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1.CEntanglement Entrop 2 C_AdS/CFT correspondence
- econ gau ity duality)

e quantum information e string theory
* black hole microphysics e quantum gravity

3.@phic Entanglement @

 proposal by Ryu & Takayanagi (2006)

4. Two Recent Developments:

e precise connection between EE and central charges
« derivation of holographic EE for special geometries

5. Summary:

 holographic EE provides framework where we can learn
about properties of both EE and quantum gravity



Entanglement Entropy

e what is entanglement entropy?
very general tool; divide quantum system into two parts and
use entropy as measure of correlations between subsystems

 in QFT, typically introduce a (smooth) boundary or entangling
surface . which divides the space into two separate regions

e integrate out degrees of freedom in “outside” region
* remaining dof are described by a density matrix pa

——> calculate von Neumann entropy: Sz = =17 [pa log p 4]

(t = constant)




Entanglement Entropy
e remaining dof are described by a density matrix pa

——> calculate von Neumann entropy: Szr = =17 [pa log pa|

(t = constant

e result is UV divergent!
e must regulate calculation: ¢ = short-distance cut-off

RI—2 R4 d = spacetime dimension
+ co a1 + .-

As
5d—2

o careful analysis reveals geometric structure, eg, S = ¢ + -



Entanglement Entropy
e remaining dof are described by a density matrix pa

——> calculate von Neumann entropy: Szr = =17 [pa log pa|

(t = constant)

e must regulate calculation: 9 = short-distance cut-off

RI—2 R4 d = spacetime dimension

S — Co5d—2 —|— C25d—4 _|_

e leading coefficients sensitive to details of regulator, eg, 0 — 20
e find universal information characterizing underlying QFT in

subleading terms, eg, ¢ — ... +1Og (R/S) + -



More general comments on Entanglement Entropy:

e nonlocal quantity which is (at best) very difficult to measure
—> no accepted experimental procedure

* in condensed matter theory: diagnostic to characterize guantum
critical points or topological phases (eg, quantum hall fluids)

 in guantum information theory: useful measure of qguantum
entanglement (a computational resource)

As,

 black hole microphysics: leading term obeys “area law” s ~ ¢, =

—> suggested as origin of black hole entropy (eg, § ~ ¢p)

(Bombelli, Koul, Lee & Sorkin "86; Srednicki; Frolov & Novikov; Callan & Wilczek; Susskind; . . . .)

 recently considered in AAS/CFT correspondence
(Ryu & Takayanagi "06)



AdS/CFT correspondence:

anti-de Sitter space ﬁ conformal field theory

guantum gravity guantum field theory
 negative cosmological constant * no scale (at quantum level)
e d+1 spacetime dimensions <——>  «d spacetime dimensions
° 1tyv!
holography °MN° gravity!

Favorite example:

Type llb superstrings (3+1)-dimensional
onAdS. Xs®  <4mmmp  1=4 SU(N,)
with RR flux N super-Yang-Mills

(Maldacena "97)



AdS/CFT correspondence:

anti-de Sitter space ﬁ conformal field theory

guantum gravity guantum field theory
 negative cosmological constant * no scale (at quantum level)
e d+1 spacetime dimensions <——>  «d spacetime dimensions
° 1tyv!
holography °MN° gravity!

|

classical gravity —
with small curvatures

—> large central charge (N, — o)

—> strong coupling (\ — o)



anti-de Sitter space: R~——
maximally symmetric geometry withhegative curvature

(simplest) solution of
Einstein’s equations
with negative A:

d
LZ

Rab —

2
i =) (-t +4) O
T



anti-de Sitter space:
maximally symmetric geometry with negative curvature

r =00
Boundary
(d dimensions)

CFT

(d+1 dIiBr#e”;sions) < / Quantum Gravity
2 2
ds” = 1.2 (_dt + dx ) + T—QdT




anti-de Sitter space: R~ —

[2
maximally symmetric geometry with negative curvature
r =00
Boundary A\
(d dimensions) ) T . N
E~r/L?
T
Bulk “redshift”: proper distances
t ller f I
(d+1 dimensions) get smaller for small r
=
2 2
r L
ds* = —|(—dt* + di®)|+ = dr*
L? 2
<

— boundary/CFT metric



anti-de Sitter space: R~ —

L2
maximally symmetric geometry with negative curvature
r = 00
Boundary
(d dimensions) A
2
E~r/L
TH r
THawking — m =TcFr
r=r
Horizon H

AdS Black Hole = CFT Thermal State



anti-de Sitter space: R~ —

L2
maximally symmetric geometry with negative curvature
r = 00
Boundary
(d dimensions) A
2
E~r/L
TH r
THawking — m =TcFr
r=r
Horizon H

horizon

AG N

Horizon Entropy = Entropy of Thermal State S =



(Ryu & Takayanagi "06)

Holographic Entanglement Entropy:

r = 00
AdS boundary

conformal field
theory

AdS bulk potential/redshift

l gravitational
spacetime

S(A) = min

oV =% 4GN \
looks like

BH entropy!



(Ryu & Takayanagi "06)

Holographic Entanglement Entropy:

Av
S(A) = min conjecture
oV =X 4GN
Extensive consistency tests:
1) leading contribution yields “area law” S = ¢ 5’3_22 + -

. (more tests) . . ..

6) for general even d, connection to central charges of CFT
(Hung, RCM & Smolkin, arXiv:1101.5813)

7) derivation of holographic EE for spherical entangling surfaces
(Casini, Huerta & RCM, arXiv:1102.044)
(see also: RCM & Sinha, arXiv:1011.5819)



6) for general even d, connection to central charges of CFT
(Hung, RCM & Smolkin, arXiv:1101.5813)

o trace anomaly in CFT (with even d) defines central charges

C a
d=4; T = T s~ gt

]4 — CMVPJCMVPG and E4 — Rw/paR'uypU L 4R,LLI/R'L“/ e R2

 universal/logarithmic contribution to entanglement entropy
determined by central charges using trace anomaly, eg,

1 y U B
Suni = log(R/6) — | d*zvVh || C g g — KIPK{* + K.°K}" | —aR
27T » 2

(Solodukhin)
* R&T proposal for holographic EE reproduce precisely this result

» extends to certain higher curvature theories (eg, GB gravity)

2
S = min —”/ dPzvVh [1+ AN L*R]
|4

3



7) derivation of holographic EE for spherical entangling surfaces
(Casini, Huerta & RCM, arXiv:1102.044)
(see also: RCM & Sinha, arXiv:1011.5819)

 holographic translation for standard calculation of EE is difficult
* new calculation for special case:
CFT in d-dim. flat space and choose £ = S%~2 with radius R

—> Dby conformal mapping relate to thermal entropy
on H=RxH*" with =~ 1/R? and T=1/21R

SEE — Sthermal




7) derivation of holographic EE for spherical entangling surfaces
(Casini, Huerta & RCM, arXiv:1102.044)

(see also: RCM & Sinha, arXiv:1011.5819)
 holographic translation for standard calculation of EE is difficult
* new calculation for special case:

CFT in d-dim. flat space and choose £ = S%~2 with radius R

—> Dby conformal mapping relate to thermal entropy
on H=RxH*" with =~ 1/R? and T=1/21R

SEE — Stherma,l — Shom’zon

—> thermal bath in CFT = black hole in AdS

e can calculate holographic EE for any bulk gravity theory

universal contributions:
d
S = -+ (-)27"4a} log(2R/5) + --- forevend

d—1

.+ (_)727{0,2 4+ .- forodd d



Conclusions:

 AdS/CFT correspondence (gauge/gravity duality) has proven
an excellent tool to study strongly coupled gauge theories

 holographic entanglement entropy is part of an interesting
dialogue has opened between string theorists and physicists

In a variety of fields (eg, condensed matter, nuclear physics, . . .

e potential to learn new lessons about general properties of
entanglement entropy that have application beyond the
context of AdS/CFT correspondence

e potential to learn new lessons about general properties of
guantum gravity or string theory

Lots to explore!
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(Ryu & Takayanagi "06)

Holographic Entanglement Entropy:

T = 00
AdS boundary

boundary CFT

gravitational

AdS bulk spacetime l potential/redshift

looks like
BH entropy!



(Ryu & Takayanagi "06)

Holographic Entanglement Entropy:

r =00
AdS boundary

d dimensional

boundary CFT

gravitational
potential/redshift

(d + 1) dimensional
AdS bulk spacetime

/|

A — (d — 1) dimensional
S(A) = ext ——
vea 4G N

—
technicalities
looks like

BH entropy!



(Ryu & Takayanagi "06)

Holographic Entanglement Entropy:

r =00
AdS boundary

d dimensional

boundary CFT

(d + 1) dimensional

AdS bulk spacetime

gravitational
potential/redshift

(.
Ay

A) = ext 2V — ool

>4 5}5134 4G N >

« “UV divergence” because area integral extends to r = oo



(Ryu & Takayanagi "06)

Holographic Entanglement Entropy:

T = 00
AdS boundary

T:RQ

cut-of. & = L*/ Ry

v

d—1
S(A) = ext ﬂ :L A_Z
vea 4G N Gy 0972
« “UV divergence” because area integral extends to r = oo
« finite result by stopping radial integral at large radius: 7 = Ry
—> short-distance cut-off in boundary theory: § = . /Ry

cut-off surface




(Ryu & Takayanagi "06)

Holographic Entanglement Entropy:

AdS boundary

cutof: § = L*/ Ry

v

AV 41 .Az
S ey T oy o

central charge (L/Cprames) ™ / X

(counts dof) “Area Law”

cut-off surface




(Ryu & Takayanagi "06)

Holographic Entanglement Entropy:

T = 00
AdS boundary

T:RQ

cutof: § = L*/ Ry

cut-off surface

general expression (as desired):

S(A) ~ co(R/6)" 2+ ca(R/E)TH +---
- +cq_2log(R/J) + - -+ (deven)
_—I—‘cd_z —I—---. (d odd)

universal contributions



(Ryu & Takayanagi "06)

Holographic Entanglement Entropy:

Ay .
S(A) = ext —— conjecture
vea 4GN
Extensive consistency tests:
: L : L1 A
1) leading contribution yields “area law” S~ On 5d_22 +
2) recover known results of Calabrese & Cardy l
for d=2 CFT
g c 1 C . w/
= — 10 — S111 —
3 5 o C

(also result for thermal ensemble) O — cirenmference



(Ryu & Takayanagi "06)

Holographic Entanglement Entropy:

Ay .
S(A) = ext conjecture
voa 4GN
Extensive consistency tests:
: L : L1 A
1) leading contribution yields “area law” S~ On 5(1_22 +
2) recover known results of Calabrese & Cardy
for d=2 CFT
g ¢ C . w/ A
= —log | ——=sin —
3 5 o C
(also result for thermal ensemble) -
_ A
3) S(A) = S(A) in a pure state AdS
boundary

—> A and A both yield same bulk surface V
(not pure state — horizon in bulk; S(A4) # S(A) for thermal state)



(Ryu & Takayanagi "06)

Holographic Entanglement Entropy:
Ay

— conjecture
V ~ A 4GN ’

Extensive consistency tests:

4) Entropy of eternal black hole =

entanglement entropy of boundary CFT & thermofield double
(Headrick)

thermofield boundary
double CFT

extremal surface =
bifurcation surface



(Ryu & Takayanagi "06)

Holographic Entanglement Entropy:
Ay

— conjecture
v~a 4GN |

Extensive consistency tests:

4) Entropy of eternal black hole =
entanglement entropy of boundary CFT & thermofield double

(Headrick)
5) sub-additivity: S(AU B) + S(AN B) < S(A) + S(B)
(Headrick & Takayanagi)
< A —-> B ANB AUB
0(AdS) < —> < >

V2 =

[ “all” other inequalities: Hayden, Headrick & Maloney]



(Ryu & Takayanagi "06)

Holographic Entanglement Entropy:

S(A) = ext Av

— conjecture
v~a 4GN |

Extensive consistency tests:

4) Entropy of eternal black hole =

entanglement entropy of boundary CFT & thermofield double
(Headrick)

5) sub-additivity: S(AU B) + S(AN B) < S(A) + S(B)
(Headrick & Takayanagi)

6) for general even d, connection to central charges of CFT
(Hung, RCM & Smolkin, arXiv:1101.5813)

7) derivation of holographic EE for spherical entangling surfaces
(Casini, Huerta & RCM, arXiv:1102.044)
(see also: RCM & Sinha, arXiv:1011.5819)



Central charges and trace anomaly:

d=2: THY=_SR
< M > 192
d=4: THY=-—"S_1, - 2 F
L) = g s~ 1t

Iy = CLupeC*" and E4 = R0 R*P7 — AR, R" + R?
* in higher (even) dimensions, number of central charges grows

T.H) = B;(Weyl invariants); — 2(— /2 A (Euler density )y
7’
(Deser & Schwinnner)

e universal contribution to entanglement entropy determined
using trace anomaly (for even d)
(Holzhey, Larsen & Wilczek;Calabrese & Cardy;Takayanagi & Ryu;Schwimmer & Theisen)

T A
Suniv = log (R/6) 27T/ d* % Vh g< A >é‘“’ € po

nv
2 1! po (RCM & Sinha)

e partial result! needs rotational symmetry on entangling surface 2



Central charges and trace anomaly:

d=2: T K :_i R
< 9! > 12
d=4: Tryv=_C . _ & p
L) = g s~ 1t

]4 — CMVPOCMVPG and E4 — R/u/pO'R'qua L 4RW/R/LI/ T R2

* in higher (even) dimensions, numbers of central charges grows

 universal contribution to entanglement entropy determined
using trace anomaly (for even d)

14 i -
d=2: ¢ — Elog(c i ) (Holzhey, Larsen & Wilczek;

3 ol Calabrese & Cardy)

d=4:

1 y R R
Suni = log(R/8) — [ d*zvh |c|C™ g g5 — KIPK{* + K *K}" | —aR
27T » 2

corrections for general (smooth) 2 (Solodukhin)



Central charges and trace anomaly:

d=2: <Tu“ ) =
d=4: py - _©
<TM > 167'('2 ]

C
_* R
12
a
1672

Ey

]4 — CMVPOCMVPG and E4 — R/u/pO'R'qua L 4RW/R/LI/ T R2

* in higher dimensions, numbers of central charges grows
 universal contribution to entanglement entropy determined

using trace anomaly (for even d)

 central charges identified in AAS/CFT using holographic

trace anomaly:
e.g., for (boundary) d=4:

a

C

(Henningson &Skenderis)

— 36

« for general d, central charges o (L/{p)%!

o for Einstein gravity, all central charges equal for any d
o distinguishing central charges requires higher curvature gravity



(Hung, Myers & Smolkin)
Holographic Entanglement Entropy:

» consider more general gravity theory in AdS:

I = /dd+1az —q E(gab,Rabcd,VeRabcd,...,matter)

* how do we evaluate holographic entanglement entropy?

—> take direction from tests of R&T prescription



(Ryu & Takayanagi "06)

Holographic Entanglement Entropy:
Ay

— conjecture
V ~ A 4GN ’

Extensive consistency tests:

4) Entropy of eternal black hole =
entanglement entropy of boundary CFT & thermofield double

(Headrick)
5) sub-additivity: S(AU B) + S(AN B) < S(A) + S(B)
(Headrick & Takayanagi)
< A —-> B ANB AUB
0(AdS) < —> < >

7 T

[other inequalities: Hayden, Headrick & Maloney]



(Hung, Myers & Smolkin)
Holographic Entanglement Entropy:

» consider more general gravity theory in AdS:

I = /dd+1az —q E(gab,Rabcd,VeRabcd,...,matter)

e natural conjecture: extremize Wald’s entropy formula

S = _zw/dd—lx\/ﬁ OL s 2o

ORWY
e focus on universal term for d=4: (Solodukhin)
1 y L 1 .
Suni = log(R/9) > / d?zVh @C”kl gin 05 — K"K + KL K, b) — aR]
>

 holographic calculation following above conjecture yields

1 - . . 1 . .
Suni = log(R/0) - / d*zVh @CW Jin 01 — K"K + KK, b) - aR]
by

T &
%%

—> conjecture wrong (5



(Hung, Myers & Smolkin)
Holographic Entanglement Entropy:

» consider more general gravity theory in AdS:

I = /dd+1az —q E(gab,Rabcd,VeRabcd,...,matter)

e natural conjecture: extremize Wald’s entropy formula

oL
_ d—1 AUV A
S = 27T/d oV h oR N €po

 holographic calculation following above conjecture yields

1 y N B
Suni = log(R/8) — | d*zvh |a| C* g 55 — KIPK{* + K *K}" | —aR
27T N 2

e triumph of R&T prescription in Einstein gravity!! (c = a)
 for general gravity action, conjecture is wrong

e there iIs nothing wrong with Wald’s formula!!
—> to proceed further, focus on special gravity actions



(Hung, Myers & Smolkin)
Holographic Entanglement Entropy:

 consider special case of Gauss-Bonnet gravity:

1 12 A
[=— [ dzy=g [ 73 TR+ L25 (R" Rapea — ARap R™ + R7)

p

4d Euler density

 higher curvature but eom are still second order!! (Lovelock)
e studied in detail for stringy gravity in 1980’s
(Zwiebach; Boulware & Deser; Wheeler; Myers & Simon; . . .. )

e interest recently in AAS/CFT studies — a toy model with ¢ # a

(eg, Brigante, Liu, Myers, Shenker,Yaida, de Boer, Kulaxizi, Parnachev, Camanho,
Edelstein, Buchel, Sinha, Paulos, Escobedo, Smolkin, Cremonini, Hofman, . . .. )

 black hole entropy: (Jacobson & Myers)

Sim = @

* not precisely same as Wald entropy — agree when K, vanish

/df’)x\f[ +ALPR)



(Hung, Myers & Smolkin)
Holographic Entanglement Entropy: (deBoer, Kulaxizi & Parnachev)

 consider special case of Gauss-Bonnet gravity:

1 12 A
[=— [ dzy=g [ 73 TR+ L25 (R" Rapea — ARap R™ + R7)

p

4d Euler density
e second conjecture: extremize JM entropy formula

Sin = @ /d%f[ +ALER]

e again consider universal term for d=4: (Solodukhin)

1

1 ) . . . .
Suniv = log(£/6) o / d*zV'h [c (CW Jin 0 — K"K + 5K;@Kgb> - aR]
2

 holographic calculation following above conjecture yields

1 iy . . 1 . .
Suniv = 10g(€/0) o / d*zV'h [c (CW 9in 051 — KLPK(™ + 5Kgﬁ(gb) - aR]
by

—> passes nontrivial test ?])



(Hung, Myers & Smolkin)
Holographic Entanglement Entropy: (deBoer, Kulaxizi & Parnachev)

 consider special case of Gauss-Bonnet gravity:

1 12 A
[=— [ dzy=g [ 73 TR+ L25 (R" Rapea — ARap R™ + R7)

p

4d Euler density
e second conjecture: extremize JM entropy formula

/d%f[ +ALER]

Sim = @

o/ reproduces universal term for any smooth surface in d=4

o/ partial results for d=6 (geometries with rotational symmetry;
found new curvature corrections when K, = 0)

extends to general Lovelock theories for d=6

still no general result for completely general gravity action ?
—> with sufficient symmetry, Wald entropy seems correct
? curious instability to adding handles for A > 0 ? (Ogawa & Takayanagi)



(Ryu & Takayanagi "06)

Holographic Entanglement Entropy:

S(A) = ext Av

— conjecture
v~a 4GN |

Extensive consistency tests:

4) Entropy of eternal black hole =

entanglement entropy of boundary CFT & thermofield double
(Headrick)

5) strong subadditivity: S(AU B) + S(AN B) < S(A) + S(B)
(Headrick & Takayanagi)

6) for general even d, connection to central charges of CFT
(Hung, RCM & Smolkin, arXiv:1101.5813)

7) derivation of holographic EE for spherical entangling surfaces
(Casini, Huerta & RCM, arXiv:1102.044)
(see also: RCM & Sinha, arXiv:1011.5819)



Calculating Entanglement Entropy:
See = —1'r [pa log p4]

« “standard” approach relies on replica trick and calculating Renyi
entropy first and taking n—> 1 limit

1
Sn = log T'r [/021] Sprp = lIm 5,

1—n n—1

e replica trick involves path integral of QFT in singular n-fold cover
of background spacetime

 problematic in holographic framework
——— produce singularity in dual gravity description

(resolved by quantum gravity/string theory?)
(Fursaev; Headrick)

* need another calculation with simpler holographic translation



Calculating Entanglement Entropy: (Casini, Huerta & RCM)

. take in d-dim. flat space and choosd® = 5%~ ?Jwith radius R
—> entanglement entropy: Sy, = =17 [p4 log pa]

sinh(7/R)
cosh u + cosh(7/R)
sinh u

cosh u + cosh(7/R)

= R

r = R

 density matrix pa describes physics in entire causal domain D

- conformal mapping: D — H =R x H!



General result for any CFT (Casini, Huerta & RCM)

 take CFT in d-dim. flat space and choose S92 with radius R
—> entanglement entropy: Sg, = —17[p4 log pa]

H

B sinh(7/R)
b RCOShu—l-cosh(T/R)
_ g sinh u
T coshu + cosh(7/R)
» conformal mapping: D — H =R x HY !
curvature scale: 1/R temperature: T=1/21R !!

e for CFT: Pthermal = U,OA U_l —_—> SEE — Sthermal




General result for any CFT (Casini, Huerta & RCM)

 take CFT in d-dim. flat space and choose S92 with radius R
——> entanglement entropy: Sgr = —17 [pa log pa]

—> Dby conformal mapping relate to thermal entropy
on H =R x H ! with =~ 1/R? and T=1/21R

SEE — Sthe’r'mal

AdS/CFT correspondence:
e thermal bath in CFT = black hole in AdS

SEE — Sthermal — Shorizon

 only need to find appropriate black hole

—> topological BH with hyperbolic horizon

which intersects A on AdS boundary
(Aminneborg et al; Emparan; Mann; . . .




SEE — Sthermal — Shorizon

 desired “black hole” is a hyperbolic foliation of empty AdS space

L? 1
2 _ 2 2 =2 2 2 d—1 _
ds® = 2 (dz - dt* + dz* Yir* + p® dX — T=_

 “Rindler coordinates” of AdS space




SEE — Sthermal — Shorizon

 desired “black hole” is a hyperbolic foliation of empty AdS space

L? dp? pP—L% 5 5 i 1
(p2—L2)_ 72 dr* + p* dX; —

2 _
ds” = 2T R

« apply Wald’s formula (for any gravity theory) for horizon entropy:

oL
. d—1 AUV 2
S = 27T/d vV h oR e €po

vV (H

k
27T a,

= T (d/2) =

 pd/2

(RCM & Sinha)
where a:} = central charge for “A-type trace anomaly”
for even d
= entanglement entropy defines effective central charge
for odd d



SEE — Sthermal — Shorizon

 desired “black hole” is a hyperbolic foliation of empty AdS space

L? dp? pP—L% 5 5 i 1
_(p2—L2)_ 72 AT + p~ dXy _>T_27TR

« apply Wald’s formula (for any gravity theory) for horizon entropy:

= T ) i v () ey

du?
1+

2 p2
intersection with standard ds” = It [

regulator surface: zyin, = 6 =" ) y
S ) 47_‘_ 2 (R) d—2 .:l
(d=2)0 (5) \? :

\ J
|

“area law” for d-dimensiofe,_. .




SEE — Sthermal — Shorizon

 desired “black hole” is a hyperbolic foliation of empty AdS space

L? dp? pP—L% 5 5 i 1
(p2—-L2)__ 72 dr* + p* dX; —

2 _
ds” = 2T R

« apply Wald’s formula (for any gravity theory) for horizon entropy:

2m ay q_
=3l (d/2) 2345 V (H) ﬁ

du?
2 p2 2 10d—2
ds” = K [1+u2+u = ]
universal contributions:
a__ *
S = ...+ (=)2"'4a} log(2R/5) + --- forevend
R (_)%Qﬂaz +o... for odd d

« discussion extends to case with background:R*¢=! — R x §94-1



(Hung, RCM, Smolkin & Yale)

Holographic Renyi entropy:

e turn to Renyi entropy (close cousin of entanglement entropy)

1 n :
Sn = 1—n 10g I'r [IOA] Ser = 7111_>H11 Sn

 universal contribution (for even d)

Sp = --- + constant x log (R/d) + ---



(Hung, RCM, Smolkin & Yale)

Holographic Renyi entropy:

e turn to Renyi entropy (close cousin of entanglement entropy)

1 n :
Sn = 1—n 10g I'r [IOA] Ser = 7111_>H11 Sn

 universal contribution (for even d)

1
d=2: S, = --- + 5<1+—) log (R/8) + ---

0 n
(Calabrese & Cardy)

 (almost) no calculations ford > 2



(Hung, RCM, Smolkin & Yale)

Holographic Renyi entropy:

e turn to Renyi entropy (close cousin of entanglement entropy)

1 n :
Sn = 1—n 10g I'r [IOA] Ser = 7111_>H11 Sn

o “standard” calculation involves singular n-fold cover of spacetime
—> problematic for translation to dual AdS gravity

e our previous derivation lead to thermal density matrix

o—H/To 1

— 1 [J ' _
A Tr [e_H/TO] with T 21 R

oy TrlemH/To]  «—— partition function at new
b Tripil = Tr [e—H/To]" temperature, T = Ty/n



(Hung, RCM, Smolkin & Yale)

Holographic Renyi entropy:

e turn to Renyi entropy (close cousin of entanglement entropy)

1 n :
Sn = 1—n 10g I'r [IOA] Ser = 7111_>H11 Sn

o “standard” calculation involves singular n-fold cover of spacetime
—> problematic for translation to dual AdS gravity

e with bit more work, find convenient formula:

T 1 To 1
Sn = / S(T)dT  where Top=—
T n — 1 T() To/’l’L T 2T R
Renyi entropy thermal entropy
for spherical Z on hyperbolic space Hd-1

* in holographic framework, need to know topological black hole
solutions for arbitrary temperature



(Hung, RCM, Smolkin & Yale)

Holographic Renyi entropy:
* Renyi entropy of CFT for spherical entangling surface:
n 1 [lo

1
n— 1T, /TO i (L)dT where T =57

* need to know topological black holes for arbitrary temperature

 focus on gravity theories where we can calculate: Einstein,
Gauss-Bonnet, Lovelock, quasi-topological, .....

o for example, with GB gravity and (boundary) d=4:
n V(H?)3c—a
n—1 4nm 3a—c

S, =

(1—22) [(5& —c)z® — (13a — 5¢)

2ax% — (a — c)
(3a — ¢)z? — (a — ¢)

s 3a—c [x? l a—c
where (0= z° — + x|+ —
ba—c \ n n da — ¢

+ 4da




* Nno elegant result as was found for d=2 CFT, ie, S, depends on
both central charges and dependence on n does not factor out

o further work (with quasi-topological gravity) shows the universal
coefficient depends on more data from the boundary CFT than
central charges appearing in the trace anomaly (eg, t,)

e preliminary work indicates positivity of Renyi entropies may
constrain gravitational couplings in higher curvature models

GB gravity: Cfgf’*d constraint from |

demanding S, > 0
\ constraints from

demanding boundary

2 / theory is causal

o 2 2 » o o d
3 o 7 3 9 10




Conclusions:

 AdS/CFT correspondence (gauge/gravity duality) has proven
an excellent tool to study strongly coupled gauge theories

 holographic entanglement entropy is part of an interesting
dialogue has opened between string theorists and physicists
In a variety of fields (eg, condensed matter, nuclear physics, . . .

* potential to learn lessons about issues in boundary theory
eg, readily calculate Renyi entropies for wide class
of theories in higher dimensions

e potential to learn lessons about issues in bulk gravity theory
eg, holographic entanglement entropy may give new
Insight into quantum gravity or emergent spacetime

(eg, van Raamsdonk)

Lots to explore!
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