Beyond the standard cosmological
model: neutrinos and non-Gaussianity

L
<
>
o
®
Q

3

Tristan L. Smith (UC Berkeley)




* What does the CMB/LSS tell us so far?

* Large-scale observations largely confirm standard

cosmological picture )
* However, there are some small holes
being poked in the standard model ‘
e
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* With future data, either these holes will
be fixed or...
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% Concentrate on two extensions of the standard
cosmological model:

% Constraints on the effective number
of neutrino species

* CMB constraints to the primordial
non-Gaussian amplitude

* Before going into the extensions, let us
review the standard model
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Status of the standard model of

cosmoloc
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Extensions of the standard cosmological

model

* There are some extensions which are ‘expected’ at some level:

* Non-zero gravitational-wave contribution

* Running of the spectral index
* Non-zero neutrino mass

* Time varying dark energy equation of state

%* Others would seriously challenge the standard cosmological

model:

* Effective number of neutrino species

* Non-Gaussianity

* Parity violating interactions

* Anisotropic processes
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Constraints on neutrino interactions
using cosmological observations
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Status of the standard model of

cosmoloqy from the CMB
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Status of the standard model of

cosmoloqy from the CMB
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Status of the standard model of

cosmoloqy from the CMB

HO+WMAP+ACT+SPT+SDSS
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Status of the standard model of

cosmoloqy from the CMB
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Interpreting extra relativistic energy

densit

% So far we have a hint that there exists an anomalous
radiative background... but no other information

* What can this be?2 Most explanations (such as sterile
neutrinos) suppose that this background will be non-
interacting

* We were interested in exploring to what extent the
observations can show that this background is non-
interacting

* Following Hu (1998) we modify the evolution equations by
infroducing two new parameters c2¢ and cZ;
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Interpreting extra relativistic energy

densit

* Changes to the effective sound-speed modifies the pressure

support kT
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Interpreting extra relativistic energy

densit

* Changes to the viscosity parameter controls to what extent
the fluid is imperfect (i.e., anisotropic stress)
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What do these new parameters

vhysically mean?®

* These parameters give some measure of the interactions
this anomalous background may have

* An analogy with the tightly coupled photon-baryon fluid
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* Bell et al. (2006)
considered a model y 0a
where a sterile neutrino ™
is tightly coupled to a
scalar field 025 |
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Interpreting extra relativistic energy

densit

* The effects on the CMB spectrum
[
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The data

* We used various combinations of CMB and large-

scale structure data:
* Hy from HST

WU i’ B B % SDSS matter power spectrum
Uk PomE

* Lya forest
* CMB

nt power spectrum P(k) [(h~! Mpc)3]

% 1000 ?Ei-ls:,work
< * WMAP7
=3 * ACBAR
100 |

1 * ACT
0 500 1000 1500 2000 2500 3000

e % SPT

wwwwwwwwwwwwwwwwwwwwwwwwwwwww

",,4.3‘0'
,'O BERKELEY CENTERfOT‘
;a.'. COSMOLOGICAL PHYSICS

2,
&
4

Tristan Smith




The Results

MARGINALIZED 1D CONSTRAINTS
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The Results
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Conlusions and future ¥
directions 00|

QO
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* These constraints provide further N
evidence that there may be extra
non-interacting neutrino-like degrees
of freedom

10.25

% Planck will be able to constrain:

Neg = 3.0+0.17
e = 0.333 4+ 0.004
2. =0.333 +0.026

Vis
* Extend parameterization for neutrino mass

* Explore to what extent the data is able to constrain a time
evolving c.(a) and cyis(a)
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B The PDFs of

non-Gaussianit
estimators

In collaboration with Marc
Kamionkowski, Alan
Heavens, and Benjamin

Wandelt

Phys. Rev. D 83, 023007 (2011)
Phys. Rev. D 84, 063013 (2011)




Non-Gaussian estimation from the CMB

* The standard cosmological model predicts that the
primordial fluctuations obey Gaussian statistics
* It is simple to think of a few basic ways to test this
rediction
P 05 :
* One way is to look at the PDF = ™00 -
of the temperature fluctuations - = [\ :
in the CMB 203 1 .
E
* It turns out that the signal-to- . E
noise using the PDF is sub- :
optimal 011 E
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Non-Gaussian estimation from the CMB

* Instead, we want to use the fact that any process which
is Gaussian is uniquely determined by its mean, 1 , and
variance, o

((x—p)")=0
(z = p)?) =0
((z = p)’) =0
(z — p)*) = 30"

* An obvious test of Gaussianity then asks: is the third
moment zero? and is the fourth moment just given by
the Gaussian piece?
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Non-Gaussian estimation from the CMB

* To make progress we use a parameterization for the level of
non-Gaussianity in the CMB maps

O(Z) = ¢(Z) + fu [0(2)* — (p(2)?)]

where ¢ is a Gaussian random field and @ is the primordial
curvature potential

* We can see that, for instance, the three-point function is now
non-zero:

(D(71)D(Z2) P(L3)) ~ fr1(P(Z1)P(T2)) (P(T3)P(T4))
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Non-Gaussian estimation from the CMB

* The harmonic coefficients of the temperature field on the sky
are related to the primordial curvature potential

d’k
(27)°

=)' | @00 Y (R

so that correlations in harmonic space are also non-
Gaussian
<a’l1’m1 a’l2m2> = C1, 014,15 0my ms

<al1m1a12m2al3m3> ™~ fnl l1,l2,l3

<al1m1al2m2al3m3al4m4>c ~1Tnl41q,l2,l3,l4
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Why do we want to do this?

* Any constraint to primordial non-Gaussianity probes the
physics of the very early universe

* In particular, assuming that inflation was driven by a single
field one can show [Creminelli and Zaldarriaga (2004)]

5)
fnl o E(]_ — ns) _’fnl ~ (.02
* So that if we find f,,; > 0.02 then all single field inflationary

models will be ruled out

* Measurement of the amplitude of the trispectrum, 7,
would further allow us to test multi-field inflationary
models
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Important consequences for inflationary

theories

* Most multi-field inflationary models predict the inequality:

(Suyama & Yamaguchi, 2008; Komatsu, 2010, Sugiyama, Komatsu & Futamase, 201 |)

* Therefore if Planck measures a non-zero value for f,; then
all single field inflation models are ruled out and...

* Next, we can use a constraint on Tn) to test the consistency
of most multi-field models of inflation
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Non-Gaussian estimation

* Constraints to non-Gaussianity

* WMAP constraint on bispectrum:

fal = 32 £ 21 (68%)

Komatsu et al. (2010)

* WMAP constraint on trispectrum:

1 = (0.96 + 0.68) x 10*

Smidt et al. (2010)
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Non-Gaussian estimation

* For the rest of this talk, we will work in a simplified limit: flat-
sky, Sachs-Wolfe limit:

A dSE 7 " iE-ﬁ(TO—T)
T(n) = E o (k) : dre S(k,T)
R / T(R) Y (1) d* R

flatsky: a(l) = /T(ﬁ)ef"f’ﬂapﬁ

Sachs-Wolfe: Ssw (k,7) = %5(7' —TD)
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Non-Gaussian estimation

* These approximations will reproduce the correct scalings
and give order of magnitude estimates:

N T
0.1k au
- __ _ No Transfer 7
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Estimators for /nl and Tnl

* Expectation values of the harmonic coefficients are given by

(a(l)a(la)a(ls)) = fuB(l, 1o, 13)67, 1 o7,

— — — —

(a(l1)a(lz)a(ls)a(ly)) = maT (1,12, 15,12)07 7 7 o7,
* We can construct an estimator as a weighted sum, i.e.

fnl — Z 3)W(l_)17l_)27[_1;>)
[1,02,03
* We optimize this estimator by requiring the signal-+to-noise to
be maximized
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Estimators for fnl and Ty

* Maximizing the S/N gives an inverse-variance weighted
sum:

~ 1 a(l1)a(lz)a(l3)B(l1, 1, I3)
=7 . Z C;,C.,Cy,

l14+1l2+13=0

3 a(l1)a(l2)a(l3)a(l)T (11,15, 15, 1)
C,C,C.C,

* What are the statistics of these estimators? Usually we
assume the central limit theorem applies...
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Statistics of the estimators

Tristan Smith
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bles of non-Gaussian PDFs

% At its core, the bispectrum fn1 estimator is a weighted sum of
the product of three Gaussian random variables:

A= E Wi,j,kaiajak

i,k

% The simplest case is W, ; , =1

A= g a;a;ag

t,J,k
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bles of non-Gaussian PDFs

% At its core, the bispectrum fn1 estimator is a weighted sum of
the product of three Gaussian random variables:

A= E Wi,j,kaiajak

i’j7k
% The simplest case is W, ; , =1

A = g a;a;ag

t,J,k
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syutationally intensive

* Simulations of a non-Gaussian CMB sky are computationally
intensive

* An efficient realization of a non-Gaussian CMB sky takes
20 minutes (Elsner and Wandelt) on a GHz processor

* ‘Fast estimators’ (Komatsu, Spergel, and Wandelt) allow for
the estimator to be computed in ~ 100 x ¢2 __ operations

binax |
* Which means a single realization takes at least 30 (1()00) m

%k 1000 realizations takes 500 CPU-hours!
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syutationally intensive

% 1000 realizations takes at least 500 CPU-hours!

* This is good enough to determine the variance of the
estimator, but not to determine the shape of the PDF

* For a non-Gaussian process, 1000 realizations gives the
following histogram:

P‘

— J J—
-0.02 0.00 0.02 0.04

-0.04
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syutationally intensive

% 1000 realizations takes at least 500 CPU-hours!

* This is good enough to determine the variance of the
estimator, but not to determine the shape of the PDF

* For a non-Gaussian process, 1000 realizations gives the
following histogram; for 10° realizations we find this (!1):

P‘

— J J—
-0.04 -0.02 0.00 0.02 0.04
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Full shape of the PDF

* First investigate the shape of the PDF for Pf(fn\l; fu1 = 0, lmax)
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Full shape of the PDF

* Doing the same for P.(7,1; fu1 = 0, liax ), we find it is highly
non-GGUSSldn. 0.5 : Ilr;lalxlzl I5(I)| I L
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Full shape of the PDF

* For f,; # 0 the non-Gaussianity in the map imparts additional
non-Gaussianity to the bispectrum PDF and trispectrum PDF

* For Imax =~ 3000 , fu = 30, and 71 = (fu1)? = 900
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fnl
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Full shape of the PDF

* For f,; # 0 the non-Gaussianity in the map imparts additional
non-Gaussianity to the bispectrum PDF and trispectrum PDF

* For Imax =~ 3000 , fu = 30, and 71 = (fu1)? = 900

P(fu) P(7a1)

Gaussian —__

fn\l Tnl
* In addition, the variance of these estimators depends on the
value of fu1 and TyJ...

",,4.3‘0'
A ,'O BERKELEY CENTERfOT‘
:"0 °® COSMOLOGICAL PHYSICS

Tristan Smith oo




Evolution of the variance

% The fact that the variance depends on f,,; and 7, is easy to
see:

~ 1 a(l1)a(lz)a(l3)B(l1, 12, 13)
=7y ) 2. C;,C.,Ch,

I1+la+13=0
a(l) = a(l) + fmda®(l)
J/Brrl = Fo+ fuFh + fAFs + fFs

(Fui ) = SUEF) (fu)™

1,]
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Evolution of the variance

% Qur calculations show that the variances of these estimators
scale with [, as:

1 2

nl

72Alr2nax ln(lmax) " 2 lng(lmax)

2 _
O-fnl o

1.74 x 1072 0.0287,
Ugm — A2]4 T Al2 1 + 0'237_51

max Imax

* Now we have everything we need to evaluate the significance
of a hypothetical detection...
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Hypothetical detection:

* Suppose we have an experiment with ... = 3000 and
measure (f,;) = 30 then we have

far = 30712° (95% C.L.)

* We now have strong evidence that single-field inflation is
wrong- now can we use the inequality, ., < 1/2(f.1)? to test
multi-filed inflation?

* Assume we measure (7,,]) = 0 then the 95% C.L. upper limit

1S
Tal < 250 (95% C.L.)

* So the inequality is holds at > 95% C.L. and we could
conclude that most multi-field inflation models are at odds with
observations!
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What could have gone wrong?

* Our full calculations give
fal = 30122° (95% C.L.)
Tl < 250 (95% C.L.)

* If we did not take into account the non-Gaussian shape of the
PDF then we would have concluded

far = 307725 (95% C.L.)
Tl < 1000 (95% C.L.)

* If, in addition, we did not take into account how the variance
depends on the amplitudes we would have concluded

fo1 =30 £2.8 (95% C.L.)
Tnl < 90 (95% CL)
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Conclusions

* Small-scale CMB observations show an anomalously large value for N g

* Explored how observations probe the interaction/clustering properties of
this anomalous radiative energy density

* We found that with an expanded parameterization the data is still at odds
with the standard neutrino sector at > 95 % CL and consistent with a non-
interacting fluid

* The central limit theorem does not apply to non-Gaussian estimators— PDFs
of these estimators may, themselves, be non-Gaussian

* The effect on the bispectrum estimator is small; the effect on the trispectrum
estimator is large- must be included when calculating the significance of a
measurement
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