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Quantum Mechanics vs. General Relativity

Important Problem

Unify Gravity and quantum mechanics.

Find a a common mathematical framework for quantum
mechanics and general relativity.

NCG Approach

Translate the tools of Riemannian geometry into the Hilbert space
formalism of Quantum Mechanics.
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Diffeomorphism Invariant Geometry

Setup

M = smooth manifold.

Γ = group of diffeomorphisms acting on M.

Facts

1 If Γ acts freely and properly, then M/Γ is a smooth manifold.

2 In general, M/Γ need not even be Hausdorff!!!

Question

How do study the differential geometry of the action of Γ, when Γ
is an arbitrary group of diffeomorphisms?
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Crossed-Product Algebra

NCG Approach

Trade the “bad space” M/Γ for its algebra of smooth functions
realized as the crossed-product algebra C∞c (M) o Γ.

Definition

C∞c (M) o Γ :=

{
finite sums

∑
ϕ∈Γ

fϕUϕ; fϕ ∈ C∞c (M)

}
,

where the Uϕ, ϕ ∈ Γ, are formal symbols such that

U∗ϕ = U−1
ϕ = Uϕ−1 , Uϕf = (f ◦ ϕ−1)Uϕ.

Theorem (Green)

If Γ acts freely and properly, then C∞c (M/Γ) ' C∞c (M) o Γ.
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Gel’fand Transform

Theorem (Gel’fand-Naimark)

Any C ∗-algebra can be realized as a closed self-adjoint subalgebra
of some L(H).

Theorem (Gel’fand-Naimark)

There is a one-to-one correspondence,

{Locally Compact Spaces} ←→ {Commutative C ∗-algebras}
X −→ C0(X ) ⊂ L

(
L2(X )

) .

5 / 51



Main Ideas and Motivations for NCG

Use the duality between spaces and algebras to reformulate
the main tools of differentiable noncommutative geometry in
the Hilbert space formalism of quantum mechanics.

In this setup the NC algebras at stake are algebras of smooth
functions on (ghost) noncommutative manifolds.

Obtain a framework that allows us to deal with a variety of
geometric situations whose “noncommutative natures”
prevent us from using classical differential geometry, e.g.,

Quantum space-time.
Diffeomorphism invariant geometry.
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Main Trends in NCG

Mathematical physics.

(Higher) index theory.

Riemann hypothesis.
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The Dolbeault Complex

Setup

(M2n, ω) compact Kälher manifold.

E (Hermitian) holomorphic vector bundle over M.

TCM = T1,0M ⊕ T0,1M,

T1,0M := Span

{
∂

∂z1
, · · · , ∂

∂zn

}
, T0,1M := Span

{
∂

∂z1
, · · · , ∂

∂zn

}

Λp,qT ∗CM := Span
{

dzj1 ∧ · · · ∧ dzjp ∧ dzk1 ∧ · · · ∧ dzkq

}
.
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The Dolbeault Complex

Proposition (Dolbeault)

1 There exists a unique complex of differential forms,

∂ : C∞(M,Λ0,•T ∗CM)→ C∞(M,Λ0,•+1T ∗CM), ∂
2

= 0,

satisfying Leibniz’s rule and such that

∂f =
∑ ∂f

∂zj
dzj ∀f ∈ C∞(M).

2 There is a also a Dolbeault complex with coefficients in E ,

∂E : C∞(M,Λ0,•T ∗CM ⊗E )→ C∞(M,Λ0,•+1T ∗CM ⊗E ), ∂
2
E = 0.
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The Holomorphic Euler Characteristic

Definition

The cohomology of the Dolbeault complex is denoted H0,•(M,E ).

Proposition

1 H0,•(M,E ) ' ker �E |Λ0,• , where �E := ∂E∂
∗
E + ∂

∗
E∂E .

2 dim H0,•(M,E ) <∞.

Definition

The holomorphic Euler characteristic of E is

χ(M,E ) :=
∑

0≤q≤n

(−1)q dim H0,q(M,E ),

Remark

This is an invariant of the holomorphic structures of M and E .
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The Hirzebruch-Riemann-Roch Formula

Theorem (Hirzebruch-Riemann-Roch Formula)

We have

χ(M,E ) =

∫
M

Td
(
R+
)
∧ Ch(F E ),

where Td (R+) and Ch(F E ) are characteristic forms associated to
the respective curvatures of T1,0M and E .
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Sketch of Proof

General arguments, partially involving supersymmetry, show that

χ(M,E ) = dim ker
(
∂E + ∂

∗
E

)
|Λ0,ev⊗E

− dim ker
(
∂E + ∂

∗
E

)
|Λ0,odd⊗E

def
= ind

(
∂E + ∂

∗
E

)
= Tr

[
(−1)qe−t�E

]
∀t > 0

=

∫
M

FP
t→0+

Tr
[
(−1)qe−t�E (x , x)

]
.

The proof is then completed by using:

Theorem (Atiyah-Bott-Patodi, Gilkey)

Tr
[
(−1)qe−t�E (x , x)

]
−−−→
t→0+

Td(R+) ∧ Ch(F E ).
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NC Manifolds

Definition

A spectral triple is a triple (A,H,D), where

H is a super Hilbert space H = H+ ⊕H−.

A is an (even) algebra represented by bounded operators on
H.

D is a selfadjoint (unbounded) operator such that:

D maps H± to H∓.

[D, a] is bounded for all a ∈ A.

a(D + i)−1 is compact for all a ∈ A.
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Examples

Example (Dolbeault Spectral Triple)

Let M be a compact Kälher manifold. Then the following is a
spectral triple,(

C∞(M), L2
(
M,Λ0,•T ∗M

)
, ∂ + ∂

∗
)
,

with L2
(
M,Λ0,•T ∗M

)
= L2

(
M,Λ0,evT ∗M

)
⊕ L2

(
M,Λ0,oddT ∗M

)
.

Example (Dirac Spectral Triple)

Let M2n be a compact Riemannian spin manifold with spinor
bundle /S = /S+ ⊕ /S− and Dirac operator /D. Then the following is a
spectral triple, (

C∞(M), L2 (M, /S) , /D
)
,

with L2(M, /S) = L2(M, /S+)⊕ L2(M, /S−).
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Examples from Physics

Standard Model w/ Gravity (Chamseddine-Connes-Marcolli)

The spectral is obtained as a product of the Dirac spectral triple
(of dimension 4) and a finite spectral triple,

(AF ,HF ,DF ),

where:

AF = C⊕H⊕M3(C).

HF is a finite dimensional representation of AF .

DF is a matrix whose entries are given by Yukawa parameters.

Loop Quantum Gravity (Aastrup-Grimstrup-Nest)

The spectral triple is obtained as a limit of Dirac spectral triples of
dimension N ↑ ∞.
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Spectral Triples

Definition

A spectral triple is a triple (A,H,D), where

H is a super Hilbert space H = H+ ⊕H−.

A is an even algebra represented by bounded operators on H.

D is a selfadjoint (unbounded) operator such that:

D maps H± to H∓.

[D, a] is bounded for all a ∈ A.

a(D + i)−1 is compact for all a ∈ A.

16 / 51



Projective Modules

Definition

A finitely generated projective module over an algebra A is a
(right-)module of the form,

E = eAN , e ∈ MN(A), e2 = e.

Theorem (Serre-Swan)

For A = C∞(M) (with M compact manifold), there is a
one-to-one correspondence:

{Vector Bundles over M} ←→ {f.g. proj. modules over C∞(M)}
E −→ C∞(M,E ).
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Index Problem

Setup

(A,H,D) spectral triple, H = H+ ⊕H−.

E = eAN , e2 = e ∈ MN(A), f.g. projective module over A.

Lemma

The following operator is Fredholm,

DE := e(D ⊗ IN)e : e(H+ ⊗ CN) −→ e(H− ⊗ CN).

Index Problem

Compute ind DE for any f.g. projective module E over A.
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Index Problem

Example

For E = C∞(M,E ) (with E holomorphic vector bundle over M),

ind
(
∂ + ∂

∗
)
E

= ind
(
∂E + ∂

∗
E

)
= χ(M,E ).
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Cyclic Cohomology

Setup

A = unital algebra over C.

Cn(A) =
{

(n + 1)-linear forms ϕ : An+1 → C
}

, n ≥ 0.

C ev(A) = ⊕k≥0C 2k(A), C odd(A) := ⊕k≥0C 2k+1(A).

Theorem (Connes, Tsygan)

There is a periodic complex,

C ev(A)
∂
� C odd(A), ∂2 = 0,

∂Cn(A) ⊂ Cn−1(A)⊕ Cn+1(A).

Definition

The cohomology of the above complex is called the (periodic)
cyclic cohomology of A and is denoted HC ev/odd(A).
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Cyclic Cohomology

Example

For A = C∞(M), an example of cyclic cocycle is

ϕTd = (ϕ0, ϕ2, · · · ),

ϕ2k(f 0, f 1, · · · , f 2k) :=
1

(2k)!

∫
M

Td(R+) ∧ f 0df 1 ∧ · · · ∧ f 2k .

More generally, any even (resp., odd) dimensional closed current
defines a cyclic cocycle. In fact, we have

Theorem (Connes)

There are isomorphisms,

HC ev/odd (C∞(M)) ' Hev/odd(M,C),

where Hev/odd(M,C) is the de Rham homology of M.
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Pairing with Cyclic Cocyles

Let M(A) be the class of all f.g. projective modules over A.

Remark

M(A) is a monoid with respect to the direct sum of modules.

Theorem (Connes)

There is a natural pairing,

〈·, ·〉 : HC ev(A)×M(A)→ C.

Example

For A = C∞(M) and E = C∞(M,E ),

〈ϕTd, E〉 =

∫
M

Td
(
R+
)
∧ Ch

(
F E
)

= χ(M,E ) = ind
(
∂E + ∂

∗
E

)
.

22 / 51



The Connes-Chern Character

Setup

1 (A,H,D) = spectral triple.

2 There exists p ≥ 1 such that Trace |D|−p <∞.

Theorem (Connes)

There exists a class Ch(A,D) ∈ HC ev(A) such that, for any
f.g. projective module E over A,

ind DE = 〈Ch(A,D), E〉.

Definition

Ch(A,D) is called the Connes-Chern character of (A,H,D).

Remark

The cocycle used by Connes in his original definition of Ch(A,D)
is difficult to compute in practice, so we need a nicer cocycle.
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The CM Cocycle

Theorem (Connes-Moscovici ‘95)

1 Under suitable assumptions, the Connes-Chern character is
represented by the CM cocycle ϕCM = (ϕCM

2k ) given by

ϕCM
2k (a0, · · · , a2k) =

∑
ck,α−
∫

a0[D, a1][α1] · · · [D, a2k ][α2k ]|D|−2(|α|+k),

where the ck,α are universal constants, and

−
∫

T := Resz=0 Str
[
T |D|−z

]
, T [j] :=

j times︷ ︸︸ ︷
[D2, [D2, · · · [D2,T ] · · · ]] .

2 For any f.g. projective module E ,

ind DE = 〈ϕCM, E〉.
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The CM Cocycle

Example

For
(

C∞(M), L2
(
M,Λ0,∗T ∗M

)
, ∂ + ∂

∗
)

, the CM cocycle is

ϕCM = (ϕ2k)k≥0, where

ϕ2k(f 0, · · · , f 2k) =
1

(2k)!

∫
M

Td(R+) ∧ f 0df 1 ∧ · · · ∧ df 2k .

This allows us to recover the Hirzebruch-Riemann-Roch formula.
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Summary

Classical NCG

Manifold M Spectral triple (A,H,D)

Vector bundles over M F.g. projective modules over A

ind
(
∂E + ∂

∗
E

)
ind DE

Differential forms Cyclic cocycles

Atiyah-Singer Index Formula Connes-Chern character
& CM cocycle

Characteristic classes Cyclic cohomology for Hopf algebras
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CR Manifolds

Definition

A Cauchy-Riemann structure (or CR structure) on an oriented
manifold M2n+1 is given by the data of:

1 A hyperplane bundle H ⊂ TM.

2 An integrable complex structure J on H, i.e., a section J of
EndR H such that

J2 = −1,

[T1,0,T1,0] ⊂ T1,0, T1,0 := ker(J − i) ⊂ TCM.

Remark

T1,0 is the analogue of the holomorphic tangent bundle T1,0M of a
complex manifold. It is called the CR tangent bundle of M.
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Example

Let D be a domain in Cn+1. Then M = ∂D carries the CR
structure defined by

H = T (∂D) ∩ iT (∂D)

J= multiplication by i .

In particular the sphere S2n+1 ⊂ Cn+1 is a CR manifold.

Example

Let (E , h) be a Hermitian line bundle over a complex manifold X .
Then the circle bundle,

M := {ξ ∈ E ; h(ξ, ξ) = 1}

carries a natural CR structure which is isomorphic to the complex
structure of X .
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The Kohn-Rossi Cohomology

Setup

M2n+1 (compact) CR manifold.

H ⊂ TM complex hyperplane bundle of M with complex
structure J.

T1,0 := ker(J − i) ⊂ TCM CR tangent bundle of M.

Define

Λ0,1 :=
{
ξ ∈ H∗ ⊗ C; ξ|T1,0

= 0
}
,

Λ0,q :=
(
Λ0,1

)q
=
{
ξ1 ∧ · · · ∧ ξq; ξj ∈ Λ0,q

}
.
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The Kohn-Rossi Cohomology

Proposition (Kohn-Rossi)

There is a complex,

∂b : C∞(M,Λ0,•) −→ C∞(M,Λ0,•+1), ∂
2
b = 0.

Definition

The cohomology of the above complex is called the Kohn-Rossi
cohomology and is denoted H0,•

b (M).

Example

If M = ∂D, then
∂b(u|∂D) = (∂u)|∂D .

In particular,

H0,0
b (∂D) '

{
f|∂D ; f ∈ Hol(D)

}
.
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The CR Euler Characteristic

Proposition (Kohn-Rossi, Kohn)

1 H0,q
b (M) ' ker �b|Λ0,q , where �b := ∂b∂

∗
b + ∂

∗
b∂b.

2 dim H0,q
b (M) <∞ for 1 ≤ q ≤ n − 1.

3 dim H0,0
b (M) = dim H0,n

b (M) =∞.

Definition

The CR Euler characteristic of M is

χb(M) :=
∑

1≤q≤n−1

(−1)q dim H0,q
b (M).

Open Problem

Find a geometric expression for χb(M), i.e., reformulate the
Hirzebruch-Riemann-Roch formula in CR geometry.
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CR Diffeomorphisms

Definition

A CR diffeomorphism of M is a diffeomorphism φ such that
φ∗H = H and φ∗J = J.

Theorem (Schoen ‘95)

If M is not CR equivalent to the sphere S2n+1 or the Heisenberg
group H2n+1, then the group of CR diffeomorphisms is compact for
the compact-open topology.
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CR-Diffeomorphism Invariant Geometry

Setup

M2n+1 compact (oriented) strictly pseudoconvex CR manifold.

Γ = group of all orientation-preserving CR diffeomorphisms.

Project

Reformulate the Hirzebruch-Riemman-Roch formula in
CR-diffeomorphism invariant geometry.

Remark

This amounts to

1 Construct out of C∞(M) o Γ and the ∂b-complex a spectral
triple representing the action of Γ on M.

2 Find a geometric expression for its CM cocycle.

3 Obtain as byproduct a geometric expression for the CR Euler
characteristic χb(M).
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Biholomorphism Invariant Geometry

Fundamental Problem

Find biholomorphism invariants of strictly pseudoconvex domains
in Cn+1 or a Stein manifold.

Theorem (Fefferman 70s)

Let D ⊂ Cn+1 be a strictly pseudoconvex domain with boundary
∂D. Then there is a one-to-one correspondence,{

Biholomorphisms
F : D → D

}
←→

{
CR diffeomorphisms

f : ∂D → ∂D

}
.

Consequence

Biholomorphism invariant geometry of D
l

CR-diffeomorphism invariant geometry of ∂D.
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Characterization of Strictly Pseudoconvex Boundaries

Open Problem

Determine under which geometric conditions a CR manifold can be
realized as the boundary of a strictly pseudoconvex complex
domain.

Theorem (Harvey-Lawson, Yau)

1 A strictly pseudoconvex CR manifold can be realized as the
boundary of a strictly pseudoconvex domain with some
singular points in the interior.

2 The singularities are detected by the ∂b-cohomology.

Consequence

A geometric expression for χb(M) should provide us with a
geometric obstruction to being the boundary of a sψc domain.
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Spectral Triple of CR-Diffeomorphism Invariant Geometry

First Step

Construct out of C∞(M) o Γ and the ∂b-complex a spectral triple
representing the action of Γ on M.

Assumption

M is not CR equivalent to S2n+1 or H2n+1.

Consequence

M carries a Γ-invariant (Levi) metric, i.e., Γ acts isometrically on
M with respect to this metric.
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Spectral Triple of CR-Diffeomorphism Invariant Geometry

Remark

The natural candidate for the spectral triple is(
C∞(M) o Γ, L2(M,Λ0,•), ∂b + ∂

∗
b

)
.

However, this is NOT a spectral triple!!!!

Main Obstruction

The operator ∂b + ∂
∗
b has an infinite dimensional kernel on

functions and (0, n)-forms, and so (∂b + ∂
∗
b + i)−1 is not compact.
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Szegö Projection

Definition

Let S : L2(M,Λ0,•)→ L2(M,Λ0,•) be the orthoprojection onto(
ker ∂b ∩ L2(M)

)
⊕
(

ker ∂
∗
b ∩ L2(M,Λ0,n)

)
.

Remark

The projection 1− S kills the kernel of ∂b + ∂
∗
b on functions and

(0, n)-forms, but it is the identity on other (0, q)-forms.
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The algebra C∞(M) o Γ

As Γ acts isometrically on M we get:

Lemma

Γ has a unitary representation ϕ→ Uϕ in L2(M,Λ0,•) such that

Uϕv(x) := ϕ∗v(x) ∀v ∈ L2(M,Λ0,•),

U∗ϕ = Uϕ−1 = U−1
ϕ , Uϕ(fv) = (f ◦ ϕ−1)Uϕv .

Proposition

C∞(M) o Γ can be realized as the algebra,{
finite sums

∑
ϕ∈Γ

fϕUϕ; fϕ ∈ C∞(M)

}
⊂ L

(
L2(M,Λ0,•)

)
,

where the fϕ act as multiplication operators on L2(M,Λ0,•).
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The Algebra AΓ

Lemma

The projection S is a Γ-invariant operator, i.e.,

U∗ϕSUϕ = S ∀ϕ ∈ Γ.

Definition

AΓ :=(1− S) (C∞(M) o Γ) (1− S)

=

{
finite sums

∑
ϕ∈Γ

(1− S)fϕUϕ(1− S); fϕ ∈ C∞(M)

}
.
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The Spectral Triple of CR-Diffeo. Invariant Geometry

Theorem (RP)

1 The following is a spectral triple,(
AΓ, L

2
(
M,Λ0,•) , ∂b + ∂

∗
b

)
,

with L2
(
M,Λ0,•) = L2

(
M,Λ0,ev

)
⊕ L2

(
M,Λ0,odd

)
.

2 Trace

(∣∣∣∂b + ∂
∗
b

∣∣∣−p
)
<∞ for all p > 2n + 2 (and hence the

Connes-Chern character makes sense).
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Index Formula for χb(M)

Example

(1− S) is an idempotent in AΓ, and

ind∂b+∂
∗
b
[1− S ] = ind(1− S)(∂b + ∂

∗
b)(1− S)

=
∑

1≤q≤n−1

(−1)q dim ker(∂b + ∂
∗
b)|Λ0,q

=
∑

1≤q≤n−1

(−1)q dim H0,q
b (M)

= χb(M).
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The CM Cocycle of CR-Diffeo. Invariant Geometry

Second Step

Find a geometric expression for the CM cocycle.

Important Obstacle

One assumption for the existence of CM cocycle fails, and so the
CM cocycle doe NOT make sense!!!

Solution

Use the JLO coycle of Jaffe-Lesniewski-Osterwalder.
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The JLO Cocycle

Setup

(A,H,D) = spectral triple with Trace |D|−p <∞ for some p ≥ 1.

Theorem (Connes ‘88)

The Connes-Chern character Ch(A,D) is represented in entire

cyclic cohomology by the JLO cocycle(s) ϕJLO
t =

(
ϕJLO

t,2k

)
k≥0

,

t > 0, defined by

ϕJLO
t,2k(a0, · · · , a2k) =

tk

∫
∆2k

Str
{

a0e−ts0D2
[D, a1]e−ts1D2 · · · [D, a2k ]e−ts2kD2

}
ds, aj ∈ A,

where Str = TrH+ −TrH− (with H = H+ −H−), and

∆2k := {(s0, · · · , s2k) ∈ R2k+1; s0 + · · · s2k = 1, sj ≥ 0}.
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Finite Part of the JLO Cocycle

Theorem (Connes-Moscovici ‘93)

Assume that, as t → 0+,

ϕJLO
t,2k =

∑
α,l≥0
α+l>0

t−α(logl t)ϕ
(α,l)
2k + ϕ

(0,0)
2k + o(t),

where the ϕ
(α,l)
k are 2k-cochains. Then the Connes-Chern

character is represented in periodic cyclic cohomology by

FPt→0+ ϕJLO
t :=

(
ϕ

(0,0)
2k

)
k≥0

.
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The JLO Cocycle in CR-Diffeomorphism Geometry

Proposition

For the spectral triple
(
AΓ, L

2
(
M,Λ0,•) , ∂b + ∂

∗
b

)
:

1 As t → 0+,

ϕJLO
t,2k ∼ t−(n+k+1)

∑
j≥0

t
j
2ϕ

(j)
2k + log t

∑
l≥0

t lψ
(l)
2k .

2 The Connes-Chern character is represented in (periodic) cyclic
cohomology by FPt→0+ ϕJLO

t .

3 For any f.g. projective module E over AΓ,

ind(∂b + ∂
∗
b)E = 〈FPt→0+ ϕJLO

t , E〉.
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The HRR Formula in CR-Diffeo. Invariant Geometry

The reformulation of the Hirzebruch-Riemann-Roch formula in
CR-diffeomorphism invariant geometry boils down to

Project

Find a geometric expression for

FP
t→0+

tk Str

[(∫
∆2k

(1− S)f 0e−ts0�b [∂b + ∂
∗
b, f

1]e−ts1�b · · ·

· · · [∂b + ∂
∗
b, f

2k ]e−ts2k�b Uϕds
)

(x , x)
]
,

for ϕ in Γ and f 0, · · · , f 2k in C∞(M).

Remark

The asymptotics (and hence its finite part) localizes along the
fixed-point set of the diffeomorphism ϕ.
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PSU(n + 1, 1)-Invariant Geometry of S2n+1

Fact

If M = S2n+1, then Γ ' PSU(n + 1, 1).

Claim

There is a (twisted) spectral triple representing the PSU(n + 1, 1)
invariant geometry of S2n+1.
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Contact Manifolds

Definition

A contact structure on M2n+1 is given by the datum of a
hyperplane bundle H ⊂ TM such that H = ker θ, where θ is a
contact form, i.e., dθ|H is non-degenerate everywhere.

Definition

A contactomorphism of a contact manifold (M,H) is a
diffeomorphism φ : M → M preserving the contact structure, i.e.,
φ∗H = H.
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Contactomorphism Invariant Geometry

Setup

(M2n+1,H) = oriented contact manifold.

Γ = group of orientation-preserving contactomorphisms of M.

Claim

There is a spectral triple representing the contactmorphism
invariant geometry of M. It uses:

1 A crossed-product algebra C∞c (P) o Γ, where P is a bundle of
metrics associated to the contact structure of M.

2 A new geometric (hypoelliptic) operator built out of Rumin’s
contact complex.
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Contactomorphism Invariant Geometry

Remark

1 As in the CR case, the CM cocycle does NOT make sense.

2 The finite part of the JLO cocycle does make sense, but it
CANNOT be computed explicitly, because Γ is too big.

3 It is expected to make use of Hopf cyclic cohomology to show
that the Connes-Chern character can be expressed in terms of
a universal Gel’fand-Fuks cohomology class depending only on
the dimension of M.
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