IPMU 26/08/2011

Monopole-vortex complex and dual gauge symmetries from flavor

K. Konishi UniV.Pisa/INFN Pisa

Thursday, August 25, 2011

Main ideas and themes

 Confinement as a dual superconductivity (dual Higgs phase) of non-Abelian variety?

• The subtle interplay between the global flavor symmetry and the strong gauge dynamics (soliton monopoles and vortices) (cfr. Jac

(cfr. Jackiw-Rebbi, charge fractionalization,Witten)

- Dual gauge symmetry as a new manifestation of the global flavor symmetry
- Many hints and evidences

Seiberg's duality in N=1 SQCD; Kutasov's duality; Seiberg-Witten curves for N=2 gauge theories; Many new N=2 dualities (SCFT); ...

• Physics of the r-vacua

Non-Abelian magnetic monopoles in N=2 SQCD Seiberg-Witten solutions; Tachikawa-Terashima

Setting

- Softly broken N=2 G theory with N_F matter multiplets, G=SU(N), SO(N), USp(2N)
- Hierarchical gauge symmetry breaking $G \rightarrow H \rightarrow 1$, at $v_1 \gg v_2$ monopoles of $\prod_2 (G/H) \Leftrightarrow$ vortices of $\prod_1 (H)$

Plan of the talk

I. Non-Abelian monopole-vortex complex

Cipriani, Dorigoni, Gudnason, Konishi, Michelini, PRD (2011)

Konishi, Michelini, Ohashi PRD (2010)

II. Nature and fluctuations of the vortex zeromodes: the GNO duality (non-Abelian vortices) Hanay-Tong, Auzzi-Bolognesi-Evslin-Konishi-Yung (2003) Shifman, Gorsky, Yung (2004)

> Gudnason, Jiang, Konishi JHEP 2010

Pisa, TiTech, Cambridge, Minnesota groups 2003-2011

III. Non-Abelian monopoles

IV. Summary: Flavor to Dual Gauge Symmetry

1974 - 2011

I. Monopole-vortex complex

Monopole-vortex connection

Hierarchical symmetry breaking

monopole

vortex

- Apparent paradox (no monopoles, no vortices ???!!!) \Rightarrow monopoles are confined by vortices; vortices end at monopoles
- Topology and symmetry connect monopoles and vortices
- Non-Abelian vortices ⇒ non-Abelian monopoles

A 35-year old problem, possibley relevant to quark confinement

• Study e.g.,

 $SU(N+1) \stackrel{v_1}{\longrightarrow} U(N) \stackrel{v_2}{\longrightarrow} \mathbb{1} \;, \qquad v_1 \gg v_2$

 $v_1 \gg v_2$.

Auzzi, Bolognesi, Evslin, Konishi '04

Cipriani, Dorigoni, Gudnason, Konishi, Michelini '11

in more detail

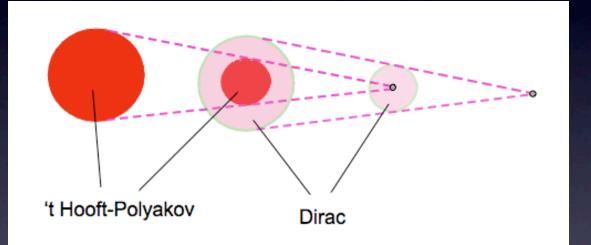
Homotopy-group map

Vortex ! (but also monopole wu-Yang)

 π_{1} (G)=

Exact sequence:

 $\cdots
ightarrow \pi_2(G)
ightarrow \pi_2(G/H)
ightarrow \pi_1(H)
ightarrow \pi_1(G)
ightarrow \cdots$



 $\begin{array}{ll} & \pi_{2}\left(G\right)=I \ \Rightarrow \ \text{Regular monopoles confined by vortices} & \begin{array}{c} & \pi_{1}\left(H\right) \\ & \pi_{2}\left(G/H\right) \\ \end{array} \\ & \left\{ \begin{array}{c} & \pi_{1}\left(G\right)=I \ \Rightarrow \ \text{All vortices "end" at regular monopoles} & \text{e.g. SU(N)} \\ & \pi_{1}\left(G\right)=Z_{2} \ \Rightarrow \ k=2 \ \text{vortices "end" at regular monopoles!} & \begin{array}{c} & \text{'t Hooft} \\ & G=SO(3); \\ & H=U(I) \end{array} \\ \end{array} \\ \end{array}$

The model (softly broken SU(N+1) N=2 susy QCD with N_F =N quarks) 0=adiscalar, O=squarks

$${\cal L} = rac{1}{4g^2}F_{\mu
u}^2 + rac{1}{g^2}|{\cal D}_\mu \phi|^2 + |{\cal D}_\mu Q|^2 + \left|{\cal D}_\mu ar{ar{Q}}
ight|^2 + {\cal L}_1 + {\cal L}_2,$$

$$\mathcal{L}_2 = -g^2 |\mu \phi^A + \sqrt{2} \tilde{Q} t^A Q|^2 - \tilde{Q} [m + \sqrt{2} \phi] [m + \sqrt{2} \phi]^{\dagger} \tilde{Q}^{\dagger} - Q^{\dagger} [m + \sqrt{2} \phi]^{\dagger} [m + \sqrt{2} \phi] Q ,$$

$$\begin{array}{ll} \text{the vacuum} \\ \text{(class. r=N vac)} \end{array} & \langle \Phi \rangle = v_1 \left(\begin{array}{cc} 1_{N \times N} & 0_{N \times 1} \\ 0_{1 \times N} & -N \end{array} \right), \qquad \langle Q \rangle = \langle \tilde{Q} \rangle = v_2 \left(\begin{array}{cc} 1_{N \times N} \\ 0_{1 \times N} \end{array} \right) \frac{b}{Q} \uparrow \\ \end{array}$$

flavor \rightarrow

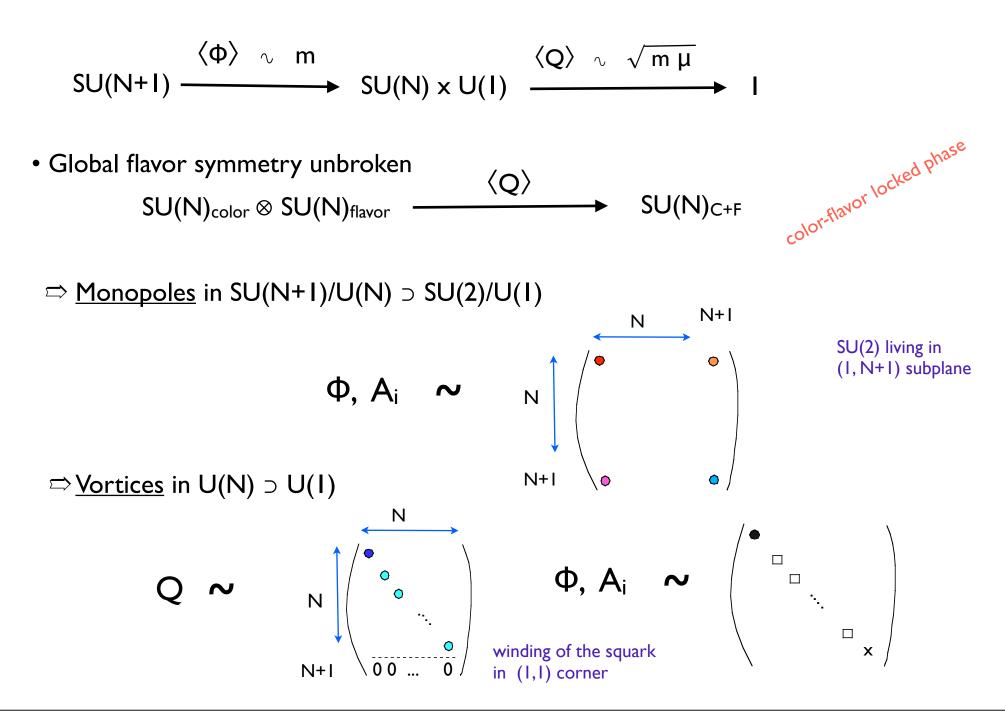
take equal masses

$$w_1 \equiv -\frac{m}{\sqrt{2}}, \quad v_2 \equiv \sqrt{(N+1) m \mu}.$$

 $|m| \gg |\mu| \gg \Lambda, \quad \therefore \quad |v_1| \gg |v_2|.$
 $\Delta L = \mu \Phi^2 \quad |\Theta\Theta|$

- Terms with μ (breaks $\mathcal{N}=2$ susy to $\mathcal{N}=1$) •
 - v_2 : breaks the low-energy gauge symmetry \Box
 - \Box interaction terms connecting monopole and vortex
 - known BPS monopole and vortex solns in the limit $\mu \rightarrow 0$, \Box
- Solve the eqns with $\mu \Rightarrow$

• Gauge symmetry broken at two hierarchically different scales



Thursday, August 25, 2011

 $\{q, A, \phi\}^{MV} =$

$$q = \begin{pmatrix} q_{1}(\rho, z) \\ q_{2}(\rho, z)\mathbf{1}_{N-1} \end{pmatrix};$$

$$A_{\rho} = \frac{\cos\theta}{r} (S_{2}\cos\varphi - S_{1}\sin\varphi)\,\Delta(\rho, z);$$

$$A_{\varphi} = \frac{1}{\rho} \begin{bmatrix} f(\rho, z) \\ N \\ -N \end{bmatrix} \begin{pmatrix} \mathbf{1} \\ \mathbf{1}_{N} \\ -N \end{pmatrix} + \frac{f_{\mathrm{NA}}(\rho, z)}{N} \begin{pmatrix} N-1 \\ -\mathbf{1}_{N-1} \\ 0 \end{pmatrix} - \sin\theta(S_{1}\cos\varphi + S_{2}\sin\varphi)\,\Delta(\rho, z) \end{bmatrix}$$

$$A_{z} = -\frac{\sin\theta}{r} (S_{2}\cos\varphi - S_{1}\sin\varphi)\,\Delta(\rho, z);$$

$$\phi = \begin{pmatrix} v_{1} + \frac{\lambda(\rho, z)}{\sqrt{2N(N+1)}} \end{pmatrix} \begin{pmatrix} \mathbf{1} \\ \mathbf{1}_{N} \\ -N \end{pmatrix} + \frac{\lambda_{\mathrm{NA}}(\rho, z)}{\sqrt{2N(N-1)}} \begin{pmatrix} N-1 \\ -\mathbf{1}_{N-1} \\ 0 \end{pmatrix}.$$
(3.48)

• appropriate b. c.

(i.e., reduces to the standard BPS monopole and vortex in the appopriate regions)

• breaks $SU(N)_{C+F} \Rightarrow SU(N-I) \times U(I)$

General remarks

- Smooth monopole-vortex complex needs :
 - (i) Monopole and vortex orientation (in color) be correlated
 - (ii) None of the fields "wind"

(must work in the "singular gauge")

- Dirac string of the monopole solution hidden inside the vortex core (i) Better said, it simply matches with the gauge field singularity in the vortex core (ii) Innocuous as $|D_i q|^2 \sim |A_i|^2 |q|^2$ and q = 0 along the core (iii) Relative spatial orientation fixed
- Search for the minimum energy configuration under the constraint that the monopoles and antimonopole centers are fixed

Numerical solutions: for $SU(2) \rightarrow U(1) \rightarrow I$ embedded in $SU(N+I) \rightarrow U(N) \rightarrow I$

exact for g(SU(N)) = g(U(I))

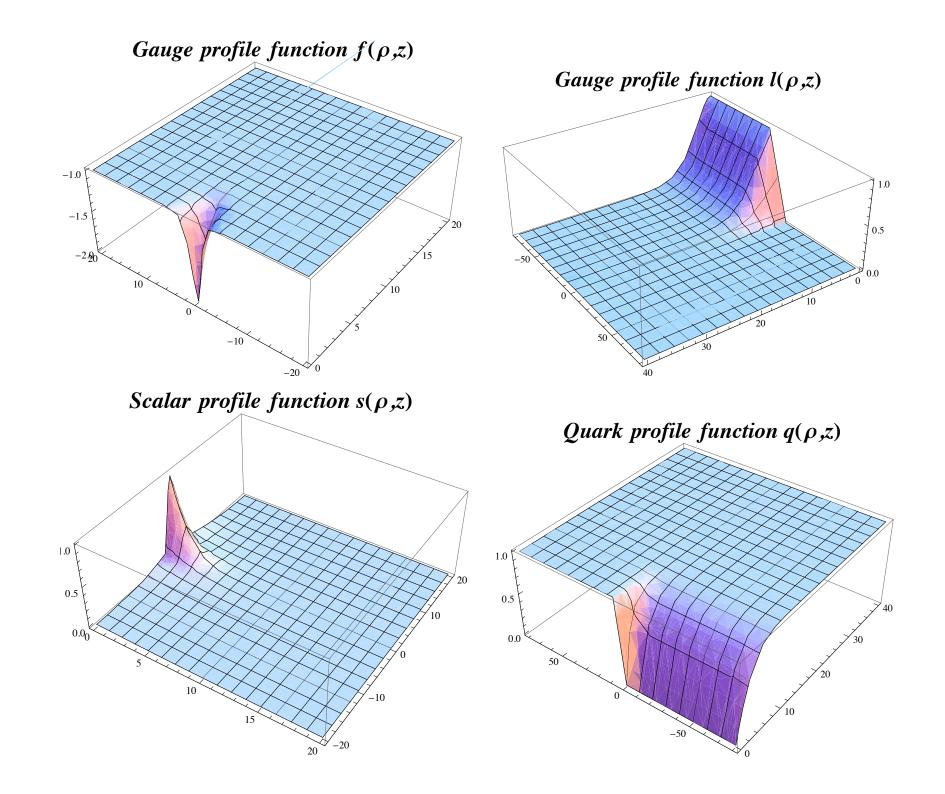
$$egin{split} \mathcal{L} &= -rac{1}{4g^2}(F^a_{\mu
u})^2 + rac{1}{g^2}|D_\mu\phi^a|^2 + |D_\mu q|^2 \ &- rac{g^2}{8}\left|-\xi\delta^{a3} + \mu\lambda^a + q^\dagger au^a q
ight|^2 - \left|\left[m - m au^3 + rac{1}{\sqrt{2}}\lambda^a au^a
ight]q
ight|^2 \end{split}$$

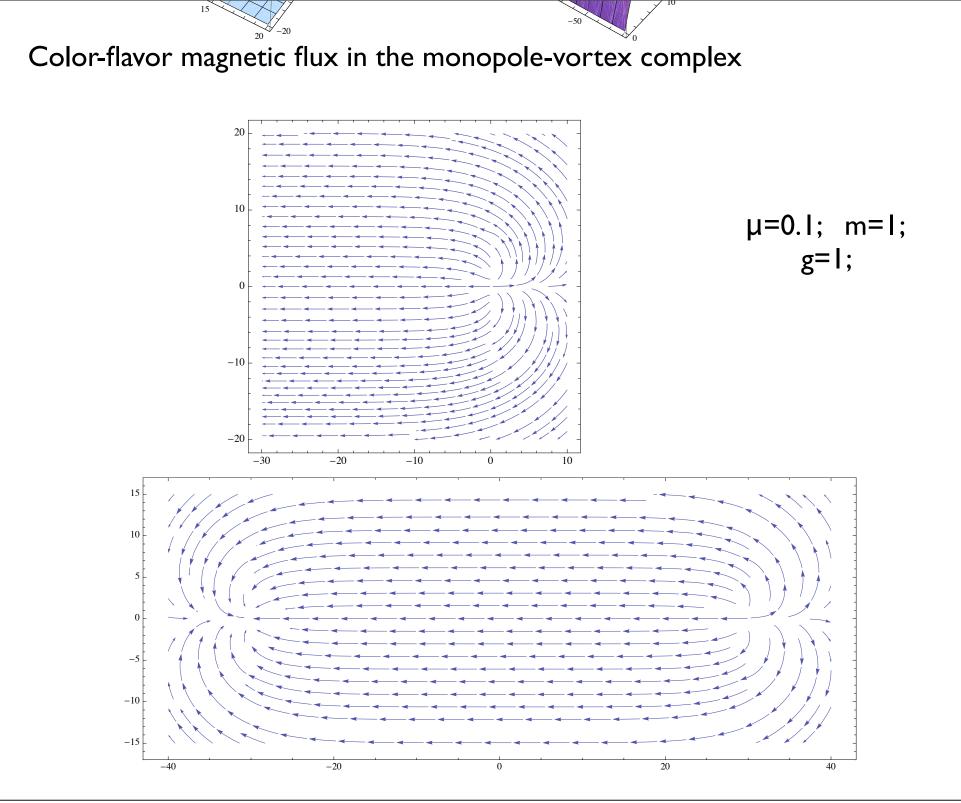
Equations of motion

Ansatz

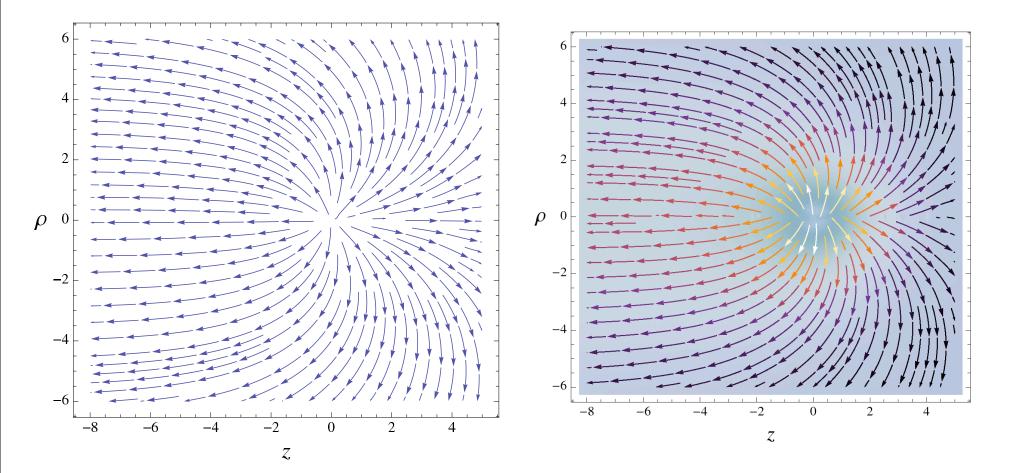
$$\begin{split} A_{\rho} &= \frac{z}{\rho^{2} + z^{2}} \left(\tau_{2} \cos \varphi - \tau_{1} \sin \varphi \right) \frac{f(\rho, z) - 1}{2} ; \\ A_{z} &= \frac{\rho}{\rho^{2} + z^{2}} \left(\tau_{1} \sin \varphi - \tau_{2} \cos \varphi \right) \frac{f(\rho, z) - 1}{2} ; \\ A_{\varphi} &= -\frac{1}{\sqrt{\rho^{2} + z^{2}}} \left(\tau_{1} \cos \varphi + \tau_{2} \sin \varphi \right) \frac{f(\rho, z) - 1}{2} + \tau_{3} \frac{1}{2\rho} \ell(\rho, z) ; \\ \phi^{a} &= -\sqrt{2} m \, \delta^{a3} + \lambda^{a} , \qquad \lambda^{a} = \delta^{a3} \, s(\rho, z) ; \\ q &= \begin{pmatrix} q_{1}(\rho, z) \\ 0 \end{pmatrix} . \end{split}$$

Equations for the profile functions, f, l, s, q





Thursday, August 25, 2011



direction of the color magnetic fields near the monopole center the same as the left figure, but with the field intensity also shown

Analytic results

 MV complex in SU(2)→U(I)→I system studied recently in the limit, [monopole=point; vortex = thin line], with duality transformations explicitly performed

Chatterjee-Lahiri JHEP '10

 MV complex in SU(2)→U(1)→I system in a θ vacuum of SU(2); Dual system solved in the presence of a static monopole

Konishi-Michelini-Ohashi PR '10

Witten's effect (U(1) elec. charge of the monopole) visible only near the monopole center

$$egin{aligned} E_i &= F_{0i} = lpha \, B_i^{(mon)}, \qquad B_i = rac{1}{2} \epsilon_{ijk} F_{jk} = B_i^{(mon)} + B^{(vor)} \delta_i^3 \ B_i^{(mon)} &= rac{n}{g} \partial_i G(\mathbf{r}), \qquad B^{(vor)} = rac{n}{g} \, m^2 \, \int_{-\infty}^0 \, dz' \, G(x,y,z-z') \ G(\mathbf{r}) &= rac{4\pi}{-\Delta + m^2} \, \delta^3(\mathbf{r}) = rac{e^{-mr}}{r} \qquad m \equiv rac{g \, v_2}{\sqrt{2}} \, . \qquad lpha \equiv rac{\theta g^2}{8\pi^2} \ \end{aligned}$$

Remarks:

• Non BPS: Born-Oppenheimer type approximation

• The whole MV complex breaks $SU(N)_{C+F}$ (exact degeneracy under):

$$q^U = egin{pmatrix} U & \ & 1 \end{pmatrix} q \, U^{-1} \;, \qquad (\phi^U, A^U_i) = egin{pmatrix} U & \ & 1 \end{pmatrix} \; (\phi, A_i) \; egin{pmatrix} U^{-1} & \ & 1 \end{pmatrix}$$

cfr. real-world mesons !

 \Rightarrow orientational zeromodes living in SU(N)/U(N-I) ~ CP^{N-I}

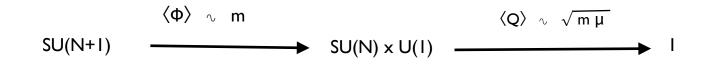
The degeneracy between e.g., (1 N+1) and (2 N+1) monopoles, is broken by the squark vev (cfr. old difficulties of non-Abelian monopoles)
 Demise of the naïve "non-Abelian monopole" (no multiplet of SU(N) ⊂ SU(N+1))

• Resurrection of an exact SU(N)_{C+F} symmetry (continuous CP^{N-I} degeneracy) under the simultaneous CF rotations of the whole complex \Rightarrow

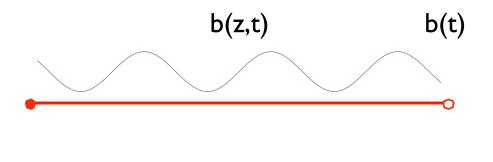
• A new exact (magnetic) continuous symmetry for the monopole; under which monopole ~ \underline{N} of SU(N) : (cfr. Jackiw-Rebbi effects the origin of the dual SU(N) group

Summary of Part I

• Gauge symmetry completely (hierarchically) broken



- Global flavor SU(N) symmety unbroken (no Nambu-Goldstone bosons in 4D)
- Soliton monopole-vortex complex breaks it to SU(N-1)xU(1)
 ⇒ orientational zeromodes (can fluctuate)



endow the monopole with fluctuating CP^{N-1} modes

~ \underline{N} of a new (dual) SU(N) : Origin of the dual gauge group

 Study dynamics of b(z,t) in the low-energy approximation for general gauge group: non-Abelian vortices

II. Vortex zeromodes: Nature of its fluctuation and GNO duality

Non-Abelian vortices

Hanany-Tong, '03 Auzzi-Bolognesi-Evslin-Konishi-Yung.

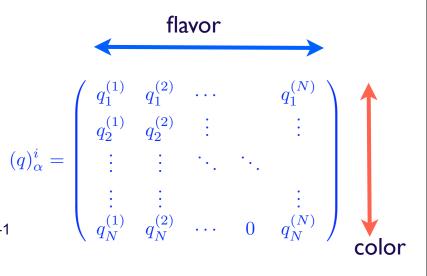
Def: Vortex solutions with continuous (non-Abelian) moduli

Natural generalizations of <u>ANO vortex</u>

- Shifman-Yung, ... (Minnesota). Eto-Nitta-Ohashi-Sakai- ... (TiTech, Tokyo). Tong, (Cambridge). Pisa group, '03-'11
- Global (flavor) symmetry: e.g. U(N) theory with N_f = N "squarks"
- "Color-flavor locked" phase

 $\langle q \rangle = v 1_{N \times N}$

- Local gauge symmetry broken (Higgs)
 ⇒ vortex solutions
 - Global symmetry $G_F = G_{C+F} = SU(N)$ unbroken
 - Individual vortex breaks it
 - \Rightarrow Orientational zeromodes in SU(N)/ U(N-1) =CP^{N-1}
 - \Rightarrow They can fluctuate in (z,t)



The models (with $G' \times U(I)$, G' = SU(N), SO(N), USp(2N),... gauge groups with appprop flavor)

$$\mathcal{L} = -rac{1}{4e^2}F^0_{\mu
u}F^{0\mu
u} - rac{1}{4g^2}F^a_{\mu
u}F^{a\mu
u} + \left(\mathcal{D}_{\mu}q_f
ight)^{\dagger}\mathcal{D}^{\mu}q_f - rac{e^2}{2}\left|q_f^{\dagger}t^0q_f - rac{v^2}{\sqrt{4N}}
ight|^2 - rac{g^2}{2}\left|q_f^{\dagger}t^aq_f
ight|^2$$

• Ignore the massive monopoles of $G \rightarrow G' \times U(I)$; $\varphi = \langle \varphi \rangle$

 \Rightarrow Vortices are BPS

• G' = SU(N) case studied extensively \Rightarrow Examples of SU(2)×U(1)

 Rich physics and mathematics (general gauge groups, structure of the vortex moduli space -- non-trivial complex manifold; semi-local vortices; fractional vortices; non BPS vortices; interactions and stability; higher-winding vortices; group theory of NA vortices; vortices in high-density QCD; multi-component superconductors)

'03-'1

• Here:

Nature of the orientational zero modes How they transform (GNO duality !); higher-winding cases subtle How they fluctuate (Worldsheet effective action)

Methods of analysis

• The standard field equations of motion

(most physical, and intuitive; standard differential eqs, Taubes eqs., existence, stability analysis)

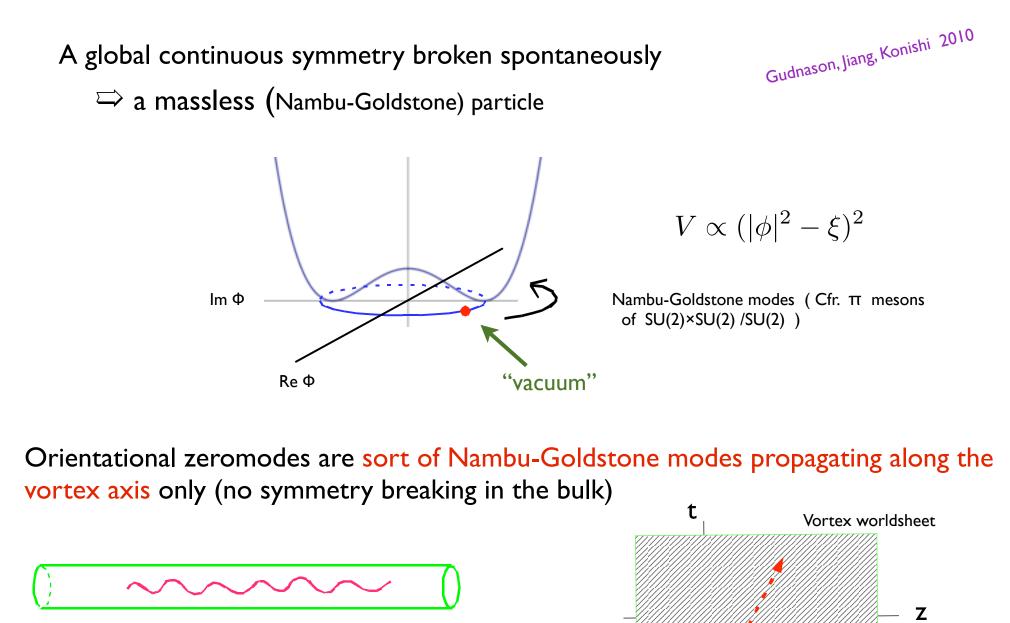
• <u>The moduli-matrix</u>

(vortex moduli as complex manifolds; transformation properties)

• The Kähler-quotient

(group-theoretic aspects)

Effective vortex worldsheet action



Need to introduce the gauge field components A_0 , A_3

A naïve guess: $A_{lpha} = -i \,
ho(r) \, U^{-1} \partial_{lpha} U$

→ No (massive as well as massless modes)

$$i \left(U^{-1} \partial_{lpha} U
ight) \implies i \left(U^{-1} \partial_{lpha} U
ight)_{\perp} \equiv i \begin{pmatrix} 0 & -X^{-rac{1}{2}} \partial_{lpha} B^{\dagger} Y^{-rac{1}{2}} \\ Y^{-rac{1}{2}} \partial_{lpha} B X^{-rac{1}{2}} & 0 \end{pmatrix}$$

Projection onto the Nambu-Goldstone modes

In our case, the scalar q rotates: the correct Ansatz is:

$$A_lpha=i\,
ho(r)\,U\,ig(U^{-1}\partial_lpha Uig)_ot U^{-1}\,,\qquad lpha=0,3$$
 (*) Gudnason JH

Gudnason, Jiang, Konishi JHEP 2010

Delduc, Valent '85

then

$$egin{aligned} &\operatorname{Tr} |\mathcal{D}_lpha \, q|^2 = -\left[rac{
ho^2}{2} \left(\phi_1^2 + \phi_2^2
ight) + (1-
ho) \left(\phi_1 - \phi_2
ight)^2
ight] \operatorname{Tr} \left[\left(U^{-1}\partial_lpha U
ight)_ot
ight]^2 \ &rac{1}{g^2} \operatorname{Tr} F_{ilpha}^2 = -rac{1}{g^2} \left[\left(\partial_r
ho)^2 + rac{1}{r^2} f_{\mathrm{NA}}^2 \left(1-
ho)^2
ight] \operatorname{Tr} \left[\left(U^{-1}\partial_lpha U
ight)_ot
ight]^2 \ , \end{aligned}$$

minimiz w.r.t. ρ

$$igsquigarrow S_{1+1} = 2eta \int dt dz \, \mathrm{tr} \left\{ X^{-1} \partial_lpha B^\dagger Y^{-1} \partial_lpha B
ight\} \ = 2eta \int dt dz \, \mathrm{tr} \left\{ \left(1_N + B^\dagger B
ight)^{-1} \partial_lpha B^\dagger \left(1_N + B B^\dagger
ight)^{-1} \partial_lpha B
ight\}$$

where

$$eta = rac{2\pi}{g^2} \mathcal{I} \qquad \qquad \mathcal{I} = \int_0^\infty dr \; \partial_r \left(f_{ ext{NA}} \left[\left(rac{\phi_1}{\phi_2}
ight)^2 - 1
ight]
ight) = f_{ ext{NA}}(0) = 1$$

Thursday, August 25, 2011

Construction of L_{eff}

G' imes U(1)

$$\begin{split} \mathcal{L} &= -\frac{1}{4e^2} F^0_{\mu\nu} F^{0\mu\nu} - \frac{1}{4g^2} F^a_{\mu\nu} F^{a\mu\nu} + \left(\mathcal{D}_{\mu} q_f \right)^{\dagger} \mathcal{D}^{\mu} q_f \qquad G' = SO(2N), USp(2N) \\ &- \frac{e^2}{2} \left| q_f^{\dagger} t^0 q_f - \frac{v^2}{\sqrt{4N}} \right|^2 - \frac{g^2}{2} \left| q_f^{\dagger} t^a q_f \right|^2 \qquad \qquad \mathsf{f=1,2, \dots 2N} \\ &\langle q \rangle = \frac{v}{\sqrt{2N}} \mathbf{1}_{2N} \end{split}$$

$$\begin{split} q &= \begin{pmatrix} e^{i\theta}\phi_1(r)1_N & 0\\ 0 & \phi_2(r)1_N \end{pmatrix} = \frac{e^{i\theta}\phi_1(r) + \phi_2(r)}{2} 1_{2N} + \frac{e^{i\theta}\phi_1(r) - \phi_2(r)}{2}T ,\\ A_i &= \frac{1}{2}\epsilon_{ij}\frac{x^j}{r^2} \left[(1 - f(r)) \, 1_{2N} + (1 - f_{\rm NA}(r)) \, T \right] , \quad \begin{cases} \mathsf{q},\mathsf{A} \rbrace \text{ leaves U(N)} \\ \text{invariant} \end{cases} \end{split}$$

$$T = \operatorname{diag}\left(1_N, -1_N\right)$$

$$\phi_{1,2}(\infty)=rac{v}{\sqrt{2N}}\ ,\quad f(\infty)=f_{
m NA}(\infty)=0\ ,$$

boundary conditions

$$\phi_1(0)=0\;,\;\;\;\partial_r\phi_2(0)=0\;,\;\;\;f(0)=f_{
m NA}(0)=1$$

C-S Lin and Y.Yang '10

Vortex of generic orientation (singular gauge)

where

and

$$U = egin{pmatrix} 1_N & -B^\dagger \ 0 & 1_N \end{pmatrix} egin{pmatrix} X^{-rac{1}{2}} & 0 \ 0 & Y^{-rac{1}{2}} \end{pmatrix} egin{pmatrix} 1_N & 0 \ B & 1_N \end{pmatrix} = egin{pmatrix} X^{-rac{1}{2}} & -B^\dagger Y^{-rac{1}{2}} \ BX^{-rac{1}{2}} & Y^{-rac{1}{2}} \end{pmatrix}$$

U= "reducing Delduc,Valent '85 matrix"

B = antisymm NxN for SO(2N); symm NxN for USp(2N); Ix N-1 for SU(N)

$$B=B(x^lpha)\ ,\qquad x^lpha=(x^3,x^0)$$

 $X\equiv 1_N+B^\dagger B \;, \;\;\; Y\equiv 1_N+BB^\dagger$

Allow the zeromodes to slowly fluctuate:

but then

$$\sum_{\alpha=0,3} \left[\sum_{f=1}^{2N} |\partial_{\alpha} q_f|^2 + \sum_{i=1,2} \frac{1}{2g^2} |F_{i\alpha}|^2 \right] \quad \rightarrow \infty \text{ energy}$$

Introduce A_0 , A_3

A naïve guess: $A_{lpha} = -i \,
ho(r) \, U^{-1} \partial_{lpha} U$ $\rightarrow \operatorname{No}$ (massive as well as massless modes)

$$i \left(U^{-1} \partial_{lpha} U
ight) \implies i \left(U^{-1} \partial_{lpha} U
ight)_{\perp} \equiv i \begin{pmatrix} 0 & -X^{-rac{1}{2}} \partial_{lpha} B^{\dagger} Y^{-rac{1}{2}} \\ Y^{-rac{1}{2}} \partial_{lpha} B X^{-rac{1}{2}} & 0 \end{pmatrix}$$
 Projection onto the NG modes

In our case, the scalar q rotates: the correct Ansatz is:

 $A_lpha=i\,
ho(r)\,U\,ig(U^{-1}\partial_lpha Uig)_ot U^{-1}\,,\qquad lpha=0,3$ (*) Gudnason, Jiang, Konishi JHEP 2010

$$\mathrm{Tr} \left| \mathcal{D}_lpha \, q
ight|^2 = - \left[rac{
ho^2}{2} \left(\phi_1^2 + \phi_2^2
ight) + (1-
ho) \left(\phi_1 - \phi_2
ight)^2
ight] \mathrm{Tr} \left[\left(U^{-1} \partial_lpha U
ight)_ot
ight]^2 \ rac{1}{g^2} \mathrm{Tr} \, F_{ilpha}^2 = -rac{1}{g^2} \left[\left(\partial_r
ho
ight)^2 + rac{1}{r^2} f_{\mathrm{NA}}^2 \left(1-
ho
ight)^2
ight] \mathrm{Tr} \left[\left(U^{-1} \partial_lpha U
ight)_ot
ight]^2 \ ,$$

minimiz w.r.t. ρ

then

$$igsquigarrow S_{1+1} = 2eta \int dt dz \, \mathrm{tr} \left\{ X^{-1} \partial_lpha B^\dagger Y^{-1} \partial_lpha B
ight\} \ = 2eta \int dt dz \, \mathrm{tr} \left\{ \left(1_N + B^\dagger B
ight)^{-1} \partial_lpha B^\dagger \left(1_N + BB^\dagger
ight)^{-1} \partial_lpha B
ight\}$$

where

$$eta=rac{2\pi}{g^2}\mathcal{I} \qquad \qquad \mathcal{I}=\int_0^\infty dr \; \partial_r\left(f_{
m NA}\left[\left(rac{\phi_1}{\phi_2}
ight)^2-1
ight]
ight)=f_{
m NA}(0)=1$$

Thursday, August 25, 2011

<u>Remarks</u>

- S is a 2D sigma model with target Hermitian symmetric spaces SO(2N)/U(N) or USp(2N)/U(N)
- Supersymmetric models \Rightarrow (2,2) susy sigma models
- Coupling given by $2\pi/g^2$ (calculation of β universal)
- U(N) model

$$B = \begin{pmatrix} b_1 \\ \vdots \\ b_{N-1} \end{pmatrix} \longrightarrow \mathsf{CP}^{\mathsf{N}-\mathsf{I}} \text{ sigma model}$$

Kahler potential $K = \operatorname{tr} \log \left(\mathbf{1}_N + BB^\dagger
ight)$

Susy $4D \rightarrow 2D$ (2,2) susy sigma models: exact beta fn, Morozov, Perelomov, Shiman '84

Auzzi-Bolognesi-Evslin-Konishi-Yung (2003);, Gorsky-Shifman-Yung (2004) (justify/explain the prescription there)

• U(N) model : k-winding vortex in $\Box_{k} = \frac{1}{2\pi} \mathcal{I}$, $\mathcal{I} = f_{NA}(0) = k$. CP^{N-1} 2D sigma model but with $\beta = \frac{2\pi}{g^2} \mathcal{I}$, $\mathcal{I} = f_{NA}(0) = k$.

- A class of k=2 vortices in SO(2N) model : 2D sigma model in

SO(2N)/[SO(2) imes SO(2N-2)]

Meaning of the Ansatz (*)

Jiang, 2011 unpublished, Fujimori et. al. 2011

i=1,2

$$\mathcal{L}^0 = ext{Tr}igg\{ -rac{1}{e^2}F_{12}F^{12} - rac{1}{g^2}\hat{F}_{12}\hat{F}^{12} + \mathcal{D}_i q(\mathcal{D}^i q)^\dagger - e^2ig|X^0t^0 - \xi t^0ig|^2 - g^2ig|X^at^aig|^2igg\}$$

 \Rightarrow Minimum-tension BPS vortex solutions, indep. on the <u>orientations U</u>

will leads to massive excitations once U fluctuates, U= U(z,t) UNLESS A_{α} is introduced such that 4D equations of motions

$$\begin{split} 0 &= \frac{1}{e^2} \partial^i F^0_{i\alpha} - i \operatorname{Tr} \left[q^{\dagger} t^0 \mathcal{D}_{\alpha} q - (\mathcal{D}_{\alpha} q)^{\dagger} t^0 q \right], \\ 0 &= \frac{1}{g^2} \mathcal{D}^i F^a_{i\alpha} - i \operatorname{Tr} \left[q^{\dagger} t^a \mathcal{D}_{\alpha} q - (\mathcal{D}_{\alpha} q)^{\dagger} t^a q \right], \\ 0 &= \mathcal{D}_{\alpha} \mathcal{D}^{\alpha} q, \end{split}$$

$$\underbrace{N.B.}$$

are obeyed.

Solution
$$\Rightarrow$$
 Ansatz (*) + extremization with respect to $\rho(r)$!!!
Gorsky-Shifman-Yung, Gudnason-Jiang-Konishi Symmetric criticality

Thursday, August 25, 2011

Goddard-Nuyts-Olive-Weinberg (GNOW) duality

• Infinitesimal transformations of the k=1 vortex (SO(2N) case):

$$U = 1_{2N} + \begin{pmatrix} 0_N & -B^{\dagger} \\ B & 0_N \end{pmatrix} + \dots, \qquad B^{\intercal} = -B,$$

• An abstract spinor of SO(2N) group

$$\Sigma_{ij}$$
 in terms of $a_k = \frac{1}{2} \underbrace{\tau_3 \otimes \cdots \otimes \tau_3}_{k-1} \otimes \tau_- \otimes \underbrace{1 \otimes \cdots \otimes 1}_{N-k}$, $k = 1, 2, \dots N$ and $(a_k)^{\dagger}$

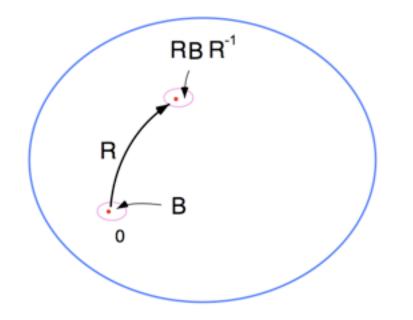
Identify the points on the vortex moduli and spinor states

$$\begin{array}{ccc} (\pm,\cdots,\pm)\sim |s_1\rangle\otimes |s_2\rangle\otimes \cdots |s_N\rangle \,, & |s_j\rangle = |\downarrow\rangle \quad \mathrm{or} \quad |\uparrow\rangle \\ \vec{\mu} = (\pm \frac{1}{2},\cdots,\pm \frac{1}{2}) & & & \\ \mathrm{with \ the \ origin} & (+\cdots,+)\sim |\downarrow\cdots,\downarrow\rangle & & & \\ & & & & & \\ & & & & & \\ \mathrm{vortex} \quad & & & \\ \mathrm{spin} \end{array}$$
but
$$\begin{array}{c} \mathrm{e}^{i\omega_{\alpha\beta}\Sigma_{\alpha\beta}}\simeq \mathbf{1} + \alpha_{ij} \ a_i^{\dagger}a_j + \beta_{ij} \ a_i^{\dagger}a_j^{\dagger} + \beta_{ij}^{\dagger} \ a_ia_j + i \ \omega_{2i,2i-1} + O(\omega^2) \end{array}$$
where
$$\begin{array}{c} \beta_{ij}\equiv -[\omega_{2i,2j}-\omega_{2i-1,2j-1}+i \ \omega_{2i-1,2j}+i \ \omega_{2i,2j-1}] \\ \Rightarrow & & \\ \mathrm{ldentify} \qquad \mathbf{B}_{ij}=\beta_{ij} \quad & \\ \mathrm{locally} \end{array}$$

Thursday, August 25, 2011

 \Box

but



R = finite U transformation

```
Vortex moduli ~ spinor state moduli = SO(2N)/U(N) \oplus SO(2N)/U(N)
```

```
B = local coordinates (2^{N-1} \text{ coordinate patches})^*
```

* USp(2N) theory \Rightarrow 2^N coordinate patches; moduli space = USp(2N)/U(N) = spinor states of SO(2N+1)

```
Fluctuation of SO(2N) vortex orientations ~
fluctuation of massless Spin(2N) spinor states
```

The vortex (and kink monopoles) in a massdeformed theories $(m_i \neq m_j)$

• CP^{N-1} vortex moduli replaced by N-1 points

 $\mathsf{SU}(\mathsf{N}) \qquad \qquad \langle \Phi \rangle = -\frac{1}{\sqrt{2}} \left(\begin{array}{cc} m_1 & & \\ & \ddots & \\ & & m_N & \\ & & & -m_1 - m_2 - \dots m_N \end{array} \right)$

SO(2N), USp(2N) theory

- SO(2N)/U(N) or USp(2N)/U(N) vortex moduli replaced by $2^{N-1} \ \oplus \ 2^{N-1} \quad (or \ 2^N \) \ points$
- SO(2N)/U(N) or USp(2N)/U(N) sigma model replaced by massive sigma models

Kinks along the vortex connecting different Abelian vortices = Abelian monopoles

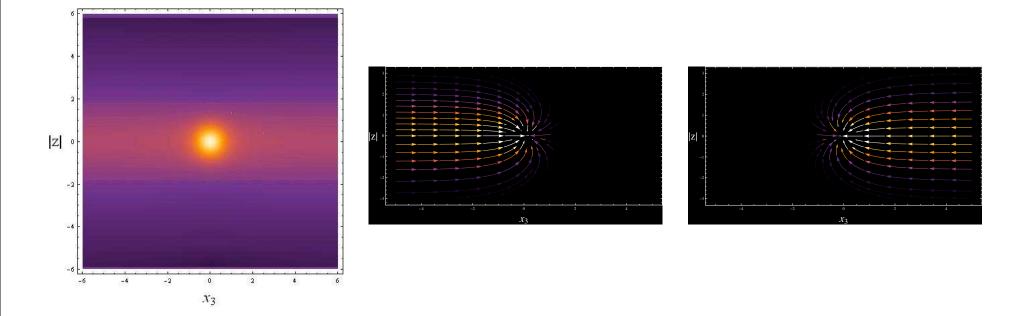
• Flavor symmetric limit $m_i \rightarrow m$ NON SMOOTH (colored clouds!) E.Weinberg

Eto, Fujimori, Gudnason, Jiang, Konishi, Ohashi, Nitta about to appear 2011

 $SU(N) \Rightarrow U(I)^{N-I}$

Gorsky-Shifman-Yung 2004

also



$$egin{aligned} \mathcal{L} &= rac{4\pi}{g^2} \, ext{Tr} \Big\{ \left(1_n + B^\dagger B
ight)^{-1} \partial_lpha B^\dagger \left(1_n + B B^\dagger
ight)^{-1} \partial^lpha B \ &- \left(1_n + B^\dagger B
ight)^{-1} \left\{ M_n, B^\dagger
ight\} \left(1_n + B B^\dagger
ight)^{-1} \left\{ M_n, B
ight\} \Big\} \,. \end{aligned}$$

$$M = \left(egin{array}{c|c} M_n & \ \hline & -M_n \end{array}
ight), \qquad M_n = ext{diag}(m_1, m_2, \cdots, m_n)$$

Thursday, August 25, 2011

III. Non-Abelian monopoles

Non-Abelian monopoles

• Embedding of 't Hooft-Polyakov monopole $SU(2) \rightarrow U(1)$ in $G \rightarrow H$, e.g. $SU(N+1) \rightarrow SU(N) \times U(1)$

Difficulties

- topological obstructions
 - non-normalizable zeromodes
 - colored cloud

Goddard-Nuyts-Olive, E.Weinberg, Lee,Yi, Bais, Schroer, '77-80,

> Abouelsaad et.al. Coleman, et. al., '83-'84 Dorey, Hollowood, et. al.

> > E. Weinberg

Seiberg-Witten '94

Hanany-Oz, '96

Argyres, Plesser, Seiberg, '96

Carlino-Konishi-Murayama '00

 Degenerate monopoles to transform under the GNO dual of H, not under H itself (non-local field transformations)

In fact,

• Light non-Abelian monopoles in N=2 supersymmetric QCD

in the r -vacua, $r \leq N_F / 2$ (flavor essential)

- N=I perturbation ⇒ confinement as non-Abelian dual Meissner effect
- Almost SCFT vacua : confinement by condensation of monopole composites
- 2-1 Correspondence between classical (r, N_F r) and quantum ^{Bolognesi-Konishi-et.al '05}
 r- vacua Di Pietro, Giacomell '11
- Many different types of confining vacua in N=1 susy models (confinement index, etc.)

Okouchi-Konishi '10

Auzzi.Grena.Konishi

Making bridge between semi-classical and quantum monopoles and vortices - a highly nontrivial task

Dynamical Abelianization

Isomonodromy

Bilal-Ferrari, '96 Cappelli,Valtancoli,Vergnano '97 for SU(2)

Quark singularity (at large m_i) Monopole singularity (at small m_i) Higgs vacuum Confining vacuum

Di Pietro, Giacomell '11 SU(N)

Dynamical Abelianization

dt dz

- U can fluctuate, U= U(z,t) : gapless excitations ---- only along (z,x)
- Vortex worldsheet action (U(2))

$$S^{(1+1)}_{\sigma}=eta\int d^2xrac{1}{2}\left(\partial\ n^a
ight)^2$$
 + fermionic terms

N=(2,2) supersymmetric CP¹ sigma model

$$S^{(1+1)}_{\sigma} = \int d^2x \left[d^2 heta\, d^2ar{ heta}\, rac{1}{eta}\, ar{Y}\, Y + \Lambda_{\sigma}\, d heta^1 dar{ heta}_2 \cosh Y
ight]$$

Auzzi, Bolognesi, Evslin, Konishi, Yung, Shifman-Yung

> Hanany-Tong, Shifman et. al.

Hori, Vafa

Tong, Gorsky-Shifman-Yung

■ Gauge dynamics in 4D in <u>Coulomb</u> phase

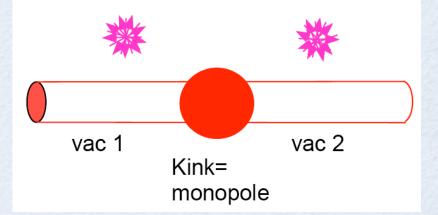
(Seiberg-Witten)

Dorey

beta function and the spectrum match

2 vacua \rightarrow kinks = (Abelian) monopoles !

- Realization of 2D 4D duality
- Global SU(2) unbroken (Coleman)
- Vortex dynamically Abelianizes



SU(N) SQCD

- U(N), N_f = N model from $SU(N+I) \Rightarrow SU(N) \times U(1)/Z_N$
- r= N_f vacuum (classical)
- quantum mechanically only $r < N_f / 2$

$$|\Phi
angle = -rac{1}{\sqrt{2}} \left(egin{array}{cccccc} m & 0 & 0 & 0 \ 0 & \ddots & dots & dots \ 0 & \dots & m & 0 \ 0 & \dots & 0 & -N\,m \end{array}
ight);$$

• classical r (> $N_f/2$) \Leftrightarrow quantum (N_f - r) vacua • classical r (> $N_f/2$) \Leftrightarrow quantum (N_f - r) vacua • Bolognesi-Konishi-Marmorini

 $m \gg \mu \gg \Lambda$: \Leftrightarrow $m \sim \mu \ll \Lambda$: (Vacuum counting; symmetry)

• $U(N) N_f = N$: quantum r = 0 vacua (Abelian monopoles ! OK with MV)

global symmetry

<i>r</i>	Deg. Freed.	Eff. Gauge Group	Phase	Global Symmetry
	monopoles	$U(1)^{N-1}$	Confinement	$U(n_f)$
me o <mark>l</mark> sal	monopoles	$U(1)^{N-1}$	Confinement	$U(N_f-1) imes U(1)$
$2,,[rac{N_f-1}{2}]$	NA monopoles	$SU(r) imes U(1)^{N-r}$	Confinement	$U(N_f-r) imes U(r)$
$N_f/2$	rel. nonloc.		Almost SCFT	$U(N_f/2) imes U(N_f/2)$

But non-Abelian vortices which do not dynamically Abelianize should exist -- in the right vacua

"Truly non-Abelian" Vortices

The Model: the same SU(N), $N_f = N$, softly broken N=2 SQCD, but with appropriately tuned masses^{*}

with

$$M = \left(egin{array}{ccc} m^{(1)}\,\mathbbm{1}_{n imes n} & 0 \ 0 & m^{(2)}\,\mathbbm{1}_{r imes r} \end{array}
ight)$$

Dorigoni-KK-Ohashi '08

* select the right quantum vacuum at $m_i \rightarrow 0$ (cfr N=I SQCD)

1

N = n + r;

Adjoint scalar VEV

 $SU(N) |_{local} \Rightarrow$

$$\langle\Phi
angle=-rac{1}{\sqrt{2}}\left(egin{array}{cc} m^{(1)}\,\mathbb{1}_{n imes n} & 0\ 0 & m^{(2)}\,\mathbb{1}_{r imes r} \end{array}
ight)$$

 $|m_0| \gg |\mu| \gg \Lambda$.

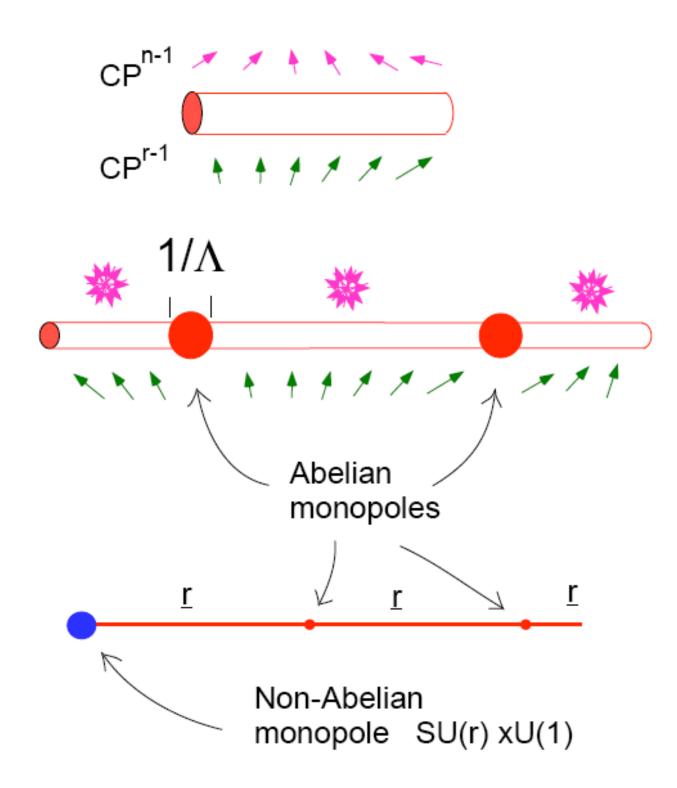
1

 $G = rac{SU(n) imes SU(r) imes U(1)}{\mathbb{Z}_K}, \hspace{1em} K = ext{LCM} \left\{n,r
ight\}^{\mathbb{1}}$

Global symmetry, "broken" by the vortex

$$\begin{split} [SU(n) \times SU(r) \times U(1)]_{C+F} &\to SU(n - \mathbb{1}1) \times SU(r-1) \times U(1)^3, \\ \text{Vortex moduli} \sim & \overset{1}{C} P^{n-1} \times C P^{r-1} & \overset{1}{}^{\mathbb{Z}} & \mathbb{Z} \end{split}$$

Idea: for n > r ($r < N_f / 2$), the CPⁿ⁻¹ Abelianizes, leaving weakly fluctuating CP^{r-1}

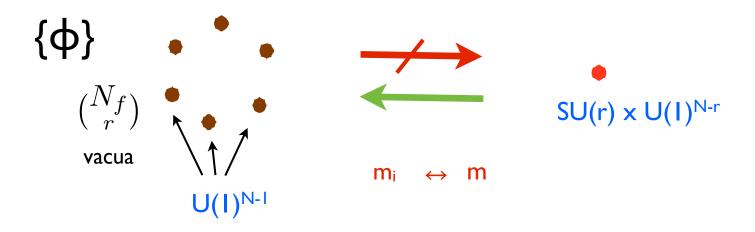


IV. Summary

Flavor to Dual Gauge Symmetry

Flavor symmetric limit $m_i \rightarrow m$ subtle

Quantum r vacua cannot be reached from the mass-deformed theory



- N_F non-Abelian monopoles in <u>r</u> instead of $\binom{N_f}{r}$ Abelian monopoles required by the correct flavor SU(N_F) symmetry realization (WI's)
- Strong indication (both semi-classically and quantum mechanically) that the dual gauge group = a manifestation of the flavor symmetry in conjunction with gauge dynamics (monopoles and vortices)
- Orientational zeromodes and their fluctuation in M-V-M complex the most direct way to see such a connection so far

Real world QCD

Cannot say much, but if XSB ~ Confinement

Scenario I
$$\langle M_i^j \rangle = \delta_i^j v \neq 0$$
with Abelian monopoles M of
 $U(I)^2 \subset SU(3)$ Scenario II $\langle M_i^\alpha \tilde{M}_\alpha^j \rangle = \delta_i^j v \neq 0$ with nonAbelian monopoles M, \widetilde{M}
of $U(2) \subset SU(3)$

 $i = SU_L(N_F), j = SU_R(N_F)$

Scenario II preferred from the correct flavor symmetry realization

END

AND...

Thanks to the collaborations ('00 -'11) with:

Takenaga, Terao, Carlino, Murayama, Spanu, Grena, Auzzi, Bolognesi, Yung, Evslin, Ookouchi, Nitta, Ohashi, Yokoi, Eto, Fujimori, Marmorini, Ferretti, Vinci, Gudnason, Dorigoni, Michelini, Jiang, Giacomelli, Cipriani, Di Pietro

Armenia-Italy-Japan-USA-Russia-Denmark-China collaboration