pointed out in the literature. Be it through
contributions from Eq. (7) or Eq. (8), φ will be naturally
pushed along D-flat directions until it is lifted by higher
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before been pointed out in the literature. Be it through
contributions from Eq. (7) or Eq. (8), φ will be naturally
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from the finite energy breaking. This permits an estimate of the asymmetry which

systematically includes the effects of nonrenormalizable terms in the superpoten-

tial. The resulting asymmetry is largely independent of any assumptions about

initial conditions.

2. Supersymmetry Breaking

The finite energy density in the early universe breaks supersymmetry. In

a thermal phase this is manifest through the disparate occupation numbers for

bosons and fermions. In an inflationary phase in which a positive vacuum en-

ergy dominates, the inflaton F or D component is necessarily nonzero, implying

supersymmetry breaking. The same is true in the post-inflationary phase before

reheating, when the inflaton oscillations dominate, and the time averaged vacuum

energy is positive. In principle, SUSY breaking can be transmitted to flat direc-

tions by both renormalizable and nonrenormalizable interactions. However, for

large field values all fields which couple through renormalizable interactions gain

a mass larger than any relevant scale of excitation. These states then effectively

decouple and do not lift the flat directions.

Nonrenormalizable interactions can have important effects though. To illus-

trate this consider a term in the Kahler potential of the form

δK =
1

M2
p
χ†χφ†φ (1)

where χ is a field which dominates the energy density of the universe, φ is a

canonically normalized flat direction, and Mp = mp/
√

8π is the reduced Planck

mass. No symmetry prevents such a term, which can be present directly at the

Planck scale, or be generated by running to a lower scale. If χ dominates the energy

density, then ρ " 〈
∫

d2θχ†χ〉. In a thermal phase the expectation value arises

from kinetic terms over the χ component thermal distributions. In an inflaton

dominated era it is given by the inflaton F components and kinetic energy. The

interaction (1) gives an effective mass for φ of δL = (ρ/M2
p )φ†φ (note that a positive

contribution in the Kahler potential gives a negative contribution to m2). In a flat

expanding background, ρ = 3H2M2
p , so that m2 ∼ H2. This is a generic result,

independent of what specifically dominates the energy density. For H >∼ m3/2, this

source for the soft mass is more important than any hidden sector breaking.
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2. Torque
To see how this works, parameterize

In this notation

Then define according to conserved 
quantities:
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order terms in the potential at some large field value.
This state is the AD condensate.
A variety of operators, which may or may not break

B − L, X , or supersymmetry, can serve to lift the flat
directions. For instance, Eq. (1) is a very natural super-
potential operator which is fully supersymmetric, breaks
B−L and X down to the diagonal B−L+X , and pro-
duces a stabilizing VF potential. Alternatively, VF can
have stabilizing contributions from supersymmetric op-
erators which separately preserve B − L and X . Also,
it is possible that higher order terms from Vsoft success-
fully stabilize the field directions. Finally, we note that
additional D-terms from a gauged B −L+X symmetry
are a particularly elegant way of stabilizing fields with
B −L and X number simultaneously. In Sec. IV we will
explicitly realize some of these stabilizing mechanisms in
a number of concrete models.

B. Torque

Following the inflationary epoch comes the second in-
gredient of the AD mechanism, torque. When inflation
ends, the universe begins to cool and the energy density
is dominated by the coherent oscillations of the inflaton.
During this time, the AD condensate more or less tracks
the minimum of the scalar potential, which moves as a
function of the Hubble parameter. If the parameters f
and g in Eq. (8) have different phases, then a torque will
be exerted on the phases of the fields in OB−L and OX

when H ∼ fm/g. As the phases of B − L and X evolve
from their initial to final values, a non-zero asymmetry
in B − L and X develops, as indicated in Eq. (5).
We can now calculate the asymmetry in Eq. (5) by

tracking the evolution of the scalar fields through the
equations of motion for the angular components of B −
L and X . We are interested in the Lagrangian for the
angular components of the coupled B−L and X system.
First, we parameterize all fields according to their charges
under B − L and X , so

φ = rφ exp i (qB−L,φθB−L + qX,φθX) , (9)

where qB−L,φ and qX,φ are the B − L and X charges of
φ, and θB−L and θX are phases which shift by a unit
under B − L and X , respectively. In this notation, the
Lagrangian is

L =
1

2
(r2B−Lθ̇

2
B−L + r2X θ̇2X)− V (θB−L − θX), (10)

where we have defined the quantities

r2B−L =
∑

φ

q2B−L,φr
2
φ (11)

r2X =
∑

φ

q2X,φr
2
φ. (12)

One can think of rB−L and rX as the lever arms corre-
sponding to B − L and X number. In this notation, the

B − L and X number densities are

nB−L = r2B−Lθ̇B−L (13)

nX = r2X θ̇X . (14)

The parameterization in Eq. (9) implies that

OB−L = |OB−L|e−iθB−L

OX = |OX |eiθX , (15)

which in turn means that the term in Eq. (8) generates
the angular potential shown in Eq. (10). As mentioned
earlier, OB−L and OX have, without loss of generality,
been defined to have charge −1 under B − L and charge
+1 under X , respectively. Defining sum and difference
angular variables,

θ± = θB−L ± θX , (16)

we see that the angular Lagrangian has no dependence
on θ+. This implies that conjugate momentum to θ+,
that is the B − L+X number density, is conserved,

d

dt

∂L
∂θ̇+

=
d

dt
(nB−L + nX) = 0, (17)

or equivalently, B − L + X number is conserved at its
initial value of zero:

nB−L + nX = 0. (18)

On the other hand, the operator in Eq. (8) explicitly
breaks B − L − X , so it generates an effective, time
dependent potential for θ−. The conjugate momentum,
∂L/∂θ−, is B − L−X number and is not conserved:

d

dt

∂L
∂θ̇−

=
d

dt
(nB−L − nX) = −

∂V

∂θ−
. (19)

This equation of motion can be solved parametrically us-
ing Eq. (8) and the parameterization in Eq. (15), treating
the torque as an impulse occurring at time H ∼ fm/g.
One finds

− nB−L = nX ∼
arg(f/g) g |OB−L| |OX |

Md−4
, (20)

where |OB−L| and |OX | are evaluated when H ∼ fm/g.
Thus, an asymmetry in B−L andX is generated and AD
cogenesis is realized. For the potentials we consider, the
AD condensate will typically produce a symmetric abun-
dance of B − L and X charged fields as well. We will
discuss the fate of this symmetric component in Sec. III
and present a more detailed calculation of the asymmet-
ric component in Sec. IV, when we consider explicit mod-
els.
Note that the relationship in Eq. (20) can be modified

in the presence of additional operators which separately
violate B − L and X , such as a Majorana mass term
for a field that carries X number. The presence of the
Majorana term, if it is comparable or larger than the soft
mass term, can give a significant additional contribution
to the X asymmetry which will violate Eq. (20). We will
consider this contribution in detail on a case by case basis
in Sec. IV.
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been defined to have charge −1 under B − L and charge
+1 under X , respectively. Defining sum and difference
angular variables,

θ± = θB−L ± θX , (16)

we see that the angular Lagrangian has no dependence
on θ+. This implies that conjugate momentum to θ+,
that is the B − L+X number density, is conserved,

d

dt

∂L
∂θ̇+

=
d

dt
(nB−L + nX) = 0, (17)

or equivalently, B − L + X number is conserved at its
initial value of zero:

nB−L + nX = 0. (18)

On the other hand, the operator in Eq. (8) explicitly
breaks B − L − X , so it generates an effective, time
dependent potential for θ−. The conjugate momentum,
∂L/∂θ−, is B − L−X number and is not conserved:

d

dt

∂L
∂θ̇−

=
d

dt
(nB−L − nX) = −

∂V

∂θ−
. (19)

This equation of motion can be solved parametrically us-
ing Eq. (8) and the parameterization in Eq. (15), treating
the torque as an impulse occurring at time H ∼ fm/g.
One finds

− nB−L = nX ∼
arg(f/g) g |OB−L| |OX |

Md−4
, (20)

where |OB−L| and |OX | are evaluated when H ∼ fm/g.
Thus, an asymmetry in B−L andX is generated and AD
cogenesis is realized. For the potentials we consider, the
AD condensate will typically produce a symmetric abun-
dance of B − L and X charged fields as well. We will
discuss the fate of this symmetric component in Sec. III
and present a more detailed calculation of the asymmet-
ric component in Sec. IV, when we consider explicit mod-
els.
Note that the relationship in Eq. (20) can be modified

in the presence of additional operators which separately
violate B − L and X , such as a Majorana mass term
for a field that carries X number. The presence of the
Majorana term, if it is comparable or larger than the soft
mass term, can give a significant additional contribution
to the X asymmetry which will violate Eq. (20). We will
consider this contribution in detail on a case by case basis
in Sec. IV.
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order terms in the potential at some large field value.
This state is the AD condensate.
A variety of operators, which may or may not break

B − L, X , or supersymmetry, can serve to lift the flat
directions. For instance, Eq. (1) is a very natural super-
potential operator which is fully supersymmetric, breaks
B−L and X down to the diagonal B−L+X , and pro-
duces a stabilizing VF potential. Alternatively, VF can
have stabilizing contributions from supersymmetric op-
erators which separately preserve B − L and X . Also,
it is possible that higher order terms from Vsoft success-
fully stabilize the field directions. Finally, we note that
additional D-terms from a gauged B −L+X symmetry
are a particularly elegant way of stabilizing fields with
B −L and X number simultaneously. In Sec. IV we will
explicitly realize some of these stabilizing mechanisms in
a number of concrete models.

B. Torque

Following the inflationary epoch comes the second in-
gredient of the AD mechanism, torque. When inflation
ends, the universe begins to cool and the energy density
is dominated by the coherent oscillations of the inflaton.
During this time, the AD condensate more or less tracks
the minimum of the scalar potential, which moves as a
function of the Hubble parameter. If the parameters f
and g in Eq. (8) have different phases, then a torque will
be exerted on the phases of the fields in OB−L and OX

when H ∼ fm/g. As the phases of B − L and X evolve
from their initial to final values, a non-zero asymmetry
in B − L and X develops, as indicated in Eq. (5).
We can now calculate the asymmetry in Eq. (5) by

tracking the evolution of the scalar fields through the
equations of motion for the angular components of B −
L and X . We are interested in the Lagrangian for the
angular components of the coupled B−L and X system.
First, we parameterize all fields according to their charges
under B − L and X , so

φ = rφ exp i (qB−L,φθB−L + qX,φθX) , (9)

where qB−L,φ and qX,φ are the B − L and X charges of
φ, and θB−L and θX are phases which shift by a unit
under B − L and X , respectively. In this notation, the
Lagrangian is

L =
1

2
(r2B−Lθ̇

2
B−L + r2X θ̇2X)− V (θB−L − θX), (10)

where we have defined the quantities

r2B−L =
∑

φ

q2B−L,φr
2
φ (11)

r2X =
∑

φ

q2X,φr
2
φ. (12)

One can think of rB−L and rX as the lever arms corre-
sponding to B − L and X number. In this notation, the

B − L and X number densities are

nB−L = r2B−Lθ̇B−L (13)

nX = r2X θ̇X . (14)

The parameterization in Eq. (9) implies that

OB−L = |OB−L|e−iθB−L

OX = |OX |eiθX , (15)

which in turn means that the term in Eq. (8) generates
the angular potential shown in Eq. (10). As mentioned
earlier, OB−L and OX have, without loss of generality,
been defined to have charge −1 under B − L and charge
+1 under X , respectively. Defining sum and difference
angular variables,

θ± = θB−L ± θX , (16)

we see that the angular Lagrangian has no dependence
on θ+. This implies that conjugate momentum to θ+,
that is the B − L+X number density, is conserved,

d

dt

∂L
∂θ̇+

=
d

dt
(nB−L + nX) = 0, (17)

or equivalently, B − L + X number is conserved at its
initial value of zero:

nB−L + nX = 0. (18)

On the other hand, the operator in Eq. (8) explicitly
breaks B − L − X , so it generates an effective, time
dependent potential for θ−. The conjugate momentum,
∂L/∂θ−, is B − L−X number and is not conserved:

d

dt

∂L
∂θ̇−

=
d

dt
(nB−L − nX) = −

∂V

∂θ−
. (19)

This equation of motion can be solved parametrically us-
ing Eq. (8) and the parameterization in Eq. (15), treating
the torque as an impulse occurring at time H ∼ fm/g.
One finds

− nB−L = nX ∼
arg(f/g) g |OB−L| |OX |

Md−4
, (20)

where |OB−L| and |OX | are evaluated when H ∼ fm/g.
Thus, an asymmetry in B−L andX is generated and AD
cogenesis is realized. For the potentials we consider, the
AD condensate will typically produce a symmetric abun-
dance of B − L and X charged fields as well. We will
discuss the fate of this symmetric component in Sec. III
and present a more detailed calculation of the asymmet-
ric component in Sec. IV, when we consider explicit mod-
els.
Note that the relationship in Eq. (20) can be modified

in the presence of additional operators which separately
violate B − L and X , such as a Majorana mass term
for a field that carries X number. The presence of the
Majorana term, if it is comparable or larger than the soft
mass term, can give a significant additional contribution
to the X asymmetry which will violate Eq. (20). We will
consider this contribution in detail on a case by case basis
in Sec. IV.
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librium decay of heavy particles [5], and phase transitions
in hidden sectors [6]. Other works on DM with an asym-
metry and their phenomenological implications include
[7]. A common origin of DM and the baryon asymmetry
through the AD mechanism has also been considered via
fragmentation of the AD condensate into Q-balls [8, 9],
via a sneutrino condensate [10], as well as more recently
in [11].
The outline of this paper is as follows. In Sec. II we de-

scribe the mechanism of AD cogenesis in general terms.
This will include a discussion of the formation of the AD
condensate in the inflationary epoch, as well as its sub-
sequent cosmological evolution after inflation ends. We
then go on in Sec. III to discuss the decay of the inflaton
and the AD condensate, followed by the ensuing thermal
histories of the MSSM and DM sectors. Afterwards we
present a number of simple explicit models of AD cogene-
sis and their associated variations in Sec. IV, and discuss
the collider phenomenology of these theories in Sec. V.
Finally, we conclude in Sec. VI.

II. COGENESIS IN THE EARLY UNIVERSE

Our aim is to simultaneously generate a B −L and X
asymmetry at the end of inflation via the evolution of AD
condensates which carry B − L and X . To understand
what is required in order to achieve this, let us map our
system onto a simple mechanical analog. In particular,
by parameterizing a scalar field φ in polar coordinates,

φ =
1√
2
rφe

iθφ , (4)

one finds that the charge density of φ is

nφ = j0 = i(φφ̇† − φ†φ̇) = r2φθ̇φ, (5)

that is, identical to the angular momentum of a pseudo-
particle in two dimensions.
It is convenient to reinterpret the scalar sector of the

MSSM during inflation as a system of coupled pseudo-
particles in two dimensions with a time dependent po-
tential. Thus to produce a B − L and X asymmetry
we must have a setup in which the initial angular mo-
menta of all the pseudo-particles are vanishing but the
final angular momenta in the B−L and X directions are
non-zero. Hence, the essential ingredients of our setup
are:

i) Stabilization. Since a torque requires a lever arm,
scalar fields must be stabilized away from the origin
in the early universe in such a way that both B−L
and X are spontaneously broken.

ii) Torque. For a torque to be exerted, the scalar
potential must vary in time and depend explicitly
on the phases of fields which are B − L and X
covariant.

These criteria are of course equivalent to the Sakharov
conditions requiring i) B −L and X symmetry violation
and ii) CP violation. Let us now discuss how each of
these elements are accommodated during the formation
and evolution of the AD condensate.

A. Stabilization

The first phase of the AD mechanism, stabilization,
occurs during the initial inflationary epoch of the early
universe. As discussed thoroughly in [12, 13], the expan-
sion of the universe affects the evolution of scalar fields
through Hubble friction and through the scalar potential,
which takes the form

V = VF + VD + Vsoft, (6)

where VF and VD arise from supersymmetric F -terms
and D-terms. Here Vsoft will vary explicitly in time via
the Hubble parameter because supersymmetry is bro-
ken by the vacuum energy of the universe during infla-
tion. Indeed, Hubble dependent potential terms should
be present as a consequence of interactions between the
scalar fields and the inflaton induced by Planck scale dy-
namics. The presence of these Hubble induced interac-
tions along with Hubble friction implies that the scalar
fields are critically damped during the inflationary phase
[12, 13].
Typically, Vsoft will induce additional minima far from

the origin. For example, the AD mechanism exploits the
existence of soft mass terms of the form [12, 13]

Vsoft ⊃
∑

φ

(aφm
2 + bφH

2)|φ|2, (7)

where m is the scale of soft masses at zero temperature
and H is the Hubble parameter. The dimensionless pa-
rameters aφ and bφ are generated by the couplings of the
field φ to the goldstino and the inflaton, respectively. In
general, it is possible that bφ < 0 in Eq. (7), in which case
a tachyon is induced for φ during inflation, causing φ to
roll away from the origin and be stabilized at φ-breaking
minimum.
We should also expect a contribution to the potential

from the A-term version of OB−LOX of the form

Vsoft ⊃ (fm+ gH)
OB−LOX

Md−4
. (8)

where f and g are dimensionless coefficients andM is the
scale suppressing the dimension d operator in Eq. (1). As
we will see in explicit models in Sec. IV, this operator in-
troduces additional vacua at non-zero field values. To our
knowledge, the possibility that the A-term alone, with-
out Hubble tachyons, can drive the AD evolution has not
before been pointed out in the literature. Be it through
contributions from Eq. (7) or Eq. (8), φ will be naturally
pushed along D-flat directions until it is lifted by higher

3

order terms in the potential at some large field value.
This state is the AD condensate.
A variety of operators, which may or may not break

B − L, X , or supersymmetry, can serve to lift the flat
directions. For instance, Eq. (1) is a very natural super-
potential operator which is fully supersymmetric, breaks
B−L and X down to the diagonal B−L+X , and pro-
duces a stabilizing VF potential. Alternatively, VF can
have stabilizing contributions from supersymmetric op-
erators which separately preserve B − L and X . Also,
it is possible that higher order terms from Vsoft success-
fully stabilize the field directions. Finally, we note that
additional D-terms from a gauged B −L+X symmetry
are a particularly elegant way of stabilizing fields with
B −L and X number simultaneously. In Sec. IV we will
explicitly realize some of these stabilizing mechanisms in
a number of concrete models.

B. Torque

Following the inflationary epoch comes the second in-
gredient of the AD mechanism, torque. When inflation
ends, the universe begins to cool and the energy density
is dominated by the coherent oscillations of the inflaton.
During this time, the AD condensate more or less tracks
the minimum of the scalar potential, which moves as a
function of the Hubble parameter. If the parameters f
and g in Eq. (8) have different phases, then a torque will
be exerted on the phases of the fields in OB−L and OX

when H ∼ fm/g. As the phases of B − L and X evolve
from their initial to final values, a non-zero asymmetry
in B − L and X develops, as indicated in Eq. (5).
We can now calculate the asymmetry in Eq. (5) by

tracking the evolution of the scalar fields through the
equations of motion for the angular components of B −
L and X . We are interested in the Lagrangian for the
angular components of the coupled B−L and X system.
First, we parameterize all fields according to their charges
under B − L and X , so

φ = rφ exp i (qB−L,φθB−L + qX,φθX) , (9)

where qB−L,φ and qX,φ are the B − L and X charges of
φ, and θB−L and θX are phases which shift by a unit
under B − L and X , respectively. In this notation, the
Lagrangian is

L =
1

2
(r2B−Lθ̇

2
B−L + r2X θ̇2X)− V (θB−L − θX), (10)

where we have defined the quantities

r2B−L =
∑

φ

q2B−L,φr
2
φ (11)

r2X =
∑

φ

q2X,φr
2
φ. (12)

One can think of rB−L and rX as the lever arms corre-
sponding to B − L and X number. In this notation, the

B − L and X number densities are

nB−L = r2B−Lθ̇B−L (13)

nX = r2X θ̇X . (14)

The parameterization in Eq. (9) implies that

OB−L = |OB−L|e−iθB−L

OX = |OX |eiθX , (15)

which in turn means that the term in Eq. (8) generates
the angular potential shown in Eq. (10). As mentioned
earlier, OB−L and OX have, without loss of generality,
been defined to have charge −1 under B − L and charge
+1 under X , respectively. Defining sum and difference
angular variables,

θ± = θB−L ± θX , (16)

we see that the angular Lagrangian has no dependence
on θ+. This implies that conjugate momentum to θ+,
that is the B − L+X number density, is conserved,

d

dt

∂L
∂θ̇+

=
d

dt
(nB−L + nX) = 0, (17)

or equivalently, B − L + X number is conserved at its
initial value of zero:

nB−L + nX = 0. (18)

On the other hand, the operator in Eq. (8) explicitly
breaks B − L − X , so it generates an effective, time
dependent potential for θ−. The conjugate momentum,
∂L/∂θ−, is B − L−X number and is not conserved:

d

dt

∂L
∂θ̇−

=
d

dt
(nB−L − nX) = −

∂V

∂θ−
. (19)

This equation of motion can be solved parametrically us-
ing Eq. (8) and the parameterization in Eq. (15), treating
the torque as an impulse occurring at time H ∼ fm/g.
One finds

− nB−L = nX ∼
arg(f/g) g |OB−L| |OX |

Md−4
, (20)

where |OB−L| and |OX | are evaluated when H ∼ fm/g.
Thus, an asymmetry in B−L andX is generated and AD
cogenesis is realized. For the potentials we consider, the
AD condensate will typically produce a symmetric abun-
dance of B − L and X charged fields as well. We will
discuss the fate of this symmetric component in Sec. III
and present a more detailed calculation of the asymmet-
ric component in Sec. IV, when we consider explicit mod-
els.
Note that the relationship in Eq. (20) can be modified

in the presence of additional operators which separately
violate B − L and X , such as a Majorana mass term
for a field that carries X number. The presence of the
Majorana term, if it is comparable or larger than the soft
mass term, can give a significant additional contribution
to the X asymmetry which will violate Eq. (20). We will
consider this contribution in detail on a case by case basis
in Sec. IV.

θ−
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order terms in the potential at some large field value.
This state is the AD condensate.
A variety of operators, which may or may not break

B − L, X , or supersymmetry, can serve to lift the flat
directions. For instance, Eq. (1) is a very natural super-
potential operator which is fully supersymmetric, breaks
B−L and X down to the diagonal B−L+X , and pro-
duces a stabilizing VF potential. Alternatively, VF can
have stabilizing contributions from supersymmetric op-
erators which separately preserve B − L and X . Also,
it is possible that higher order terms from Vsoft success-
fully stabilize the field directions. Finally, we note that
additional D-terms from a gauged B −L+X symmetry
are a particularly elegant way of stabilizing fields with
B −L and X number simultaneously. In Sec. IV we will
explicitly realize some of these stabilizing mechanisms in
a number of concrete models.

B. Torque

Following the inflationary epoch comes the second in-
gredient of the AD mechanism, torque. When inflation
ends, the universe begins to cool and the energy density
is dominated by the coherent oscillations of the inflaton.
During this time, the AD condensate more or less tracks
the minimum of the scalar potential, which moves as a
function of the Hubble parameter. If the parameters f
and g in Eq. (8) have different phases, then a torque will
be exerted on the phases of the fields in OB−L and OX

when H ∼ fm/g. As the phases of B − L and X evolve
from their initial to final values, a non-zero asymmetry
in B − L and X develops, as indicated in Eq. (5).
We can now calculate the asymmetry in Eq. (5) by

tracking the evolution of the scalar fields through the
equations of motion for the angular components of B −
L and X . We are interested in the Lagrangian for the
angular components of the coupled B−L and X system.
First, we parameterize all fields according to their charges
under B − L and X , so

φ = rφ exp i (qB−L,φθB−L + qX,φθX) , (9)

where qB−L,φ and qX,φ are the B − L and X charges of
φ, and θB−L and θX are phases which shift by a unit
under B − L and X , respectively. In this notation, the
Lagrangian is

L =
1

2
(r2B−Lθ̇

2
B−L + r2X θ̇2X)− V (θB−L − θX), (10)

where we have defined the quantities

r2B−L =
∑

φ

q2B−L,φr
2
φ (11)

r2X =
∑

φ

q2X,φr
2
φ. (12)

One can think of rB−L and rX as the lever arms corre-
sponding to B − L and X number. In this notation, the

B − L and X number densities are

nB−L = r2B−Lθ̇B−L (13)

nX = r2X θ̇X . (14)

The parameterization in Eq. (9) implies that

OB−L = |OB−L|e−iθB−L

OX = |OX |eiθX , (15)

which in turn means that the term in Eq. (8) generates
the angular potential shown in Eq. (10). As mentioned
earlier, OB−L and OX have, without loss of generality,
been defined to have charge −1 under B − L and charge
+1 under X , respectively. Defining sum and difference
angular variables,

θ± = θB−L ± θX , (16)

we see that the angular Lagrangian has no dependence
on θ+. This implies that conjugate momentum to θ+,
that is the B − L+X number density, is conserved,

d

dt

∂L
∂θ̇+

=
d

dt
(nB−L + nX) = 0, (17)

or equivalently, B − L + X number is conserved at its
initial value of zero:

nB−L + nX = 0. (18)

On the other hand, the operator in Eq. (8) explicitly
breaks B − L − X , so it generates an effective, time
dependent potential for θ−. The conjugate momentum,
∂L/∂θ−, is B − L−X number and is not conserved:

d

dt

∂L
∂θ̇−

=
d

dt
(nB−L − nX) = −

∂V

∂θ−
. (19)

This equation of motion can be solved parametrically us-
ing Eq. (8) and the parameterization in Eq. (15), treating
the torque as an impulse occurring at time H ∼ fm/g.
One finds

− nB−L = nX ∼
arg(f/g) g |OB−L| |OX |

Md−4
, (20)

where |OB−L| and |OX | are evaluated when H ∼ fm/g.
Thus, an asymmetry in B−L andX is generated and AD
cogenesis is realized. For the potentials we consider, the
AD condensate will typically produce a symmetric abun-
dance of B − L and X charged fields as well. We will
discuss the fate of this symmetric component in Sec. III
and present a more detailed calculation of the asymmet-
ric component in Sec. IV, when we consider explicit mod-
els.
Note that the relationship in Eq. (20) can be modified

in the presence of additional operators which separately
violate B − L and X , such as a Majorana mass term
for a field that carries X number. The presence of the
Majorana term, if it is comparable or larger than the soft
mass term, can give a significant additional contribution
to the X asymmetry which will violate Eq. (20). We will
consider this contribution in detail on a case by case basis
in Sec. IV.
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order terms in the potential at some large field value.
This state is the AD condensate.
A variety of operators, which may or may not break

B − L, X , or supersymmetry, can serve to lift the flat
directions. For instance, Eq. (1) is a very natural super-
potential operator which is fully supersymmetric, breaks
B−L and X down to the diagonal B−L+X , and pro-
duces a stabilizing VF potential. Alternatively, VF can
have stabilizing contributions from supersymmetric op-
erators which separately preserve B − L and X . Also,
it is possible that higher order terms from Vsoft success-
fully stabilize the field directions. Finally, we note that
additional D-terms from a gauged B −L+X symmetry
are a particularly elegant way of stabilizing fields with
B −L and X number simultaneously. In Sec. IV we will
explicitly realize some of these stabilizing mechanisms in
a number of concrete models.

B. Torque

Following the inflationary epoch comes the second in-
gredient of the AD mechanism, torque. When inflation
ends, the universe begins to cool and the energy density
is dominated by the coherent oscillations of the inflaton.
During this time, the AD condensate more or less tracks
the minimum of the scalar potential, which moves as a
function of the Hubble parameter. If the parameters f
and g in Eq. (8) have different phases, then a torque will
be exerted on the phases of the fields in OB−L and OX

when H ∼ fm/g. As the phases of B − L and X evolve
from their initial to final values, a non-zero asymmetry
in B − L and X develops, as indicated in Eq. (5).
We can now calculate the asymmetry in Eq. (5) by

tracking the evolution of the scalar fields through the
equations of motion for the angular components of B −
L and X . We are interested in the Lagrangian for the
angular components of the coupled B−L and X system.
First, we parameterize all fields according to their charges
under B − L and X , so

φ = rφ exp i (qB−L,φθB−L + qX,φθX) , (9)

where qB−L,φ and qX,φ are the B − L and X charges of
φ, and θB−L and θX are phases which shift by a unit
under B − L and X , respectively. In this notation, the
Lagrangian is

L =
1

2
(r2B−Lθ̇

2
B−L + r2X θ̇2X)− V (θB−L − θX), (10)

where we have defined the quantities

r2B−L =
∑

φ

q2B−L,φr
2
φ (11)

r2X =
∑

φ

q2X,φr
2
φ. (12)

One can think of rB−L and rX as the lever arms corre-
sponding to B − L and X number. In this notation, the

B − L and X number densities are

nB−L = r2B−Lθ̇B−L (13)

nX = r2X θ̇X . (14)

The parameterization in Eq. (9) implies that

OB−L = |OB−L|e−iθB−L

OX = |OX |eiθX , (15)

which in turn means that the term in Eq. (8) generates
the angular potential shown in Eq. (10). As mentioned
earlier, OB−L and OX have, without loss of generality,
been defined to have charge −1 under B − L and charge
+1 under X , respectively. Defining sum and difference
angular variables,

θ± = θB−L ± θX , (16)

we see that the angular Lagrangian has no dependence
on θ+. This implies that conjugate momentum to θ+,
that is the B − L+X number density, is conserved,

d

dt

∂L
∂θ̇+

=
d

dt
(nB−L + nX) = 0, (17)

or equivalently, B − L + X number is conserved at its
initial value of zero:

nB−L + nX = 0. (18)

On the other hand, the operator in Eq. (8) explicitly
breaks B − L − X , so it generates an effective, time
dependent potential for θ−. The conjugate momentum,
∂L/∂θ−, is B − L−X number and is not conserved:

d

dt

∂L
∂θ̇−

=
d

dt
(nB−L − nX) = −

∂V

∂θ−
. (19)

This equation of motion can be solved parametrically us-
ing Eq. (8) and the parameterization in Eq. (15), treating
the torque as an impulse occurring at time H ∼ fm/g.
One finds

− nB−L = nX ∼
arg(f/g) g |OB−L| |OX |
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, (20)

where |OB−L| and |OX | are evaluated when H ∼ fm/g.
Thus, an asymmetry in B−L andX is generated and AD
cogenesis is realized. For the potentials we consider, the
AD condensate will typically produce a symmetric abun-
dance of B − L and X charged fields as well. We will
discuss the fate of this symmetric component in Sec. III
and present a more detailed calculation of the asymmet-
ric component in Sec. IV, when we consider explicit mod-
els.
Note that the relationship in Eq. (20) can be modified

in the presence of additional operators which separately
violate B − L and X , such as a Majorana mass term
for a field that carries X number. The presence of the
Majorana term, if it is comparable or larger than the soft
mass term, can give a significant additional contribution
to the X asymmetry which will violate Eq. (20). We will
consider this contribution in detail on a case by case basis
in Sec. IV.
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order terms in the potential at some large field value.
This state is the AD condensate.
A variety of operators, which may or may not break

B − L, X , or supersymmetry, can serve to lift the flat
directions. For instance, Eq. (1) is a very natural super-
potential operator which is fully supersymmetric, breaks
B−L and X down to the diagonal B−L+X , and pro-
duces a stabilizing VF potential. Alternatively, VF can
have stabilizing contributions from supersymmetric op-
erators which separately preserve B − L and X . Also,
it is possible that higher order terms from Vsoft success-
fully stabilize the field directions. Finally, we note that
additional D-terms from a gauged B −L+X symmetry
are a particularly elegant way of stabilizing fields with
B −L and X number simultaneously. In Sec. IV we will
explicitly realize some of these stabilizing mechanisms in
a number of concrete models.

B. Torque

Following the inflationary epoch comes the second in-
gredient of the AD mechanism, torque. When inflation
ends, the universe begins to cool and the energy density
is dominated by the coherent oscillations of the inflaton.
During this time, the AD condensate more or less tracks
the minimum of the scalar potential, which moves as a
function of the Hubble parameter. If the parameters f
and g in Eq. (8) have different phases, then a torque will
be exerted on the phases of the fields in OB−L and OX

when H ∼ fm/g. As the phases of B − L and X evolve
from their initial to final values, a non-zero asymmetry
in B − L and X develops, as indicated in Eq. (5).
We can now calculate the asymmetry in Eq. (5) by

tracking the evolution of the scalar fields through the
equations of motion for the angular components of B −
L and X . We are interested in the Lagrangian for the
angular components of the coupled B−L and X system.
First, we parameterize all fields according to their charges
under B − L and X , so

φ = rφ exp i (qB−L,φθB−L + qX,φθX) , (9)

where qB−L,φ and qX,φ are the B − L and X charges of
φ, and θB−L and θX are phases which shift by a unit
under B − L and X , respectively. In this notation, the
Lagrangian is

L =
1

2
(r2B−Lθ̇

2
B−L + r2X θ̇2X)− V (θB−L − θX), (10)

where we have defined the quantities

r2B−L =
∑

φ

q2B−L,φr
2
φ (11)

r2X =
∑

φ

q2X,φr
2
φ. (12)

One can think of rB−L and rX as the lever arms corre-
sponding to B − L and X number. In this notation, the

B − L and X number densities are

nB−L = r2B−Lθ̇B−L (13)

nX = r2X θ̇X . (14)

The parameterization in Eq. (9) implies that

OB−L = |OB−L|e−iθB−L

OX = |OX |eiθX , (15)

which in turn means that the term in Eq. (8) generates
the angular potential shown in Eq. (10). As mentioned
earlier, OB−L and OX have, without loss of generality,
been defined to have charge −1 under B − L and charge
+1 under X , respectively. Defining sum and difference
angular variables,

θ± = θB−L ± θX , (16)

we see that the angular Lagrangian has no dependence
on θ+. This implies that conjugate momentum to θ+,
that is the B − L+X number density, is conserved,

d

dt

∂L
∂θ̇+

=
d

dt
(nB−L + nX) = 0, (17)

or equivalently, B − L + X number is conserved at its
initial value of zero:

nB−L + nX = 0. (18)

On the other hand, the operator in Eq. (8) explicitly
breaks B − L − X , so it generates an effective, time
dependent potential for θ−. The conjugate momentum,
∂L/∂θ−, is B − L−X number and is not conserved:

d

dt

∂L
∂θ̇−

=
d

dt
(nB−L − nX) = −

∂V

∂θ−
. (19)

This equation of motion can be solved parametrically us-
ing Eq. (8) and the parameterization in Eq. (15), treating
the torque as an impulse occurring at time H ∼ fm/g.
One finds

− nB−L = nX ∼
arg(f/g) g |OB−L| |OX |

Md−4
, (20)

where |OB−L| and |OX | are evaluated when H ∼ fm/g.
Thus, an asymmetry in B−L andX is generated and AD
cogenesis is realized. For the potentials we consider, the
AD condensate will typically produce a symmetric abun-
dance of B − L and X charged fields as well. We will
discuss the fate of this symmetric component in Sec. III
and present a more detailed calculation of the asymmet-
ric component in Sec. IV, when we consider explicit mod-
els.
Note that the relationship in Eq. (20) can be modified

in the presence of additional operators which separately
violate B − L and X , such as a Majorana mass term
for a field that carries X number. The presence of the
Majorana term, if it is comparable or larger than the soft
mass term, can give a significant additional contribution
to the X asymmetry which will violate Eq. (20). We will
consider this contribution in detail on a case by case basis
in Sec. IV.

Impulse approximation; evaluate at:
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librium decay of heavy particles [5], and phase transitions
in hidden sectors [6]. Other works on DM with an asym-
metry and their phenomenological implications include
[7]. A common origin of DM and the baryon asymmetry
through the AD mechanism has also been considered via
fragmentation of the AD condensate into Q-balls [8, 9],
via a sneutrino condensate [10], as well as more recently
in [11].
The outline of this paper is as follows. In Sec. II we de-

scribe the mechanism of AD cogenesis in general terms.
This will include a discussion of the formation of the AD
condensate in the inflationary epoch, as well as its sub-
sequent cosmological evolution after inflation ends. We
then go on in Sec. III to discuss the decay of the inflaton
and the AD condensate, followed by the ensuing thermal
histories of the MSSM and DM sectors. Afterwards we
present a number of simple explicit models of AD cogene-
sis and their associated variations in Sec. IV, and discuss
the collider phenomenology of these theories in Sec. V.
Finally, we conclude in Sec. VI.

II. COGENESIS IN THE EARLY UNIVERSE

Our aim is to simultaneously generate a B −L and X
asymmetry at the end of inflation via the evolution of AD
condensates which carry B − L and X . To understand
what is required in order to achieve this, let us map our
system onto a simple mechanical analog. In particular,
by parameterizing a scalar field φ in polar coordinates,

φ =
1√
2
rφe

iθφ , (4)

one finds that the charge density of φ is

nφ = j0 = i(φφ̇† − φ†φ̇) = r2φθ̇φ, (5)

that is, identical to the angular momentum of a pseudo-
particle in two dimensions.
It is convenient to reinterpret the scalar sector of the

MSSM during inflation as a system of coupled pseudo-
particles in two dimensions with a time dependent po-
tential. Thus to produce a B − L and X asymmetry
we must have a setup in which the initial angular mo-
menta of all the pseudo-particles are vanishing but the
final angular momenta in the B−L and X directions are
non-zero. Hence, the essential ingredients of our setup
are:

i) Stabilization. Since a torque requires a lever arm,
scalar fields must be stabilized away from the origin
in the early universe in such a way that both B−L
and X are spontaneously broken.

ii) Torque. For a torque to be exerted, the scalar
potential must vary in time and depend explicitly
on the phases of fields which are B − L and X
covariant.

These criteria are of course equivalent to the Sakharov
conditions requiring i) B −L and X symmetry violation
and ii) CP violation. Let us now discuss how each of
these elements are accommodated during the formation
and evolution of the AD condensate.

A. Stabilization

The first phase of the AD mechanism, stabilization,
occurs during the initial inflationary epoch of the early
universe. As discussed thoroughly in [12, 13], the expan-
sion of the universe affects the evolution of scalar fields
through Hubble friction and through the scalar potential,
which takes the form

V = VF + VD + Vsoft, (6)

where VF and VD arise from supersymmetric F -terms
and D-terms. Here Vsoft will vary explicitly in time via
the Hubble parameter because supersymmetry is bro-
ken by the vacuum energy of the universe during infla-
tion. Indeed, Hubble dependent potential terms should
be present as a consequence of interactions between the
scalar fields and the inflaton induced by Planck scale dy-
namics. The presence of these Hubble induced interac-
tions along with Hubble friction implies that the scalar
fields are critically damped during the inflationary phase
[12, 13].
Typically, Vsoft will induce additional minima far from

the origin. For example, the AD mechanism exploits the
existence of soft mass terms of the form [12, 13]

Vsoft ⊃
∑

φ

(aφm
2 + bφH

2)|φ|2, (7)

where m is the scale of soft masses at zero temperature
and H is the Hubble parameter. The dimensionless pa-
rameters aφ and bφ are generated by the couplings of the
field φ to the goldstino and the inflaton, respectively. In
general, it is possible that bφ < 0 in Eq. (7), in which case
a tachyon is induced for φ during inflation, causing φ to
roll away from the origin and be stabilized at φ-breaking
minimum.
We should also expect a contribution to the potential

from the A-term version of OB−LOX of the form

Vsoft ⊃ (fm+ gH)
OB−LOX

Md−4
. (8)

where f and g are dimensionless coefficients andM is the
scale suppressing the dimension d operator in Eq. (1). As
we will see in explicit models in Sec. IV, this operator in-
troduces additional vacua at non-zero field values. To our
knowledge, the possibility that the A-term alone, with-
out Hubble tachyons, can drive the AD evolution has not
before been pointed out in the literature. Be it through
contributions from Eq. (7) or Eq. (8), φ will be naturally
pushed along D-flat directions until it is lifted by higherWednesday, August 24, 2011
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interaction rate changes from∼ T to∼ T 5, where the lat-
ter is the rate for two to two scattering processes. Thus if
the washout processes are out of equilibrium at the weak
scale, then they will remain out of equilibrium through-
out the history of the universe. A similar recoupling tem-
perature exists for scattering processes involving a light
B − L + X gauge boson, though there is no kinematic
suppression so processes can recouple below the EWPT.

Lastly, note that some washout through X violat-
ing processes is acceptable, and in this case the DM
can be considerably heavier than the GeV scale. Re-
calling that our LSP is assumed to carry X number,
the final DM abundance will be suppressed with respect
to the initial abundance from cogenesis by an amount
(mLSP /TD)3/2 exp (−mLSP /TD), where TD is the decou-
pling temperature of the X violating processes.

IV. EXPLICIT MODELS OF COGENESIS

Next, let us present some explicit models of AD co-
genesis. In particular, we will study models in which
OB−L = QLDc, LHu, although most of our statements
will apply equally well to any of the theories shown in
Eq. (2).

A. QLDcX Operator

Consider an explicit model in which the AD conden-
sate resides on the QLDcX flat direction. The D-term
potential, VD, arising from the SM gauge group fixes the
D-flat directions,

rQ = rL = rDc , (26)

in the notation of Eq. (9), while rX is free. We assume
the presence of an F -term potential, VF , arising from a
superpotential term,

W =
QLDcX

M
, (27)

as well as its A-term partner,

Vsoft = (fm+ gH)
QLDcX

M
. (28)

In general, there will be zero temperature soft masses of
order m, but they will not play an important role in the
AD evolution other than to ensure that the origin is a
stable minimum at late times, so we neglect these terms.
As we will see, the term that exerts a torque will induce
a minimum for the AD condensate away from the origin.
In particular, plugging in Eq. (9) and Eq. (26) into the

full scalar potential yields

V =
r6Q
8M2

+
3r4Qr

2
X

8M2

+
r3QrX

2M
fm cos(arg f − θB−L + θX)

+
r3QrX

2M
gH cos(arg g − θB−L + θX). (29)

At early times the second term can be ignored because it
is proportional to m. The angular components naturally
align to make the cosine term in the third line negative,
and then the potential is stabilized by the supersymmet-
ric terms in the first line. We find the potential has an
extremum at

r2Q = r2X =
2gHM

3
arg g − θB−L + θX = π, (30)

where one can check easily that this extremum is stable.
Hence, an AD condensate can form at this point in the
early universe.
As the universe cools, eventually H ∼ fm/g, and a

torque is applied to the condensate by the cosine term in
Eq. (29). Plugging Eq. (30) into Eq. (20), we obtain an
estimate for the asymmetry given by

− nB−L = nX ∼ arg(f/g) f2gm2M. (31)

This result agrees with numerical simulations to within
an order of magnitude. After the B−L and X asymme-
tries are produced, the AD condensate then evolves and
eventually decays to the DM particle, as per the general
discussion given in Sec. III.
According to Eq. (22), the asymmetric yield can be

expressed in terms of the number density in Eq. (31),
ρχ, and TR. Demanding that ηB ∼ 10−10 thus fixes TR

as a function of M . At the same time, the usual con-
straints from gravitino overclosure require the conserva-
tive bound, TR ! 1010 GeV. Putting it all together, given
order one values for f and g, one finds a bound of ap-
proximately M " 1016 GeV. Interestingly, M is required
to be near or above the GUT scale.
Such a high cutoff introduces some tension with BBN

bounds. In particular, assuming that the LOSP decays
into the DM sector solely through Eq. (27), then the
associated lifetimes will be quite long. These decays will
typically produce electromagnetic and hadronic energy
which can destroy the successful predictions of BBN. As
is well known, however, these BBN bounds are contingent
on the nature and freeze out abundances of the LOSP,
which are highly model dependent. Moreover, there can
easily exist additional higher dimension operators on top
of Eq. (27) which are suppressed by a lower cutoff and
mediate a faster decay of the LOSP into the DM sector.
These additional operators can separately preserve B−L
and X number in such a way that the evolution of the
AD condensate will be more or less unaltered from the
discussion above.

5

the proximity of the baryon and DM abundances today,
the symmetric component of DM must be efficiently anni-
hilated away, leaving a remnant asymmetric relic density.
This is easily accommodated in explicit models, which
we consider in greater detail in Sec. IV. For the present
discussion, let us assume that this annihilation occurs
efficiently and consider only the asymmetric component.
Because the DM sector is thermalized at reheating,

the nX asymmetry will be shared among all sufficiently
long-lived X carrying particles. Because the X number
distribution process is sensitive to the relativeX numbers
of these states, the precise distribution of the asymme-
try is model dependent. Nevertheless, one finds that the
asymmetries are roughly equal

nX ∼ nLXP ∼ nLSP , (23)

up to integer charge factors. Note that we have assumed
that the LSP carriesX number, so the proximity of ΩDM

to ΩB is explained if mLSP is within an order of magni-
tude of a GeV. In this sense, AD cogenesis can address
the coincidence problem. In addition, note that the pre-
cise ratio of the DM mass to the proton mass depends on
how the baryon or lepton number generated by the AD
mechanism is redistributed by the sphalerons to B and
L. This in turn depends on details of the electroweak
phase transition (EWPT), as described in [19].
On the other hand, if the LXP has no other stabiliz-

ing symmetry, then nLXP will decay back into the SM
via OB−LOX . In this case the baryon asymmetry will
be partially but not completely depleted by the decay,
since the LSP carries X number and is completely sta-
ble. The amount of dilution will depend on whether the
decay happens before or after the EWPT. It is also possi-
ble that the LXP decays so late that it is cosmologically
long-lived. For example, if OB−LOX is a dimension six,
GUT suppressed operator, then the LXP is decaying DM.
The LSP, which also carries X number, comprises an ad-
ditional component of DM, so in this scenario we have
two DM particles, one of which decays.
Finally, let us briefly comment on a viable theory in

which the LSP is X neutral, and yet the cosmological
evolution still yields the correct DM abundance today.
In particular, assume that the NLSP carries X number
and is sufficiently long-lived as to freeze out. In this case,
chemical equilibrium will relate nX ∼ nNLSP . Assuming
that the symmetric component of the NLSP is annihi-
lated away, then the asymmetric component will decay
to the LSP out of equilibrium. Hence, the coincidence
problem is addressed as long as the LSP mass is of or-
der the GeV scale. This possibility can be realized by a
simple model in which the LSP is a GeV scale gravitino
and the NLSP carriesX number. Because this theory re-
quires gauge mediated supersymmetry breaking, Q-balls
typically form out of the AD condensate. However, if
these Q-balls only carry L or X number, then they will
be unstable and promptly decay to leptons or DM sector
particles.

C. Thermalization and Washout

After the AD condensate and the inflaton decay, the
thermal histories of the MSSM and DM sectors begin. In
this section we are interested in addressing two questions
about the thermal histories of the MSSM and DM sectors
after the decays of the inflaton and the condensate. First,
for which values of TR will the MSSM and the DM sector
be in thermal equilibrium? Thermalization can occur
through a variety of operators which may or may not
break B − L and X number. Second, at what TR are
washout processes efficient? Washout effects will largely
be dictated by when B−L−X violating operators such
as OB−LOX are in equilibrium.
Consider first the scenario in which the MSSM and

the DM sector are coupled via an irrelevant operator of
dimension d suppressed by a scale M . These interactions
decouple at a temperature below

T (d=5)
D ∼ 1014 GeV

( g∗
200

)1/2
(

M

1015 GeV

)2

(24)

T (d=6)
D ∼ 1014 GeV

( g∗
200

)1/6
(

M

1015 GeV

)4/3

.

Consequently, if TR is below these threshold tempera-
tures, than the associated processes are out of equilib-
rium.
In general, operators which connect the MSSM and

DM sectors while preserving B − L and X number sep-
arately will be d = 6 and are often the least important.
For instance, this is the case if B − L+X is gauged but
spontaneously broken at a high scale M , yielding Kahler
operators of the form Q†QX†X/M2 at low energies. The
one exception to this statement is the d = 5 superpoten-
tial operator,HuHdXX ′, where X and X ′ are oppositely
charged DM sector states. On the other hand, operators
coupling the MSSM and DM sectors which break B − L
and X number down to the diagonal B−L+X number
are often d = 5, e.g. U cDcDcX . Hence, these leading
operators can often dictate both the thermalization and
washout effects. Since, in the presence of B − L and X
violation only through B − L +X preserving operators,
no net B − L +X asymmetry arises, these d = 5 opera-
tors must be out of equilibrium at the end of inflation to
prevent washout of the B − L and X asymmetries.
The only case in which the operator coupling the

MSSM and the DM sector is marginal is LHuX . In this
scenario, associated interactions are decoupled when the
temperature is above

T (d=4)
D = 100 GeV

(

200

g∗

)1/2 ( λ

10−7

)2

, (25)

where λ is the associated dimensionless coupling. As long
as the recoupling temperature is below the EWPT, these
processes will not wash out the baryon or DM asymme-
tries. Furthermore, below the EWPT these processes are
kinematically suppressed, so the temperature scaling of
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the proximity of the baryon and DM abundances today,
the symmetric component of DM must be efficiently anni-
hilated away, leaving a remnant asymmetric relic density.
This is easily accommodated in explicit models, which
we consider in greater detail in Sec. IV. For the present
discussion, let us assume that this annihilation occurs
efficiently and consider only the asymmetric component.
Because the DM sector is thermalized at reheating,

the nX asymmetry will be shared among all sufficiently
long-lived X carrying particles. Because the X number
distribution process is sensitive to the relativeX numbers
of these states, the precise distribution of the asymme-
try is model dependent. Nevertheless, one finds that the
asymmetries are roughly equal

nX ∼ nLXP ∼ nLSP , (23)

up to integer charge factors. Note that we have assumed
that the LSP carriesX number, so the proximity of ΩDM

to ΩB is explained if mLSP is within an order of magni-
tude of a GeV. In this sense, AD cogenesis can address
the coincidence problem. In addition, note that the pre-
cise ratio of the DM mass to the proton mass depends on
how the baryon or lepton number generated by the AD
mechanism is redistributed by the sphalerons to B and
L. This in turn depends on details of the electroweak
phase transition (EWPT), as described in [19].
On the other hand, if the LXP has no other stabiliz-

ing symmetry, then nLXP will decay back into the SM
via OB−LOX . In this case the baryon asymmetry will
be partially but not completely depleted by the decay,
since the LSP carries X number and is completely sta-
ble. The amount of dilution will depend on whether the
decay happens before or after the EWPT. It is also possi-
ble that the LXP decays so late that it is cosmologically
long-lived. For example, if OB−LOX is a dimension six,
GUT suppressed operator, then the LXP is decaying DM.
The LSP, which also carries X number, comprises an ad-
ditional component of DM, so in this scenario we have
two DM particles, one of which decays.
Finally, let us briefly comment on a viable theory in

which the LSP is X neutral, and yet the cosmological
evolution still yields the correct DM abundance today.
In particular, assume that the NLSP carries X number
and is sufficiently long-lived as to freeze out. In this case,
chemical equilibrium will relate nX ∼ nNLSP . Assuming
that the symmetric component of the NLSP is annihi-
lated away, then the asymmetric component will decay
to the LSP out of equilibrium. Hence, the coincidence
problem is addressed as long as the LSP mass is of or-
der the GeV scale. This possibility can be realized by a
simple model in which the LSP is a GeV scale gravitino
and the NLSP carriesX number. Because this theory re-
quires gauge mediated supersymmetry breaking, Q-balls
typically form out of the AD condensate. However, if
these Q-balls only carry L or X number, then they will
be unstable and promptly decay to leptons or DM sector
particles.

C. Thermalization and Washout

After the AD condensate and the inflaton decay, the
thermal histories of the MSSM and DM sectors begin. In
this section we are interested in addressing two questions
about the thermal histories of the MSSM and DM sectors
after the decays of the inflaton and the condensate. First,
for which values of TR will the MSSM and the DM sector
be in thermal equilibrium? Thermalization can occur
through a variety of operators which may or may not
break B − L and X number. Second, at what TR are
washout processes efficient? Washout effects will largely
be dictated by when B−L−X violating operators such
as OB−LOX are in equilibrium.
Consider first the scenario in which the MSSM and

the DM sector are coupled via an irrelevant operator of
dimension d suppressed by a scale M . These interactions
decouple at a temperature below

T (d=5)
D ∼ 1014 GeV
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200

)1/2
(

M

1015 GeV

)2

(24)

T (d=6)
D ∼ 1014 GeV
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)4/3

.

Consequently, if TR is below these threshold tempera-
tures, than the associated processes are out of equilib-
rium.
In general, operators which connect the MSSM and

DM sectors while preserving B − L and X number sep-
arately will be d = 6 and are often the least important.
For instance, this is the case if B − L+X is gauged but
spontaneously broken at a high scale M , yielding Kahler
operators of the form Q†QX†X/M2 at low energies. The
one exception to this statement is the d = 5 superpoten-
tial operator,HuHdXX ′, where X and X ′ are oppositely
charged DM sector states. On the other hand, operators
coupling the MSSM and DM sectors which break B − L
and X number down to the diagonal B−L+X number
are often d = 5, e.g. U cDcDcX . Hence, these leading
operators can often dictate both the thermalization and
washout effects. Since, in the presence of B − L and X
violation only through B − L +X preserving operators,
no net B − L +X asymmetry arises, these d = 5 opera-
tors must be out of equilibrium at the end of inflation to
prevent washout of the B − L and X asymmetries.
The only case in which the operator coupling the

MSSM and the DM sector is marginal is LHuX . In this
scenario, associated interactions are decoupled when the
temperature is above

T (d=4)
D = 100 GeV

(

200

g∗

)1/2 ( λ

10−7

)2

, (25)

where λ is the associated dimensionless coupling. As long
as the recoupling temperature is below the EWPT, these
processes will not wash out the baryon or DM asymme-
tries. Furthermore, below the EWPT these processes are
kinematically suppressed, so the temperature scaling of
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The QLDcX model described above is extremely sim-
ple because it simultaneously stabilizes and exerts a
torque on the AD condensate using only the operators
in Eq. (27) and Eq. (28). That said, this minimal model
accommodates a number of interesting variations.
First of all, one can add additional operators beyond

those shown in Eq. (27) and Eq. (28). Hubble induced
soft masses of the form in Eq. (7) are in general present,
and they will influence the AD evolution because they are
parametrically comparable in strength to the torque term
in Eq. (28). Irrespective of whether these soft masses are
tachyonic or not, they can alter the numerical coefficients
in Eq. (30) and Eq. (31), leaving the parametric depen-
dences unchanged. In addition, sinceB−L+X number is
exact in this model, it is very natural to gauge this sym-
metry. The associated D-term potential then imposes an
additional stabilization constraint on the fields beyond
Eq. (26), given by r2Q = r2X . Hence, gauging B−L+X is
a very natural mechanism for simultaneously fixing both
B − L and X number to non-zero values in the early
universe.
Secondly, variations of this model exist with additional

DM sector particles which are charged under U(1)X . In
the early universe, these additional states may be stabi-
lized at the origin or not. Indeed, as long as the X field
is stabilized away from the origin then AD cogenesis is
accommodated. Additional DM sector states can serve a
number of purposes, for instance providing the fermionic
component of X a Dirac mass via mDXX ′. Note that
a mass for X is not a requirement. As discussed earlier,
there naively exists stringent bounds from BBN on ad-
ditional light or massless degrees of freedom, but these
are easily sidestepped if the DM sector is thermally de-
coupled from and modestly cooler than the MSSM bath
during BBN [14].
As noted earlier, because the DM sector is thermalized

there will in general be a symmetric abundance of DM
particles in the DM sector bath. Removing this symmet-
ric component requires the existence of additional inter-
actions, which require additional X carrying states. For
instance, symmetric annihilation is accomplished using a
Yukawa coupling κXX ′2 for sufficiently large κ. Alterna-
tively, one has the option of introducing additional gauge
bosons in the DM sector.

B. LHuX Operator

Next, consider a model in which the AD condensate
resides on the LHuX flat direction. The mechanics of
this theory are largely similar to those of the QLDcX
operator. In this case, the D-flat directions fix

rL = rHu
, (32)

where we use the notation of Eq. (9), and here rX is a
priori unconstrained. This model is defined by the su-
perpotential

W = λLHuX, (33)

and the analogous A-term,

Vsoft = (fm+ gH)λLHuX, (34)

where λ is a dimensionless coupling which is much less
than unity. As before, we ignore zero temperature soft
masses of order m. The full scalar potential is given by

V =
λ2r4L
4

+
λ2r2Lr

2
X

2

+
λr2LrXfm cos(arg f − θB−L + θX)√

2

+
λr2LrXgH cos(arg g − θB−L + θX)√

2
. (35)

The angular variables align to make the cosine term neg-
ative, and the runaway direction is stabilized by the su-
persymmetric terms, yielding a minimum at

r2L = r2X =
g2H2

2λ2

arg g − θB−L + θX = π. (36)

Note that the AD condensate is stabilized further from
the origin for smaller values of λ. When eventually H ∼
fm/g, the cosine term in Eq. (35) yields an asymmetry,
estimated in general in Eq. (20), given by

− nB−L = nX ∼
arg(f/g) f3g m3
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interaction rate changes from∼ T to∼ T 5, where the lat-
ter is the rate for two to two scattering processes. Thus if
the washout processes are out of equilibrium at the weak
scale, then they will remain out of equilibrium through-
out the history of the universe. A similar recoupling tem-
perature exists for scattering processes involving a light
B − L + X gauge boson, though there is no kinematic
suppression so processes can recouple below the EWPT.

Lastly, note that some washout through X violat-
ing processes is acceptable, and in this case the DM
can be considerably heavier than the GeV scale. Re-
calling that our LSP is assumed to carry X number,
the final DM abundance will be suppressed with respect
to the initial abundance from cogenesis by an amount
(mLSP /TD)3/2 exp (−mLSP /TD), where TD is the decou-
pling temperature of the X violating processes.

IV. EXPLICIT MODELS OF COGENESIS

Next, let us present some explicit models of AD co-
genesis. In particular, we will study models in which
OB−L = QLDc, LHu, although most of our statements
will apply equally well to any of the theories shown in
Eq. (2).

A. QLDcX Operator

Consider an explicit model in which the AD conden-
sate resides on the QLDcX flat direction. The D-term
potential, VD, arising from the SM gauge group fixes the
D-flat directions,

rQ = rL = rDc , (26)

in the notation of Eq. (9), while rX is free. We assume
the presence of an F -term potential, VF , arising from a
superpotential term,

W =
QLDcX

M
, (27)

as well as its A-term partner,

Vsoft = (fm+ gH)
QLDcX

M
. (28)

In general, there will be zero temperature soft masses of
order m, but they will not play an important role in the
AD evolution other than to ensure that the origin is a
stable minimum at late times, so we neglect these terms.
As we will see, the term that exerts a torque will induce
a minimum for the AD condensate away from the origin.
In particular, plugging in Eq. (9) and Eq. (26) into the

full scalar potential yields

V =
r6Q
8M2

+
3r4Qr

2
X

8M2

+
r3QrX

2M
fm cos(arg f − θB−L + θX)

+
r3QrX

2M
gH cos(arg g − θB−L + θX). (29)

At early times the second term can be ignored because it
is proportional to m. The angular components naturally
align to make the cosine term in the third line negative,
and then the potential is stabilized by the supersymmet-
ric terms in the first line. We find the potential has an
extremum at

r2Q = r2X =
2gHM

3
arg g − θB−L + θX = π, (30)

where one can check easily that this extremum is stable.
Hence, an AD condensate can form at this point in the
early universe.
As the universe cools, eventually H ∼ fm/g, and a

torque is applied to the condensate by the cosine term in
Eq. (29). Plugging Eq. (30) into Eq. (20), we obtain an
estimate for the asymmetry given by

− nB−L = nX ∼ arg(f/g) f2gm2M. (31)

This result agrees with numerical simulations to within
an order of magnitude. After the B−L and X asymme-
tries are produced, the AD condensate then evolves and
eventually decays to the DM particle, as per the general
discussion given in Sec. III.
According to Eq. (22), the asymmetric yield can be

expressed in terms of the number density in Eq. (31),
ρχ, and TR. Demanding that ηB ∼ 10−10 thus fixes TR

as a function of M . At the same time, the usual con-
straints from gravitino overclosure require the conserva-
tive bound, TR ! 1010 GeV. Putting it all together, given
order one values for f and g, one finds a bound of ap-
proximately M " 1016 GeV. Interestingly, M is required
to be near or above the GUT scale.
Such a high cutoff introduces some tension with BBN

bounds. In particular, assuming that the LOSP decays
into the DM sector solely through Eq. (27), then the
associated lifetimes will be quite long. These decays will
typically produce electromagnetic and hadronic energy
which can destroy the successful predictions of BBN. As
is well known, however, these BBN bounds are contingent
on the nature and freeze out abundances of the LOSP,
which are highly model dependent. Moreover, there can
easily exist additional higher dimension operators on top
of Eq. (27) which are suppressed by a lower cutoff and
mediate a faster decay of the LOSP into the DM sector.
These additional operators can separately preserve B−L
and X number in such a way that the evolution of the
AD condensate will be more or less unaltered from the
discussion above.
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which are highly model dependent. Moreover, there can
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where one can check easily that this extremum is stable.
Hence, an AD condensate can form at this point in the
early universe.
As the universe cools, eventually H ∼ fm/g, and a

torque is applied to the condensate by the cosine term in
Eq. (29). Plugging Eq. (30) into Eq. (20), we obtain an
estimate for the asymmetry given by

− nB−L = nX ∼ arg(f/g) f2gm2M. (31)

This result agrees with numerical simulations to within
an order of magnitude. After the B−L and X asymme-
tries are produced, the AD condensate then evolves and
eventually decays to the DM particle, as per the general
discussion given in Sec. III.
According to Eq. (22), the asymmetric yield can be

expressed in terms of the number density in Eq. (31),
ρχ, and TR. Demanding that ηB ∼ 10−10 thus fixes TR

as a function of M . At the same time, the usual con-
straints from gravitino overclosure require the conserva-
tive bound, TR ! 1010 GeV. Putting it all together, given
order one values for f and g, one finds a bound of ap-
proximately M " 1016 GeV. Interestingly, M is required
to be near or above the GUT scale.
Such a high cutoff introduces some tension with BBN

bounds. In particular, assuming that the LOSP decays
into the DM sector solely through Eq. (27), then the
associated lifetimes will be quite long. These decays will
typically produce electromagnetic and hadronic energy
which can destroy the successful predictions of BBN. As
is well known, however, these BBN bounds are contingent
on the nature and freeze out abundances of the LOSP,
which are highly model dependent. Moreover, there can
easily exist additional higher dimension operators on top
of Eq. (27) which are suppressed by a lower cutoff and
mediate a faster decay of the LOSP into the DM sector.
These additional operators can separately preserve B−L
and X number in such a way that the evolution of the
AD condensate will be more or less unaltered from the
discussion above.
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tive bound, TR ! 1010 GeV. Putting it all together, given
order one values for f and g, one finds a bound of ap-
proximately M " 1016 GeV. Interestingly, M is required
to be near or above the GUT scale.
Such a high cutoff introduces some tension with BBN

bounds. In particular, assuming that the LOSP decays
into the DM sector solely through Eq. (27), then the
associated lifetimes will be quite long. These decays will
typically produce electromagnetic and hadronic energy
which can destroy the successful predictions of BBN. As
is well known, however, these BBN bounds are contingent
on the nature and freeze out abundances of the LOSP,
which are highly model dependent. Moreover, there can
easily exist additional higher dimension operators on top
of Eq. (27) which are suppressed by a lower cutoff and
mediate a faster decay of the LOSP into the DM sector.
These additional operators can separately preserve B−L
and X number in such a way that the evolution of the
AD condensate will be more or less unaltered from the
discussion above.
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III. COSMOLOGY AFTER COGENESIS

Thus far we have established how an initial asymme-
try in B − L and X number can be generated via AD
cogenesis in the early universe. It now remains to dis-
cuss the effects of inflaton and AD condensate decays on
the MSSM and dark sector evolution. We discuss these
aspects next before moving on to specific models.

A. Inflaton Decay

During AD cogenesis, stabilization and torque are con-
veniently provided by Hubble induced potential terms
generated by the inflaton, which dominates the energy
density of the universe as it oscillates towards the ori-
gin. Eventually, however, the inflaton will decay at a
reheating temperature TR defined as the temperature at
which the Hubble parameter is equal to the inflaton decay
rate. This subsequently reheats, to some extent, both the
MSSM and DM sectors. This reheating process is highly
sensitive to the couplings of the inflaton to the various
fields. For example, one expects Kahler operators of the
form

K ⊃
∑

φ

bφ
M2

Pl

χ†χφ†φ, (21)

where χ is the inflaton chiral superfield and bφ is the same
coefficient fixing the Hubble soft mass of φ in Eq. (7).
In this paper we take the natural assumption that bφ
is comparable for MSSM and DM sector fields, since it
is generated by unspecified Planck scale physics. Thus,
the inflaton will decay to both sectors at a similar rate,
and both sectors will be comparably reheated. Relaxing
this assumption, especially in cases where the DM sector
is reheated very little, leads to interesting cosmological
scenarios. We leave an exploration of these possibilities
to future work, and instead focus here on the case where
both sectors are reheated equally.
Naively, an equal degree of reheating into the MSSM

and DM sectors has cosmological dangers, given stringent
bounds from big bang nucleosynthesis (BBN) constrain-
ing the number of light degrees of freedom present at
MeV temperatures. As we will see explicitly in Sec. III C,
however, the two sectors can in general be thermally
decoupled from each other immediately after reheating,
henceforth evolving to different temperatures. Indeed,
variations in the number of degrees of freedom in the
MSSM and DM sectors during the evolution of the uni-
verse can substantially alter the relative temperatures of
the MSSM and DM sectors [14]. Thus, if the DM sec-
tor is even modestly cooler than the MSSM during BBN,
say even by an order of magnitude in temperature, then
these BBN bounds permit many hundreds of degrees of
freedom in the DM sector.
Another cosmological pitfall arising from inflaton de-

cays to the MSSM is the overproduction of weakly cou-
pled, stable particles, e.g. the gravitino problem [15] and

the axino problem [16]. For example, as is well-known,
gravitino overclosure places a bound of at least TR ! 1010

GeV which becomes even more stringent for lower super-
symmetry breaking scales. This is an important con-
straint on the AD mechanism in general.
Importantly, TR is also constrained via the observed

baryon and DM densities produced in AD cogenesis ac-
cording to the usual expression for the asymmetric yield
[13],

ηB =
nB

s
∼

nB

ρχ/TR
, (22)

where the inflaton energy density ρχ sets the expansion
rate during inflaton dominated reheating, ρχ ∼ H2M2

Pl.
Here nB and ρχ should be evaluated shortly after AD co-
genesis, when Hubble is of order the scale of soft masses.
Because the present day asymmetric yield of baryons is
measured to be ηB ∼ 10−10, this relation effectively fixes
TR in terms of the number asymmetry generated by AD
cogenesis, which is in turn fixed by the strength of the
OB−LOX operator. Lastly, note one final constraint on
TR, which is that the Hubble parameter during reheat-
ing must be smaller than the scale of soft masses, taken
to be of order the weak scale. If this is not the case,
then the inflaton will have decayed too soon to be able
to generate the Hubble induced potential terms which
drive the AD condensate evolution. This places a bound
of approximately TR ! 1010 GeV.

B. Condensate Decay

After the initial asymmetry is produced, the universe
cools and the AD condensate in-spirals towards the ori-
gin, as dictated by the zero temperature scalar potential.
As discussed in [8, 17, 18], if the scalar potential is shal-
lower than quadratic near the origin, then it supports
a class of non-topologically stabilized solitons known as
Q-balls. If formed, Q-balls will be cosmologically stable
if their energy density per unit charge is less than that
of the lightest B − L or X charged particle. It has been
shown that theories of gauge mediated supersymmetry
breaking generally allow for Q-ball formation [8, 17]. On
the other hand, whether this occurs in the case of grav-
ity mediation depends sensitively on the precise form of
the radiative potential and is thus very model dependent
[18]. Throughout this work, we assume a gravity me-
diated scenario in which the potential does not permit
Q-ball formation.
In the absence of Q-balls, the AD condensate eventu-

ally “evaporates” as a consequence of scattering with the
thermalized decay products of the inflaton. This evapo-
ration yields symmetric and asymmetric abundances of
DM sector particles, with relative sizes determined by the
radial and angular velocities of the condensate. The sym-
metric component is absorbed by the DM sector bath,
but eventually freezes out once the universe sufficiently
cools. In order for AD cogenesis to successfully explain
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interaction rate changes from∼ T to∼ T 5, where the lat-
ter is the rate for two to two scattering processes. Thus if
the washout processes are out of equilibrium at the weak
scale, then they will remain out of equilibrium through-
out the history of the universe. A similar recoupling tem-
perature exists for scattering processes involving a light
B − L + X gauge boson, though there is no kinematic
suppression so processes can recouple below the EWPT.

Lastly, note that some washout through X violat-
ing processes is acceptable, and in this case the DM
can be considerably heavier than the GeV scale. Re-
calling that our LSP is assumed to carry X number,
the final DM abundance will be suppressed with respect
to the initial abundance from cogenesis by an amount
(mLSP /TD)3/2 exp (−mLSP /TD), where TD is the decou-
pling temperature of the X violating processes.

IV. EXPLICIT MODELS OF COGENESIS

Next, let us present some explicit models of AD co-
genesis. In particular, we will study models in which
OB−L = QLDc, LHu, although most of our statements
will apply equally well to any of the theories shown in
Eq. (2).

A. QLDcX Operator

Consider an explicit model in which the AD conden-
sate resides on the QLDcX flat direction. The D-term
potential, VD, arising from the SM gauge group fixes the
D-flat directions,

rQ = rL = rDc , (26)

in the notation of Eq. (9), while rX is free. We assume
the presence of an F -term potential, VF , arising from a
superpotential term,

W =
QLDcX

M
, (27)

as well as its A-term partner,

Vsoft = (fm+ gH)
QLDcX

M
. (28)

In general, there will be zero temperature soft masses of
order m, but they will not play an important role in the
AD evolution other than to ensure that the origin is a
stable minimum at late times, so we neglect these terms.
As we will see, the term that exerts a torque will induce
a minimum for the AD condensate away from the origin.
In particular, plugging in Eq. (9) and Eq. (26) into the

full scalar potential yields

V =
r6Q
8M2

+
3r4Qr

2
X

8M2

+
r3QrX

2M
fm cos(arg f − θB−L + θX)

+
r3QrX

2M
gH cos(arg g − θB−L + θX). (29)

At early times the second term can be ignored because it
is proportional to m. The angular components naturally
align to make the cosine term in the third line negative,
and then the potential is stabilized by the supersymmet-
ric terms in the first line. We find the potential has an
extremum at

r2Q = r2X =
2gHM

3
arg g − θB−L + θX = π, (30)

where one can check easily that this extremum is stable.
Hence, an AD condensate can form at this point in the
early universe.
As the universe cools, eventually H ∼ fm/g, and a

torque is applied to the condensate by the cosine term in
Eq. (29). Plugging Eq. (30) into Eq. (20), we obtain an
estimate for the asymmetry given by

− nB−L = nX ∼ arg(f/g) f2gm2M. (31)

This result agrees with numerical simulations to within
an order of magnitude. After the B−L and X asymme-
tries are produced, the AD condensate then evolves and
eventually decays to the DM particle, as per the general
discussion given in Sec. III.
According to Eq. (22), the asymmetric yield can be

expressed in terms of the number density in Eq. (31),
ρχ, and TR. Demanding that ηB ∼ 10−10 thus fixes TR

as a function of M . At the same time, the usual con-
straints from gravitino overclosure require the conserva-
tive bound, TR ! 1010 GeV. Putting it all together, given
order one values for f and g, one finds a bound of ap-
proximately M " 1016 GeV. Interestingly, M is required
to be near or above the GUT scale.
Such a high cutoff introduces some tension with BBN

bounds. In particular, assuming that the LOSP decays
into the DM sector solely through Eq. (27), then the
associated lifetimes will be quite long. These decays will
typically produce electromagnetic and hadronic energy
which can destroy the successful predictions of BBN. As
is well known, however, these BBN bounds are contingent
on the nature and freeze out abundances of the LOSP,
which are highly model dependent. Moreover, there can
easily exist additional higher dimension operators on top
of Eq. (27) which are suppressed by a lower cutoff and
mediate a faster decay of the LOSP into the DM sector.
These additional operators can separately preserve B−L
and X number in such a way that the evolution of the
AD condensate will be more or less unaltered from the
discussion above.
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The QLDcX model described above is extremely sim-
ple because it simultaneously stabilizes and exerts a
torque on the AD condensate using only the operators
in Eq. (27) and Eq. (28). That said, this minimal model
accommodates a number of interesting variations.
First of all, one can add additional operators beyond

those shown in Eq. (27) and Eq. (28). Hubble induced
soft masses of the form in Eq. (7) are in general present,
and they will influence the AD evolution because they are
parametrically comparable in strength to the torque term
in Eq. (28). Irrespective of whether these soft masses are
tachyonic or not, they can alter the numerical coefficients
in Eq. (30) and Eq. (31), leaving the parametric depen-
dences unchanged. In addition, sinceB−L+X number is
exact in this model, it is very natural to gauge this sym-
metry. The associated D-term potential then imposes an
additional stabilization constraint on the fields beyond
Eq. (26), given by r2Q = r2X . Hence, gauging B−L+X is
a very natural mechanism for simultaneously fixing both
B − L and X number to non-zero values in the early
universe.
Secondly, variations of this model exist with additional

DM sector particles which are charged under U(1)X . In
the early universe, these additional states may be stabi-
lized at the origin or not. Indeed, as long as the X field
is stabilized away from the origin then AD cogenesis is
accommodated. Additional DM sector states can serve a
number of purposes, for instance providing the fermionic
component of X a Dirac mass via mDXX ′. Note that
a mass for X is not a requirement. As discussed earlier,
there naively exists stringent bounds from BBN on ad-
ditional light or massless degrees of freedom, but these
are easily sidestepped if the DM sector is thermally de-
coupled from and modestly cooler than the MSSM bath
during BBN [14].
As noted earlier, because the DM sector is thermalized

there will in general be a symmetric abundance of DM
particles in the DM sector bath. Removing this symmet-
ric component requires the existence of additional inter-
actions, which require additional X carrying states. For
instance, symmetric annihilation is accomplished using a
Yukawa coupling κXX ′2 for sufficiently large κ. Alterna-
tively, one has the option of introducing additional gauge
bosons in the DM sector.

B. LHuX Operator

Next, consider a model in which the AD condensate
resides on the LHuX flat direction. The mechanics of
this theory are largely similar to those of the QLDcX
operator. In this case, the D-flat directions fix

rL = rHu
, (32)

where we use the notation of Eq. (9), and here rX is a
priori unconstrained. This model is defined by the su-
perpotential

W = λLHuX, (33)

and the analogous A-term,

Vsoft = (fm+ gH)λLHuX, (34)

where λ is a dimensionless coupling which is much less
than unity. As before, we ignore zero temperature soft
masses of order m. The full scalar potential is given by

V =
λ2r4L
4

+
λ2r2Lr

2
X

2

+
λr2LrXfm cos(arg f − θB−L + θX)√

2

+
λr2LrXgH cos(arg g − θB−L + θX)√

2
. (35)

The angular variables align to make the cosine term neg-
ative, and the runaway direction is stabilized by the su-
persymmetric terms, yielding a minimum at

r2L = r2X =
g2H2

2λ2

arg g − θB−L + θX = π. (36)

Note that the AD condensate is stabilized further from
the origin for smaller values of λ. When eventually H ∼
fm/g, the cosine term in Eq. (35) yields an asymmetry,
estimated in general in Eq. (20), given by

− nB−L = nX ∼
arg(f/g) f3g m3

4λ2
, (37)

which accords with numerical simulations. The asym-
metric yield today is given by Eq. (22), which, fixing
ηB ∼ 10−10, implies a constraint on TR in terms of the
small coupling λ. Combining this with the bound from
gravitino overproduction, TR < 1010 GeV, we find that
the coupling constant must be less than λ ! 10−8 in this
theory assuming order one values for f and g. Unlike
in the QLDcX theory, this coupling is sufficiently large
that the LHuX model does not in general suffer from the
BBN problem of late LOSP decays into the DM sector.
Since no net B−L+X asymmetry is generated, there

is also the constraint that the LHuX operator does not
wash out the B − L and X asymmetries. As computed
in Eq. (25), interactions in the thermal plasma involving
this operator place a bound of λ ! 10−7.
As in the QLDcX model, the LHuX model has many

variations, depending on whether additional operators or
fields are added. However, for the LHuX model there
is an additional complication, which is that L and X
mix after electroweak symmetry breaking. Consequently,
the couplings of X are closely connected and thus con-
strained by neutrino physics. There are a number of ways
of accommodating the measured active neutrino masses
with the presence of the operator LHuX . For instance,
one can simply fix λ ∼ 10−12, yielding Dirac neutrino
masses in the eV range. Alternatively, one can add a
Dirac mass term, mDXX ′, which at low energies leaves
the active neutrino sector completely unaffected since it
exactly preserves B − L and X number.
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that the LHuX model does not in general suffer from the
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Since no net B−L+X asymmetry is generated, there

is also the constraint that the LHuX operator does not
wash out the B − L and X asymmetries. As computed
in Eq. (25), interactions in the thermal plasma involving
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of accommodating the measured active neutrino masses
with the presence of the operator LHuX . For instance,
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mix after electroweak symmetry breaking. Consequently,
the couplings of X are closely connected and thus con-
strained by neutrino physics. There are a number of ways
of accommodating the measured active neutrino masses
with the presence of the operator LHuX . For instance,
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in Eq. (27) and Eq. (28). That said, this minimal model
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those shown in Eq. (27) and Eq. (28). Hubble induced
soft masses of the form in Eq. (7) are in general present,
and they will influence the AD evolution because they are
parametrically comparable in strength to the torque term
in Eq. (28). Irrespective of whether these soft masses are
tachyonic or not, they can alter the numerical coefficients
in Eq. (30) and Eq. (31), leaving the parametric depen-
dences unchanged. In addition, sinceB−L+X number is
exact in this model, it is very natural to gauge this sym-
metry. The associated D-term potential then imposes an
additional stabilization constraint on the fields beyond
Eq. (26), given by r2Q = r2X . Hence, gauging B−L+X is
a very natural mechanism for simultaneously fixing both
B − L and X number to non-zero values in the early
universe.
Secondly, variations of this model exist with additional

DM sector particles which are charged under U(1)X . In
the early universe, these additional states may be stabi-
lized at the origin or not. Indeed, as long as the X field
is stabilized away from the origin then AD cogenesis is
accommodated. Additional DM sector states can serve a
number of purposes, for instance providing the fermionic
component of X a Dirac mass via mDXX ′. Note that
a mass for X is not a requirement. As discussed earlier,
there naively exists stringent bounds from BBN on ad-
ditional light or massless degrees of freedom, but these
are easily sidestepped if the DM sector is thermally de-
coupled from and modestly cooler than the MSSM bath
during BBN [14].
As noted earlier, because the DM sector is thermalized

there will in general be a symmetric abundance of DM
particles in the DM sector bath. Removing this symmet-
ric component requires the existence of additional inter-
actions, which require additional X carrying states. For
instance, symmetric annihilation is accomplished using a
Yukawa coupling κXX ′2 for sufficiently large κ. Alterna-
tively, one has the option of introducing additional gauge
bosons in the DM sector.

B. LHuX Operator

Next, consider a model in which the AD condensate
resides on the LHuX flat direction. The mechanics of
this theory are largely similar to those of the QLDcX
operator. In this case, the D-flat directions fix
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where we use the notation of Eq. (9), and here rX is a
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Note that the AD condensate is stabilized further from
the origin for smaller values of λ. When eventually H ∼
fm/g, the cosine term in Eq. (35) yields an asymmetry,
estimated in general in Eq. (20), given by

− nB−L = nX ∼
arg(f/g) f3g m3
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which accords with numerical simulations. The asym-
metric yield today is given by Eq. (22), which, fixing
ηB ∼ 10−10, implies a constraint on TR in terms of the
small coupling λ. Combining this with the bound from
gravitino overproduction, TR < 1010 GeV, we find that
the coupling constant must be less than λ ! 10−8 in this
theory assuming order one values for f and g. Unlike
in the QLDcX theory, this coupling is sufficiently large
that the LHuX model does not in general suffer from the
BBN problem of late LOSP decays into the DM sector.
Since no net B−L+X asymmetry is generated, there

is also the constraint that the LHuX operator does not
wash out the B − L and X asymmetries. As computed
in Eq. (25), interactions in the thermal plasma involving
this operator place a bound of λ ! 10−7.
As in the QLDcX model, the LHuX model has many

variations, depending on whether additional operators or
fields are added. However, for the LHuX model there
is an additional complication, which is that L and X
mix after electroweak symmetry breaking. Consequently,
the couplings of X are closely connected and thus con-
strained by neutrino physics. There are a number of ways
of accommodating the measured active neutrino masses
with the presence of the operator LHuX . For instance,
one can simply fix λ ∼ 10−12, yielding Dirac neutrino
masses in the eV range. Alternatively, one can add a
Dirac mass term, mDXX ′, which at low energies leaves
the active neutrino sector completely unaffected since it
exactly preserves B − L and X number.
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is also the constraint that the LHuX operator does not
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fields are added. However, for the LHuX model there
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mix after electroweak symmetry breaking. Consequently,
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strained by neutrino physics. There are a number of ways
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masses in the eV range. Alternatively, one can add a
Dirac mass term, mDXX ′, which at low energies leaves
the active neutrino sector completely unaffected since it
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III. COSMOLOGY AFTER COGENESIS

Thus far we have established how an initial asymme-
try in B − L and X number can be generated via AD
cogenesis in the early universe. It now remains to dis-
cuss the effects of inflaton and AD condensate decays on
the MSSM and dark sector evolution. We discuss these
aspects next before moving on to specific models.

A. Inflaton Decay

During AD cogenesis, stabilization and torque are con-
veniently provided by Hubble induced potential terms
generated by the inflaton, which dominates the energy
density of the universe as it oscillates towards the ori-
gin. Eventually, however, the inflaton will decay at a
reheating temperature TR defined as the temperature at
which the Hubble parameter is equal to the inflaton decay
rate. This subsequently reheats, to some extent, both the
MSSM and DM sectors. This reheating process is highly
sensitive to the couplings of the inflaton to the various
fields. For example, one expects Kahler operators of the
form

K ⊃
∑

φ

bφ
M2

Pl

χ†χφ†φ, (21)

where χ is the inflaton chiral superfield and bφ is the same
coefficient fixing the Hubble soft mass of φ in Eq. (7).
In this paper we take the natural assumption that bφ
is comparable for MSSM and DM sector fields, since it
is generated by unspecified Planck scale physics. Thus,
the inflaton will decay to both sectors at a similar rate,
and both sectors will be comparably reheated. Relaxing
this assumption, especially in cases where the DM sector
is reheated very little, leads to interesting cosmological
scenarios. We leave an exploration of these possibilities
to future work, and instead focus here on the case where
both sectors are reheated equally.
Naively, an equal degree of reheating into the MSSM

and DM sectors has cosmological dangers, given stringent
bounds from big bang nucleosynthesis (BBN) constrain-
ing the number of light degrees of freedom present at
MeV temperatures. As we will see explicitly in Sec. III C,
however, the two sectors can in general be thermally
decoupled from each other immediately after reheating,
henceforth evolving to different temperatures. Indeed,
variations in the number of degrees of freedom in the
MSSM and DM sectors during the evolution of the uni-
verse can substantially alter the relative temperatures of
the MSSM and DM sectors [14]. Thus, if the DM sec-
tor is even modestly cooler than the MSSM during BBN,
say even by an order of magnitude in temperature, then
these BBN bounds permit many hundreds of degrees of
freedom in the DM sector.
Another cosmological pitfall arising from inflaton de-

cays to the MSSM is the overproduction of weakly cou-
pled, stable particles, e.g. the gravitino problem [15] and

the axino problem [16]. For example, as is well-known,
gravitino overclosure places a bound of at least TR ! 1010

GeV which becomes even more stringent for lower super-
symmetry breaking scales. This is an important con-
straint on the AD mechanism in general.
Importantly, TR is also constrained via the observed

baryon and DM densities produced in AD cogenesis ac-
cording to the usual expression for the asymmetric yield
[13],

ηB =
nB

s
∼

nB

ρχ/TR
, (22)

where the inflaton energy density ρχ sets the expansion
rate during inflaton dominated reheating, ρχ ∼ H2M2

Pl.
Here nB and ρχ should be evaluated shortly after AD co-
genesis, when Hubble is of order the scale of soft masses.
Because the present day asymmetric yield of baryons is
measured to be ηB ∼ 10−10, this relation effectively fixes
TR in terms of the number asymmetry generated by AD
cogenesis, which is in turn fixed by the strength of the
OB−LOX operator. Lastly, note one final constraint on
TR, which is that the Hubble parameter during reheat-
ing must be smaller than the scale of soft masses, taken
to be of order the weak scale. If this is not the case,
then the inflaton will have decayed too soon to be able
to generate the Hubble induced potential terms which
drive the AD condensate evolution. This places a bound
of approximately TR ! 1010 GeV.

B. Condensate Decay

After the initial asymmetry is produced, the universe
cools and the AD condensate in-spirals towards the ori-
gin, as dictated by the zero temperature scalar potential.
As discussed in [8, 17, 18], if the scalar potential is shal-
lower than quadratic near the origin, then it supports
a class of non-topologically stabilized solitons known as
Q-balls. If formed, Q-balls will be cosmologically stable
if their energy density per unit charge is less than that
of the lightest B − L or X charged particle. It has been
shown that theories of gauge mediated supersymmetry
breaking generally allow for Q-ball formation [8, 17]. On
the other hand, whether this occurs in the case of grav-
ity mediation depends sensitively on the precise form of
the radiative potential and is thus very model dependent
[18]. Throughout this work, we assume a gravity me-
diated scenario in which the potential does not permit
Q-ball formation.
In the absence of Q-balls, the AD condensate eventu-

ally “evaporates” as a consequence of scattering with the
thermalized decay products of the inflaton. This evapo-
ration yields symmetric and asymmetric abundances of
DM sector particles, with relative sizes determined by the
radial and angular velocities of the condensate. The sym-
metric component is absorbed by the DM sector bath,
but eventually freezes out once the universe sufficiently
cools. In order for AD cogenesis to successfully explain
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verse can substantially alter the relative temperatures of
the MSSM and DM sectors [14]. Thus, if the DM sec-
tor is even modestly cooler than the MSSM during BBN,
say even by an order of magnitude in temperature, then
these BBN bounds permit many hundreds of degrees of
freedom in the DM sector.
Another cosmological pitfall arising from inflaton de-

cays to the MSSM is the overproduction of weakly cou-
pled, stable particles, e.g. the gravitino problem [15] and

the axino problem [16]. For example, as is well-known,
gravitino overclosure places a bound of at least TR ! 1010

GeV which becomes even more stringent for lower super-
symmetry breaking scales. This is an important con-
straint on the AD mechanism in general.
Importantly, TR is also constrained via the observed

baryon and DM densities produced in AD cogenesis ac-
cording to the usual expression for the asymmetric yield
[13],

ηB =
nB

s
∼

nB

ρχ/TR
, (22)

where the inflaton energy density ρχ sets the expansion
rate during inflaton dominated reheating, ρχ ∼ H2M2

Pl.
Here nB and ρχ should be evaluated shortly after AD co-
genesis, when Hubble is of order the scale of soft masses.
Because the present day asymmetric yield of baryons is
measured to be ηB ∼ 10−10, this relation effectively fixes
TR in terms of the number asymmetry generated by AD
cogenesis, which is in turn fixed by the strength of the
OB−LOX operator. Lastly, note one final constraint on
TR, which is that the Hubble parameter during reheat-
ing must be smaller than the scale of soft masses, taken
to be of order the weak scale. If this is not the case,
then the inflaton will have decayed too soon to be able
to generate the Hubble induced potential terms which
drive the AD condensate evolution. This places a bound
of approximately TR ! 1010 GeV.

B. Condensate Decay

After the initial asymmetry is produced, the universe
cools and the AD condensate in-spirals towards the ori-
gin, as dictated by the zero temperature scalar potential.
As discussed in [8, 17, 18], if the scalar potential is shal-
lower than quadratic near the origin, then it supports
a class of non-topologically stabilized solitons known as
Q-balls. If formed, Q-balls will be cosmologically stable
if their energy density per unit charge is less than that
of the lightest B − L or X charged particle. It has been
shown that theories of gauge mediated supersymmetry
breaking generally allow for Q-ball formation [8, 17]. On
the other hand, whether this occurs in the case of grav-
ity mediation depends sensitively on the precise form of
the radiative potential and is thus very model dependent
[18]. Throughout this work, we assume a gravity me-
diated scenario in which the potential does not permit
Q-ball formation.
In the absence of Q-balls, the AD condensate eventu-

ally “evaporates” as a consequence of scattering with the
thermalized decay products of the inflaton. This evapo-
ration yields symmetric and asymmetric abundances of
DM sector particles, with relative sizes determined by the
radial and angular velocities of the condensate. The sym-
metric component is absorbed by the DM sector bath,
but eventually freezes out once the universe sufficiently
cools. In order for AD cogenesis to successfully explain
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The QLDcX model described above is extremely sim-
ple because it simultaneously stabilizes and exerts a
torque on the AD condensate using only the operators
in Eq. (27) and Eq. (28). That said, this minimal model
accommodates a number of interesting variations.
First of all, one can add additional operators beyond

those shown in Eq. (27) and Eq. (28). Hubble induced
soft masses of the form in Eq. (7) are in general present,
and they will influence the AD evolution because they are
parametrically comparable in strength to the torque term
in Eq. (28). Irrespective of whether these soft masses are
tachyonic or not, they can alter the numerical coefficients
in Eq. (30) and Eq. (31), leaving the parametric depen-
dences unchanged. In addition, sinceB−L+X number is
exact in this model, it is very natural to gauge this sym-
metry. The associated D-term potential then imposes an
additional stabilization constraint on the fields beyond
Eq. (26), given by r2Q = r2X . Hence, gauging B−L+X is
a very natural mechanism for simultaneously fixing both
B − L and X number to non-zero values in the early
universe.
Secondly, variations of this model exist with additional

DM sector particles which are charged under U(1)X . In
the early universe, these additional states may be stabi-
lized at the origin or not. Indeed, as long as the X field
is stabilized away from the origin then AD cogenesis is
accommodated. Additional DM sector states can serve a
number of purposes, for instance providing the fermionic
component of X a Dirac mass via mDXX ′. Note that
a mass for X is not a requirement. As discussed earlier,
there naively exists stringent bounds from BBN on ad-
ditional light or massless degrees of freedom, but these
are easily sidestepped if the DM sector is thermally de-
coupled from and modestly cooler than the MSSM bath
during BBN [14].
As noted earlier, because the DM sector is thermalized

there will in general be a symmetric abundance of DM
particles in the DM sector bath. Removing this symmet-
ric component requires the existence of additional inter-
actions, which require additional X carrying states. For
instance, symmetric annihilation is accomplished using a
Yukawa coupling κXX ′2 for sufficiently large κ. Alterna-
tively, one has the option of introducing additional gauge
bosons in the DM sector.

B. LHuX Operator

Next, consider a model in which the AD condensate
resides on the LHuX flat direction. The mechanics of
this theory are largely similar to those of the QLDcX
operator. In this case, the D-flat directions fix

rL = rHu
, (32)

where we use the notation of Eq. (9), and here rX is a
priori unconstrained. This model is defined by the su-
perpotential

W = λLHuX, (33)

and the analogous A-term,

Vsoft = (fm+ gH)λLHuX, (34)

where λ is a dimensionless coupling which is much less
than unity. As before, we ignore zero temperature soft
masses of order m. The full scalar potential is given by

V =
λ2r4L
4

+
λ2r2Lr

2
X

2

+
λr2LrXfm cos(arg f − θB−L + θX)√

2

+
λr2LrXgH cos(arg g − θB−L + θX)√

2
. (35)

The angular variables align to make the cosine term neg-
ative, and the runaway direction is stabilized by the su-
persymmetric terms, yielding a minimum at

r2L = r2X =
g2H2

2λ2

arg g − θB−L + θX = π. (36)

Note that the AD condensate is stabilized further from
the origin for smaller values of λ. When eventually H ∼
fm/g, the cosine term in Eq. (35) yields an asymmetry,
estimated in general in Eq. (20), given by

− nB−L = nX ∼
arg(f/g) f3g m3

4λ2
, (37)

which accords with numerical simulations. The asym-
metric yield today is given by Eq. (22), which, fixing
ηB ∼ 10−10, implies a constraint on TR in terms of the
small coupling λ. Combining this with the bound from
gravitino overproduction, TR < 1010 GeV, we find that
the coupling constant must be less than λ ! 10−8 in this
theory assuming order one values for f and g. Unlike
in the QLDcX theory, this coupling is sufficiently large
that the LHuX model does not in general suffer from the
BBN problem of late LOSP decays into the DM sector.
Since no net B−L+X asymmetry is generated, there

is also the constraint that the LHuX operator does not
wash out the B − L and X asymmetries. As computed
in Eq. (25), interactions in the thermal plasma involving
this operator place a bound of λ ! 10−7.
As in the QLDcX model, the LHuX model has many

variations, depending on whether additional operators or
fields are added. However, for the LHuX model there
is an additional complication, which is that L and X
mix after electroweak symmetry breaking. Consequently,
the couplings of X are closely connected and thus con-
strained by neutrino physics. There are a number of ways
of accommodating the measured active neutrino masses
with the presence of the operator LHuX . For instance,
one can simply fix λ ∼ 10−12, yielding Dirac neutrino
masses in the eV range. Alternatively, one can add a
Dirac mass term, mDXX ′, which at low energies leaves
the active neutrino sector completely unaffected since it
exactly preserves B − L and X number.
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The QLDcX model described above is extremely sim-
ple because it simultaneously stabilizes and exerts a
torque on the AD condensate using only the operators
in Eq. (27) and Eq. (28). That said, this minimal model
accommodates a number of interesting variations.
First of all, one can add additional operators beyond

those shown in Eq. (27) and Eq. (28). Hubble induced
soft masses of the form in Eq. (7) are in general present,
and they will influence the AD evolution because they are
parametrically comparable in strength to the torque term
in Eq. (28). Irrespective of whether these soft masses are
tachyonic or not, they can alter the numerical coefficients
in Eq. (30) and Eq. (31), leaving the parametric depen-
dences unchanged. In addition, sinceB−L+X number is
exact in this model, it is very natural to gauge this sym-
metry. The associated D-term potential then imposes an
additional stabilization constraint on the fields beyond
Eq. (26), given by r2Q = r2X . Hence, gauging B−L+X is
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B − L and X number to non-zero values in the early
universe.
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the early universe, these additional states may be stabi-
lized at the origin or not. Indeed, as long as the X field
is stabilized away from the origin then AD cogenesis is
accommodated. Additional DM sector states can serve a
number of purposes, for instance providing the fermionic
component of X a Dirac mass via mDXX ′. Note that
a mass for X is not a requirement. As discussed earlier,
there naively exists stringent bounds from BBN on ad-
ditional light or massless degrees of freedom, but these
are easily sidestepped if the DM sector is thermally de-
coupled from and modestly cooler than the MSSM bath
during BBN [14].
As noted earlier, because the DM sector is thermalized

there will in general be a symmetric abundance of DM
particles in the DM sector bath. Removing this symmet-
ric component requires the existence of additional inter-
actions, which require additional X carrying states. For
instance, symmetric annihilation is accomplished using a
Yukawa coupling κXX ′2 for sufficiently large κ. Alterna-
tively, one has the option of introducing additional gauge
bosons in the DM sector.

B. LHuX Operator

Next, consider a model in which the AD condensate
resides on the LHuX flat direction. The mechanics of
this theory are largely similar to those of the QLDcX
operator. In this case, the D-flat directions fix

rL = rHu
, (32)

where we use the notation of Eq. (9), and here rX is a
priori unconstrained. This model is defined by the su-
perpotential

W = λLHuX, (33)

and the analogous A-term,

Vsoft = (fm+ gH)λLHuX, (34)

where λ is a dimensionless coupling which is much less
than unity. As before, we ignore zero temperature soft
masses of order m. The full scalar potential is given by

V =
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+
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+
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The angular variables align to make the cosine term neg-
ative, and the runaway direction is stabilized by the su-
persymmetric terms, yielding a minimum at

r2L = r2X =
g2H2

2λ2

arg g − θB−L + θX = π. (36)

Note that the AD condensate is stabilized further from
the origin for smaller values of λ. When eventually H ∼
fm/g, the cosine term in Eq. (35) yields an asymmetry,
estimated in general in Eq. (20), given by

− nB−L = nX ∼
arg(f/g) f3g m3

4λ2
, (37)

which accords with numerical simulations. The asym-
metric yield today is given by Eq. (22), which, fixing
ηB ∼ 10−10, implies a constraint on TR in terms of the
small coupling λ. Combining this with the bound from
gravitino overproduction, TR < 1010 GeV, we find that
the coupling constant must be less than λ ! 10−8 in this
theory assuming order one values for f and g. Unlike
in the QLDcX theory, this coupling is sufficiently large
that the LHuX model does not in general suffer from the
BBN problem of late LOSP decays into the DM sector.
Since no net B−L+X asymmetry is generated, there

is also the constraint that the LHuX operator does not
wash out the B − L and X asymmetries. As computed
in Eq. (25), interactions in the thermal plasma involving
this operator place a bound of λ ! 10−7.
As in the QLDcX model, the LHuX model has many

variations, depending on whether additional operators or
fields are added. However, for the LHuX model there
is an additional complication, which is that L and X
mix after electroweak symmetry breaking. Consequently,
the couplings of X are closely connected and thus con-
strained by neutrino physics. There are a number of ways
of accommodating the measured active neutrino masses
with the presence of the operator LHuX . For instance,
one can simply fix λ ∼ 10−12, yielding Dirac neutrino
masses in the eV range. Alternatively, one can add a
Dirac mass term, mDXX ′, which at low energies leaves
the active neutrino sector completely unaffected since it
exactly preserves B − L and X number.
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The QLDcX model described above is extremely sim-
ple because it simultaneously stabilizes and exerts a
torque on the AD condensate using only the operators
in Eq. (27) and Eq. (28). That said, this minimal model
accommodates a number of interesting variations.
First of all, one can add additional operators beyond

those shown in Eq. (27) and Eq. (28). Hubble induced
soft masses of the form in Eq. (7) are in general present,
and they will influence the AD evolution because they are
parametrically comparable in strength to the torque term
in Eq. (28). Irrespective of whether these soft masses are
tachyonic or not, they can alter the numerical coefficients
in Eq. (30) and Eq. (31), leaving the parametric depen-
dences unchanged. In addition, sinceB−L+X number is
exact in this model, it is very natural to gauge this sym-
metry. The associated D-term potential then imposes an
additional stabilization constraint on the fields beyond
Eq. (26), given by r2Q = r2X . Hence, gauging B−L+X is
a very natural mechanism for simultaneously fixing both
B − L and X number to non-zero values in the early
universe.
Secondly, variations of this model exist with additional

DM sector particles which are charged under U(1)X . In
the early universe, these additional states may be stabi-
lized at the origin or not. Indeed, as long as the X field
is stabilized away from the origin then AD cogenesis is
accommodated. Additional DM sector states can serve a
number of purposes, for instance providing the fermionic
component of X a Dirac mass via mDXX ′. Note that
a mass for X is not a requirement. As discussed earlier,
there naively exists stringent bounds from BBN on ad-
ditional light or massless degrees of freedom, but these
are easily sidestepped if the DM sector is thermally de-
coupled from and modestly cooler than the MSSM bath
during BBN [14].
As noted earlier, because the DM sector is thermalized

there will in general be a symmetric abundance of DM
particles in the DM sector bath. Removing this symmet-
ric component requires the existence of additional inter-
actions, which require additional X carrying states. For
instance, symmetric annihilation is accomplished using a
Yukawa coupling κXX ′2 for sufficiently large κ. Alterna-
tively, one has the option of introducing additional gauge
bosons in the DM sector.

B. LHuX Operator

Next, consider a model in which the AD condensate
resides on the LHuX flat direction. The mechanics of
this theory are largely similar to those of the QLDcX
operator. In this case, the D-flat directions fix

rL = rHu
, (32)

where we use the notation of Eq. (9), and here rX is a
priori unconstrained. This model is defined by the su-
perpotential

W = λLHuX, (33)

and the analogous A-term,

Vsoft = (fm+ gH)λLHuX, (34)

where λ is a dimensionless coupling which is much less
than unity. As before, we ignore zero temperature soft
masses of order m. The full scalar potential is given by

V =
λ2r4L
4

+
λ2r2Lr

2
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2

+
λr2LrXfm cos(arg f − θB−L + θX)√

2

+
λr2LrXgH cos(arg g − θB−L + θX)√

2
. (35)

The angular variables align to make the cosine term neg-
ative, and the runaway direction is stabilized by the su-
persymmetric terms, yielding a minimum at

r2L = r2X =
g2H2

2λ2

arg g − θB−L + θX = π. (36)

Note that the AD condensate is stabilized further from
the origin for smaller values of λ. When eventually H ∼
fm/g, the cosine term in Eq. (35) yields an asymmetry,
estimated in general in Eq. (20), given by

− nB−L = nX ∼
arg(f/g) f3g m3

4λ2
, (37)

which accords with numerical simulations. The asym-
metric yield today is given by Eq. (22), which, fixing
ηB ∼ 10−10, implies a constraint on TR in terms of the
small coupling λ. Combining this with the bound from
gravitino overproduction, TR < 1010 GeV, we find that
the coupling constant must be less than λ ! 10−8 in this
theory assuming order one values for f and g. Unlike
in the QLDcX theory, this coupling is sufficiently large
that the LHuX model does not in general suffer from the
BBN problem of late LOSP decays into the DM sector.
Since no net B−L+X asymmetry is generated, there

is also the constraint that the LHuX operator does not
wash out the B − L and X asymmetries. As computed
in Eq. (25), interactions in the thermal plasma involving
this operator place a bound of λ ! 10−7.
As in the QLDcX model, the LHuX model has many

variations, depending on whether additional operators or
fields are added. However, for the LHuX model there
is an additional complication, which is that L and X
mix after electroweak symmetry breaking. Consequently,
the couplings of X are closely connected and thus con-
strained by neutrino physics. There are a number of ways
of accommodating the measured active neutrino masses
with the presence of the operator LHuX . For instance,
one can simply fix λ ∼ 10−12, yielding Dirac neutrino
masses in the eV range. Alternatively, one can add a
Dirac mass term, mDXX ′, which at low energies leaves
the active neutrino sector completely unaffected since it
exactly preserves B − L and X number.
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interaction rate changes from∼ T to∼ T 5, where the lat-
ter is the rate for two to two scattering processes. Thus if
the washout processes are out of equilibrium at the weak
scale, then they will remain out of equilibrium through-
out the history of the universe. A similar recoupling tem-
perature exists for scattering processes involving a light
B − L + X gauge boson, though there is no kinematic
suppression so processes can recouple below the EWPT.

Lastly, note that some washout through X violat-
ing processes is acceptable, and in this case the DM
can be considerably heavier than the GeV scale. Re-
calling that our LSP is assumed to carry X number,
the final DM abundance will be suppressed with respect
to the initial abundance from cogenesis by an amount
(mLSP /TD)3/2 exp (−mLSP /TD), where TD is the decou-
pling temperature of the X violating processes.

IV. EXPLICIT MODELS OF COGENESIS

Next, let us present some explicit models of AD co-
genesis. In particular, we will study models in which
OB−L = QLDc, LHu, although most of our statements
will apply equally well to any of the theories shown in
Eq. (2).

A. QLDcX Operator

Consider an explicit model in which the AD conden-
sate resides on the QLDcX flat direction. The D-term
potential, VD, arising from the SM gauge group fixes the
D-flat directions,

rQ = rL = rDc , (26)

in the notation of Eq. (9), while rX is free. We assume
the presence of an F -term potential, VF , arising from a
superpotential term,

W =
QLDcX

M
, (27)

as well as its A-term partner,

Vsoft = (fm+ gH)
QLDcX

M
. (28)

In general, there will be zero temperature soft masses of
order m, but they will not play an important role in the
AD evolution other than to ensure that the origin is a
stable minimum at late times, so we neglect these terms.
As we will see, the term that exerts a torque will induce
a minimum for the AD condensate away from the origin.
In particular, plugging in Eq. (9) and Eq. (26) into the

full scalar potential yields

V =
r6Q
8M2

+
3r4Qr

2
X

8M2

+
r3QrX

2M
fm cos(arg f − θB−L + θX)

+
r3QrX

2M
gH cos(arg g − θB−L + θX). (29)

At early times the second term can be ignored because it
is proportional to m. The angular components naturally
align to make the cosine term in the third line negative,
and then the potential is stabilized by the supersymmet-
ric terms in the first line. We find the potential has an
extremum at

r2Q = r2X =
2gHM

3
arg g − θB−L + θX = π, (30)

where one can check easily that this extremum is stable.
Hence, an AD condensate can form at this point in the
early universe.
As the universe cools, eventually H ∼ fm/g, and a

torque is applied to the condensate by the cosine term in
Eq. (29). Plugging Eq. (30) into Eq. (20), we obtain an
estimate for the asymmetry given by

− nB−L = nX ∼ arg(f/g) f2gm2M. (31)

This result agrees with numerical simulations to within
an order of magnitude. After the B−L and X asymme-
tries are produced, the AD condensate then evolves and
eventually decays to the DM particle, as per the general
discussion given in Sec. III.
According to Eq. (22), the asymmetric yield can be

expressed in terms of the number density in Eq. (31),
ρχ, and TR. Demanding that ηB ∼ 10−10 thus fixes TR

as a function of M . At the same time, the usual con-
straints from gravitino overclosure require the conserva-
tive bound, TR ! 1010 GeV. Putting it all together, given
order one values for f and g, one finds a bound of ap-
proximately M " 1016 GeV. Interestingly, M is required
to be near or above the GUT scale.
Such a high cutoff introduces some tension with BBN

bounds. In particular, assuming that the LOSP decays
into the DM sector solely through Eq. (27), then the
associated lifetimes will be quite long. These decays will
typically produce electromagnetic and hadronic energy
which can destroy the successful predictions of BBN. As
is well known, however, these BBN bounds are contingent
on the nature and freeze out abundances of the LOSP,
which are highly model dependent. Moreover, there can
easily exist additional higher dimension operators on top
of Eq. (27) which are suppressed by a lower cutoff and
mediate a faster decay of the LOSP into the DM sector.
These additional operators can separately preserve B−L
and X number in such a way that the evolution of the
AD condensate will be more or less unaltered from the
discussion above.
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which accords with numerical simulations. The asym-
metric yield today is given by Eq. (22), which, fixing
ηB ∼ 10−10, implies a constraint on TR in terms of the
small coupling λ. Combining this with the bound from
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theory assuming order one values for f and g. Unlike
in the QLDcX theory, this coupling is sufficiently large
that the LHuX model does not in general suffer from the
BBN problem of late LOSP decays into the DM sector.
Since no net B−L+X asymmetry is generated, there

is also the constraint that the LHuX operator does not
wash out the B − L and X asymmetries. As computed
in Eq. (25), interactions in the thermal plasma involving
this operator place a bound of λ ! 10−7.
As in the QLDcX model, the LHuX model has many

variations, depending on whether additional operators or
fields are added. However, for the LHuX model there
is an additional complication, which is that L and X
mix after electroweak symmetry breaking. Consequently,
the couplings of X are closely connected and thus con-
strained by neutrino physics. There are a number of ways
of accommodating the measured active neutrino masses
with the presence of the operator LHuX . For instance,
one can simply fix λ ∼ 10−12, yielding Dirac neutrino
masses in the eV range. Alternatively, one can add a
Dirac mass term, mDXX ′, which at low energies leaves
the active neutrino sector completely unaffected since it
exactly preserves B − L and X number.
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B − L + X gauge boson, though there is no kinematic
suppression so processes can recouple below the EWPT.

Lastly, note that some washout through X violat-
ing processes is acceptable, and in this case the DM
can be considerably heavier than the GeV scale. Re-
calling that our LSP is assumed to carry X number,
the final DM abundance will be suppressed with respect
to the initial abundance from cogenesis by an amount
(mLSP /TD)3/2 exp (−mLSP /TD), where TD is the decou-
pling temperature of the X violating processes.

IV. EXPLICIT MODELS OF COGENESIS

Next, let us present some explicit models of AD co-
genesis. In particular, we will study models in which
OB−L = QLDc, LHu, although most of our statements
will apply equally well to any of the theories shown in
Eq. (2).

A. QLDcX Operator

Consider an explicit model in which the AD conden-
sate resides on the QLDcX flat direction. The D-term
potential, VD, arising from the SM gauge group fixes the
D-flat directions,

rQ = rL = rDc , (26)

in the notation of Eq. (9), while rX is free. We assume
the presence of an F -term potential, VF , arising from a
superpotential term,

W =
QLDcX

M
, (27)

as well as its A-term partner,

Vsoft = (fm+ gH)
QLDcX

M
. (28)

In general, there will be zero temperature soft masses of
order m, but they will not play an important role in the
AD evolution other than to ensure that the origin is a
stable minimum at late times, so we neglect these terms.
As we will see, the term that exerts a torque will induce
a minimum for the AD condensate away from the origin.
In particular, plugging in Eq. (9) and Eq. (26) into the

full scalar potential yields

V =
r6Q
8M2

+
3r4Qr

2
X

8M2

+
r3QrX

2M
fm cos(arg f − θB−L + θX)

+
r3QrX

2M
gH cos(arg g − θB−L + θX). (29)

At early times the second term can be ignored because it
is proportional to m. The angular components naturally
align to make the cosine term in the third line negative,
and then the potential is stabilized by the supersymmet-
ric terms in the first line. We find the potential has an
extremum at

r2Q = r2X =
2gHM

3
arg g − θB−L + θX = π, (30)

where one can check easily that this extremum is stable.
Hence, an AD condensate can form at this point in the
early universe.
As the universe cools, eventually H ∼ fm/g, and a

torque is applied to the condensate by the cosine term in
Eq. (29). Plugging Eq. (30) into Eq. (20), we obtain an
estimate for the asymmetry given by

− nB−L = nX ∼ arg(f/g) f2gm2M. (31)

This result agrees with numerical simulations to within
an order of magnitude. After the B−L and X asymme-
tries are produced, the AD condensate then evolves and
eventually decays to the DM particle, as per the general
discussion given in Sec. III.
According to Eq. (22), the asymmetric yield can be

expressed in terms of the number density in Eq. (31),
ρχ, and TR. Demanding that ηB ∼ 10−10 thus fixes TR

as a function of M . At the same time, the usual con-
straints from gravitino overclosure require the conserva-
tive bound, TR ! 1010 GeV. Putting it all together, given
order one values for f and g, one finds a bound of ap-
proximately M " 1016 GeV. Interestingly, M is required
to be near or above the GUT scale.
Such a high cutoff introduces some tension with BBN

bounds. In particular, assuming that the LOSP decays
into the DM sector solely through Eq. (27), then the
associated lifetimes will be quite long. These decays will
typically produce electromagnetic and hadronic energy
which can destroy the successful predictions of BBN. As
is well known, however, these BBN bounds are contingent
on the nature and freeze out abundances of the LOSP,
which are highly model dependent. Moreover, there can
easily exist additional higher dimension operators on top
of Eq. (27) which are suppressed by a lower cutoff and
mediate a faster decay of the LOSP into the DM sector.
These additional operators can separately preserve B−L
and X number in such a way that the evolution of the
AD condensate will be more or less unaltered from the
discussion above.
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The QLDcX model described above is extremely sim-
ple because it simultaneously stabilizes and exerts a
torque on the AD condensate using only the operators
in Eq. (27) and Eq. (28). That said, this minimal model
accommodates a number of interesting variations.
First of all, one can add additional operators beyond

those shown in Eq. (27) and Eq. (28). Hubble induced
soft masses of the form in Eq. (7) are in general present,
and they will influence the AD evolution because they are
parametrically comparable in strength to the torque term
in Eq. (28). Irrespective of whether these soft masses are
tachyonic or not, they can alter the numerical coefficients
in Eq. (30) and Eq. (31), leaving the parametric depen-
dences unchanged. In addition, sinceB−L+X number is
exact in this model, it is very natural to gauge this sym-
metry. The associated D-term potential then imposes an
additional stabilization constraint on the fields beyond
Eq. (26), given by r2Q = r2X . Hence, gauging B−L+X is
a very natural mechanism for simultaneously fixing both
B − L and X number to non-zero values in the early
universe.
Secondly, variations of this model exist with additional

DM sector particles which are charged under U(1)X . In
the early universe, these additional states may be stabi-
lized at the origin or not. Indeed, as long as the X field
is stabilized away from the origin then AD cogenesis is
accommodated. Additional DM sector states can serve a
number of purposes, for instance providing the fermionic
component of X a Dirac mass via mDXX ′. Note that
a mass for X is not a requirement. As discussed earlier,
there naively exists stringent bounds from BBN on ad-
ditional light or massless degrees of freedom, but these
are easily sidestepped if the DM sector is thermally de-
coupled from and modestly cooler than the MSSM bath
during BBN [14].
As noted earlier, because the DM sector is thermalized

there will in general be a symmetric abundance of DM
particles in the DM sector bath. Removing this symmet-
ric component requires the existence of additional inter-
actions, which require additional X carrying states. For
instance, symmetric annihilation is accomplished using a
Yukawa coupling κXX ′2 for sufficiently large κ. Alterna-
tively, one has the option of introducing additional gauge
bosons in the DM sector.

B. LHuX Operator

Next, consider a model in which the AD condensate
resides on the LHuX flat direction. The mechanics of
this theory are largely similar to those of the QLDcX
operator. In this case, the D-flat directions fix

rL = rHu
, (32)

where we use the notation of Eq. (9), and here rX is a
priori unconstrained. This model is defined by the su-
perpotential

W = λLHuX, (33)

and the analogous A-term,

Vsoft = (fm+ gH)λLHuX, (34)

where λ is a dimensionless coupling which is much less
than unity. As before, we ignore zero temperature soft
masses of order m. The full scalar potential is given by

V =
λ2r4L
4

+
λ2r2Lr

2
X

2

+
λr2LrXfm cos(arg f − θB−L + θX)√

2

+
λr2LrXgH cos(arg g − θB−L + θX)√

2
. (35)

The angular variables align to make the cosine term neg-
ative, and the runaway direction is stabilized by the su-
persymmetric terms, yielding a minimum at

r2L = r2X =
g2H2

2λ2

arg g − θB−L + θX = π. (36)

Note that the AD condensate is stabilized further from
the origin for smaller values of λ. When eventually H ∼
fm/g, the cosine term in Eq. (35) yields an asymmetry,
estimated in general in Eq. (20), given by

− nB−L = nX ∼
arg(f/g) f3g m3

4λ2
, (37)

which accords with numerical simulations. The asym-
metric yield today is given by Eq. (22), which, fixing
ηB ∼ 10−10, implies a constraint on TR in terms of the
small coupling λ. Combining this with the bound from
gravitino overproduction, TR < 1010 GeV, we find that
the coupling constant must be less than λ ! 10−8 in this
theory assuming order one values for f and g. Unlike
in the QLDcX theory, this coupling is sufficiently large
that the LHuX model does not in general suffer from the
BBN problem of late LOSP decays into the DM sector.
Since no net B−L+X asymmetry is generated, there

is also the constraint that the LHuX operator does not
wash out the B − L and X asymmetries. As computed
in Eq. (25), interactions in the thermal plasma involving
this operator place a bound of λ ! 10−7.
As in the QLDcX model, the LHuX model has many

variations, depending on whether additional operators or
fields are added. However, for the LHuX model there
is an additional complication, which is that L and X
mix after electroweak symmetry breaking. Consequently,
the couplings of X are closely connected and thus con-
strained by neutrino physics. There are a number of ways
of accommodating the measured active neutrino masses
with the presence of the operator LHuX . For instance,
one can simply fix λ ∼ 10−12, yielding Dirac neutrino
masses in the eV range. Alternatively, one can add a
Dirac mass term, mDXX ′, which at low energies leaves
the active neutrino sector completely unaffected since it
exactly preserves B − L and X number.
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Lastly, consider the case that X has a Majorana mass
term, mMX2. Here we imagine that mM ranges from an
eV up to a TeV. Because the Majorana mass violates X
number explicitly, it will affect the evolution of the AD
condensate so that Eq. (3) is not exactly true. More-
over, there will be scattering processes in the DM sector
bath that include a Majorana mass insertion and tend to
wash out theX asymmetry. Concretely, consider interac-
tions involving the Yukawa coupling κXX ′2 suggested in
Sec. IVA. We are interested in a process involving κ as
well as the insertion of a factor of mM , the leading spu-
rion for X number breaking. At temperatures far above
the mass of the X particle, any process involving this
Majorana mass insertion has a cross-section suppressed
by a factor of (mM/T )2. Hence, washout effects decouple
when the DM sector is at temperatures above T/X where

ξ−2/3T/X ∼
m2/3

M κ4/3M1/3
Pl

g1/6∗

(38)

∼ 105 GeV
( κ

0.1

)4/3 ( m

50 GeV

)2/3
(

200

g∗

)1/6

,

and where ξ is the ratio of the DM sector temperature
to the MSSM sector temperature. In order to save the
asymmetry, we require that T/X ! mM/20, the freeze

out temperature of X , which cannot be satisfied for any
reasonable value for mM . Hence, it is difficult to accom-
modate the usual seesaw origins of the active neutrino
masses in this framework of annihilation to DM sector
states.
On the other hand, the annihilation may occur through

SM states, such as the Z boson. If this is the case, then
washout is suppressed by insertions of λ provided that
λ ! 10−7, so the associated processes become inefficient
at the weak scale. In order to generate the the eV neu-
trino mass scale, the Majorana mass for the DM must be
GeV scale. The scenario with this set of parameters was
explored in [20].

V. COLLIDER SIGNATURES

In this section we outline possible collider signatures
associated with models of AD cogenesis. As we will see,
the phenomenology is largely dictated by the structure of
the connector operator OB−LOX and so the models typ-
ically have a degeneracy with other models which employ
this portal.
We have assumed throughout that the LSP carries X

number, so it resides in the DM sector. Consequently,
supersymmetric collider phenomenology is drastically al-
tered, since the LOSP necessarily decays into the DM
sector due to R-parity conservation. In the minimal sce-
nario, this decay is mediated by OB−LOX . As we saw in
Sec. IV, the coefficient of this operator is bounded col-
lectively from gravitino overproduction and the observed
relic abundance of baryons and DM.

For the QLDcX model, and more generally for any
model with OB−LOX dimension five, these constraints
imply that M " 1016 GeV. Thus, the decay of, e.g. a
squark LOSP via q̃ → $qx̃, will be long-lived on collider
time scales. While naively problematic, the associated
collider signatures can be quite spectacular if the LOSP
is charged or colored. In this case some fraction of LOSPs
produced will ionize and eventually stop within the de-
tector material, then decay late and out of time with the
beam. A number of proposals exist to measure these
stopped LOSP decays [21, 22], and indeed, CMS has al-
ready performed a search of this kind [23].
In contrast, consider the LHuX model. As we saw in

Sec. IV, the coupling constant is bounded by λ ! 10−8.
Thus, the decay length of a chargino LOSP decaying via
C̃ → $x̃ is

cτ ∼ 1 cm×
(

100 GeV

m

)(

10−8

λ

)2

, (39)

ignoring mixing angles. Hence, the LOSP is typically dis-
placed, and in some cases even long-lived. Remarkably,
if λ ∼ 10−12, as is necessary for Dirac neutrino masses,
then the LOSP is stable on detector time scales. See [24]
for a detailed study of LHuX and its effect on supersym-
metric collider phenomenology and neutrino physics.

VI. CONCLUSIONS

In this paper we have proposed a unified framework
for baryon and DM number generation using a simple
extension of the AD mechanism. Our setup exploits the
possibility that supersymmetric flat directions can carry
both B − L and X number. The asymmetries are gen-
erated by operators of the form OB−LOX and their CP
violating A-term counterparts. Indeed, the very same A-
terms which provide the CP violating torque also aid in
stabilizing the B−L and X number carrying fields away
from the origin. Because the relevant interactions sepa-
rately violate B−L and X but preserve B−L+X , equal
and opposite X and B − L asymmetries are produced.
Thus, AD cogenesis naturally addresses the coincidence
of ΩDM/ΩB ∼ 5 if the LSP carries X number and has a
mass of order the GeV scale.
The collider phenomenology of these models is quite

remarkable because the LOSP will decay to the LSP via
OB−LOX , the very same operator responsible for the
asymmetry generation. As we have shown, this operator
is required to be quite weak in order to avoid washout
and accommodate the observed relic abundances today.
Thus, the LOSP is typically displaced or long-lived on
the time scales of collider physics, allowing for distinctive
signatures from stopped meta-stable charged particles.
While the explicit models presented in this paper are

purposefully minimal, they are a fertile starting point
from which to understand the full space of possibilities
and complications of AD cogenesis theories. For instance,
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The WIMPless Miracle: Dark Matter Particles

without Weak-scale Masses or Weak Interactions

Jonathan L. Feng and Jason Kumar
Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA

We propose that dark matter is composed of particles that naturally have the correct thermal
relic density, but have neither weak-scale masses nor weak interactions. These WIMPless models
emerge naturally from gauge-mediated supersymmetry breaking, where they elegantly solve the
dark matter problem. The framework accommodates single or multiple component dark matter,
dark matter masses from 10 MeV to 10 TeV, and interaction strengths from gravitational to strong.
These candidates enhance many direct and indirect signals relative to WIMPs and have qualitatively
new implications for dark matter searches and cosmological implications for colliders.

PACS numbers: 95.35.+d, 04.65.+e, 12.60.Jv

Introduction. Cosmological observations require dark
matter that cannot be composed of any of the known
particles. At the same time, attempts to understand
the weak force also invariably require new states. These
typically include weakly-interacting massive particles
(WIMPs) with masses around the weak scale mweak ∼
100 GeV − 1 TeV and weak interactions with coupling
gweak # 0.65. An appealing possibility is that one of
the particles motivated by particle physics simultane-
ously satisfies the needs of cosmology. This idea is moti-
vated by a striking quantitative fact, the “WIMP mira-
cle”: WIMPs are naturally produced as thermal relics of
the Big Bang with the densities required for dark matter.
This WIMP miracle drives most dark matter searches.

We show here, however, that the WIMP miracle does
not necessarily imply the existence of WIMPs. More pre-
cisely, we present well-motivated particle physics mod-
els in which particles naturally have the desired ther-
mal relic density, but have neither weak-scale masses
nor weak force interactions. In these models, dark mat-
ter may interact very weakly or it may couple more
strongly to known particles. The latter possibility im-
plies that prospects for some dark matter experiments
may be greatly enhanced relative to WIMPs, with search
implications that differ radically from those of WIMPs.

Quite generally, a particle’s thermal relic density is [1]

ΩX ∝
1

〈σv〉
∼

m2
X

g4
X

, (1)

where 〈σv〉 is its thermally-averaged annihilation cross
section, mX and gX are the characteristic mass scale
and coupling entering this cross section, and the last
step follows from dimensional analysis. In the mod-
els discussed here, mX will be the dark matter parti-
cle’s mass. The WIMP miracle is the statement that,
for (mX , gX) ∼ (mweak, gweak), the relic density is typi-
cally within an order of magnitude of the observed value,
ΩX ≈ 0.24. Equation (1) makes clear, however, that
the thermal relic density fixes only one combination of
the dark matter’s mass and coupling, and other values of

FIG. 1: Sectors of the model. SUSY breaking is mediated by
gauge interactions to the MSSM and the hidden sector, which
contains the dark matter particle X. An optional connector
sector contains fields Y , charged under both MSSM and hid-
den sector gauge groups, which induce signals in direct and
indirect searches and at colliders. There may also be other
hidden sectors, leading to multi-component dark matter.

(mX , gX) can also give the correct ΩX . Here, however,
we further show that simple models with low-energy su-
persymmetry (SUSY) predict exactly the combinations
of (mX , gX) that give the correct ΩX . In these models,
mX is a free parameter. For mX (= mweak, these models
are WIMPless, but for all mX they contain dark matter
with the desired thermal relic density.

Models. We will consider SUSY models with gauge-
mediated SUSY breaking (GMSB) [2, 3]. These models
have several sectors, as shown in Fig. 1. The MSSM
sector includes the fields of the minimal supersymmet-
ric standard model. The SUSY-breaking sector includes
the fields that break SUSY dynamically and mediate this
breaking to the MSSM through gauge interactions. There
are also one or more additional sectors which have SUSY
breaking gauge-mediated to them; these sectors contain
the dark matter particles. These sectors may not be very
well-hidden, depending on the presence of connector sec-
tors (discussed below), but we will follow precedent and
refer to them as “hidden” sectors. For other recent stud-
ies of hidden dark matter, see Refs. [4].

This is a well-motivated scenario for new physics.

Feng and Kumar
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X , Xc are m2
X1

= 2λ2〈X〉2 and m2
X2

= (4g2 − 2λ2)〈X〉2.
The gauge field gets a mass m2

U = 4g2〈X〉2 from the vev of
theX ,Xc fields. The fermionic components become massive

throughmixing. In the (X̃, X̃c, Ũ , S̃) basis, the mixing matrix
is

M =









0 0 a〈X〉 λ〈X〉
0 0 −a〈X〉 λ〈X〉

a〈X〉 −a〈X〉 0 0
λ〈X〉 λ〈X〉 0 0









, (6)

where a =
√

2g for hX = 1, giving mass eigenstates 2g〈X〉
(two) and

√
2λ〈X〉 (two). Since we require 2g2 > λ2 to ob-

tain symmetry breaking, we can see that one of the scalar

eigenstates and two of the fermion eigenstates are typically

the lightest states of the theory. When X , Xc obtain vevs

all U(1)’s are broken so that the scalars are unstable, and the

fermion is the dark matter candidate in this theory.

We now comment on how a small charge hf ∼ 10−4 may

be generated. The most straightforward way is through ki-

netic mixing. The U gauge boson, for example, may mix

with the standard model hypercharge through a term in the

Lagrangian χUµνFµν . In this case, the Standard Model Z
gets slightly modified couplings (as in Ref. [17]), where the

deviation∼ χ is small enough to be consistent with precision
electroweak constraints. Kinetic mixings as small as 10−4

can be naturally generated [18]. A light, MeV-scale mass, Z ′

(which is mostly U ) couples the hidden sector X to Standard

Model fields carrying hypercharge, giving an effective charge

hf ∼ Yfχg′/g, where g′ is the Standard Model hypercharge
gauge coupling. While this scenario may be attractive for gen-

erating small charges using only Standard Model hypercharge

and a small kinetic mixing piece χ, it does present an obstacle
for shielding the hidden sector sufficiently fromMSSMSUSY

breaking. We have assumed in the model presented above that

the SUSY breaking is communicated through MSSM fields

in the two loop graphs, Fig. 1, generating m2
X,rad. If gauge

mediatiion is the dominant source of SUSY breaking for the

MSSM, and the small charges result fromU mixing with Stan-
dardModel hypercharge, one may worry that messenger parti-

cles running in the loop would generate a larger positive con-

tribution for m2
X,rad. We thus must either assume that the

dark matter sector does not mix with U(1)Y and that the small

charge hf is generated through some other means, or that it is

sequestered in some other way from MSSM gauge mediated

SUSY breaking.

Although we have described here only one model which

gives all the relevant features, there are in principle many

sets of chiral superfields one could add which would gener-

ate an anomaly free sector. Others may be explored, and they

may have a rich phenomenology. The model we have given

here demonstrates proof of principle for natural models with

scalars with masses& TeV.

As an additional note, the presence of this hidden sector

makes the MSSM LSP unstable to decays to hidden sector

particles. This leads to the appearance of R-parity violation

and, as a result, key missing energy signals used to search for

X X

f

f̄

f̃

U U

U U

X X

FIG. 1: Examples of two loop diagrams which generate the mass

of the scalar, X. The solid and dotted lines in the loop represent

Standard Model fermions and their scalar superpartners.

supersymmetry at colliders may be reduced. This is similar

to the behavior discussed within the context of “Hidden Val-

ley” models [19]. It will be interesting to investigate further

the impact of such a model of MeV dark matter on collider

phenomenology.

To summarize, motivated by the observation of 511 keV

emission from the Galactic Bulge, we have presented a sim-

ple and natural supersymmetric model that contains a viable

MeV dark matter candidate. In this setup, the MeV mass of

the dark matter particle is generated naturally from radiative

corrections through its small couplings (∼ 10−5) to the Min-

imal Supersymmetric Standard Model. The MeV mass of the

gauge particle which mediates the interactions between the

dark matter and Standard Model also naturally results. Such

models of hidden sector dark matter are novel and natural

extensions of the Minimal Supersymmetric Standard Model

which result in unique cosmology, such as the 511 keV sig-

nal, and non-standard supersymmetric phenomenology at the

LHC.

This work has been supported by the US Department of En-

ergy, including grant DE-FG02-95ER40896, and by NASA

grant NAG5-10842. We thank Dan Chung, Bogdan Do-

brescu, Lisa Everett, Roni Harnik, TomMcElmurry, Ann Nel-

son, Neal Weiner, and especially David E. Kaplan and Frank

Petriello for discussions.

[1] P. Jean et al., Astron. Astrophys. 407, L55 (2003)

[arXiv:astro-ph/0309484].

[2] E. Kalemci, S. E. Boggs, P. A. Milne and S. P. Reynolds, As-

trophys. J. 640, L55 (2006) [arXiv:astro-ph/0602233].

[3] M. Casse, B. Cordier, J. Paul and S. Schanne, Astrophys. J. 602,

L17 (2004) [arXiv:astro-ph/0309824].

weaker coupling to messengers --> 
smaller SUSY breaking masses

Hooper, KZ
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via D- term kinetic 
mixing

One way to communicate small SUSY 
breaking is via kinetic mixing

Baumgart, Cheung, Ruderman, Wang, Yavin, ‘09

a)
SUSY breaking

Gdark MSSM

b)
SUSY breaking

Gdark MSSM

FIG. 1: The minimal supersymmetric model (a) and the minimal SuperDark Moose (b).

has a significant history. The consequences of a new U(1), mixing with hypercharge was

first explored in [26], and has been studied extensively within “mirror dark matter” [27].

More recently, forces have been invoked for more phenomenological purposes, in particular

in “exciting dark matter” [13] (which is relevant to our discussion here), “secluded dark

matter” [28], MeV-scale dark matter [29, 30], and WIMPless dark matter [31].

The gauge structures in figures 1 in particular, are very similar to those used in [31, 32],

where the radiative effects were used to generate dark matter at new mass scales, that

nonetheless had the relic abundance expected for a WIMP. Here, our dark matter particle

is still weak-scale, but the radiative effects will generate mass scales for Gdark breaking in a

similar fashion.

As we’ll shortly see, the addition of SUSY and SUSY breaking makes it very natural for

the GDark symmetry to be broken with dark gauge boson masses at the ∼ MZDark
∼ αMZ ∼

GeV scale. As in [22], this then radiatively induces splittings between the various DM states

of order δMDM ∼ αMZDark
∼ MeV, automatically providing the necessary ingredients for

the XDM and iDM interpretations of the INTEGRAL and DAMA signals. There are other

possible sources of splittings of the same size. For instance, if the GDark quantum numbers

of the Dark Matter are such that the first coupling to Dark Higgses arises from dimension 5

operators (analogously to neutrino masses in the Standard Model), then if these operators

are generated at the TeV scale, we will get splittings ∼ GeV2/TeV ∼ MeV as well.

We should emphasize that from a top-down point of view, there is no particular ratio-

nale for these new particles, as they don’t in themselves play an obvious role in solving

the outstanding mysteries of particle theory, such as the hierarchy problem. Having said

that, introducing additional vector-like states charged under another gauge symmetry is not

particularly exotic, and indeed such “moose” or “quiver” structures for gauge theories arise

very naturally in many more complete frameworks for UV physics such as string theory. At

any rate, our motivation for introducing these structures comes entirely from astrophysical

Data and not the desire to engineer exciting collider phenomenology. Nonetheless, as we

will see, this set-up incorporates all the physics we have discussed while further providing a

natural explanation for why MZDark
∼ αMZ is near the GeV scale. It can also impact LHC

collider phenomenology in a dramatic way.
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A Simple Model

Potential

W = λSTH ′ + S2LH

U(1)X

U(1)d

+1-1

+1

+ kinetic mixing

-1

〈S〉 = 〈T 〉 = 0 〈H ′〉 =
√

ξ

V = λ2|H ′|2(|S|2 + |T |2) + λ2|S|2|T |2 +
g2

d

2
(−|T |2 + |H ′|2 − ξ)2

ξ = −ε
gY

2
c2βv2

Cohen, Phalen, Pierce, KZDM = S/T!
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A Simple Model

Unbroken global U(1)_X --> stable sterile 
DM candidate

Approximately supersymmetric; a 
workable spectrum

S,T chiral sector
Gaugino, higgsino, gauge boson
Gravitino

Decay to gravitino
Simply require λ ! gd
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A Simple Model

S, T chiral sector in more detail

Efficient annihilation to dark higgs H’ -- 
erases relic abundance

S, T fermions T scalar

S scalar Stable by U(1)_X!
Asymmetric
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A Simple Model

LSP is gravitino, but dark photino has 
long lifetime and could disrupt BBN

Small relic abundance because of 
efficient annihilation to dark photon

presence of R-parity stabilizes the lightest of the superpartners, which for this scenario (low
energy SUSY breaking), is the gravitino. The dark photino is the second lightest R-odd
state, and decays via 1/F suppressed couplings. Due to the dark photino’s near degeneracy
with the dark photon, the dominant decay channel is γ̃d → γG̃, which is suppressed both by
the scale SUSY breaking and the kinetic mixing ε. This decay time is [21]

τ(γ̃d → γG̃) = 190 s

(
10−3

ε

)2 (GeV

mγ̃d

)5
( √

F

50 TeV

)4

. (27)

This late production of photons could, in principle, alter the predictions of BBN. This
depends on the destructive power of the dark photinos, which is given bymγ̃dnγ̃d/s ≡ mγ̃dYγ̃d ,
where nγ̃d is the number density of photinos and s is the entropy density of the universe.
Since the Higgsino component of the dark photino induces an interaction between the dark
photino and the dark photon, the number density is set by these interactions. Though
the dark photino and photon masses are degenerate, the thermal tail of the Boltzmann
distribution allows efficient annihilation of the dark photinos. To good approximation, the
annihilation cross-section for this process is given by [23]:

〈σγ̃dv〉 &
g4d

16πm2
γ̃d

vf.o. & 7× 10−24cm3/s
( gd
0.1

)4
(
1 GeV

mγ̃d

)2 (vf.o.
0.3

)
, (28)

where vf.o. is the velocity when the dark photinos freeze out. Hence, the dark photinos
can have a small relic abundance when they decay to a gravitino and a photon. In Fig. 2
we show the regions in the gd − ε plane which do not alter the predictions of BBN and
satisfy constraints from B-factories and from precision electroweak (PEW) measurements.
In generating this figure we have done the full calculation of the thermally averaged cross
section to capture the effects of the degeneracy between the initial and final states. We
also show the region of specific choices of ε and gd which can modify the abundance of Li-7,
alleviating the tension with the current measurements [39].

Next we explore the cosmology associated with transferring the asymmetry to the DM. We
pay particular attention to the requirement that the transfer operator not imply a Boltzmann
suppression for the asymmetry by remaining in equilibrium to very low scales, T < mDM.
This requirement constrains the asymmetry transfer scale, M . The physics involved in the
determination of this scale is sensitive to the choice of the transfer operator, so we discuss
each operator in turn.

B. Cosmology of Models with Oasym ∼ S2U cDcDc

The cosmology associated with the q = 1 operator is the most straightforward. Comments
similar to those below also apply to operators where U cDcDc is replaced by either LLEc
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Summary

Asymmetric Dark Matter provides an 
alternative framework to weak scale 
freeze-out

Does require a 1-particle extension of 
the SM + additional heavy state for 
mediation of chemical potentials
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Summary
An extension of the DM sector to 
multiple particles opens many 
possibilities for model building

Generation of baryon asymmetry at 
low scale

Dynamical generation of DM mass in 
the hidden sector
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Summary

Phenomenologically distinct both in 
terms of astrophysics and collider 
signatures

Time to look beyond the MSSM?
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