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Main ideas and themes 

•  Dual gauge symmetry as a new manifestation of the global flavor 
symmetry      

•  The subtle interplay between the global flavor symmetry and the 
strong gauge dynamics (soliton monopoles and vortices)

•  Confinement as a dual superconductivity (dual Higgs phase) -
    of non-Abelian variety? 

•  Many hints and evidences 
Seiberg’s duality in N=1 SQCD;  Kutasov’s duality;  Seiberg-Witten 
curves for N=2 gauge theories;  
Many new N=2 dualities (SCFT); ...  

(cfr.  Jackiw-Rebbi, 
charge fractionalization, Witten )

monopole condensation

•  Physics of the r-vacua Non-Abelian magnetic monopoles in N=2 SQCD
Seiberg-Witten solutions;   Tachikawa-Terashima   

Setting
-  Softly broken N=2  G  theory with NF  matter multiplets, G=SU(N), SO(N),USp(2N)       

-  Hierarchical gauge symmetry breaking  G ➞ H ➞ 1,   at  v1   ≫  v2 

monopoles of  ∏2 (G/H)   ⇔  vortices of ∏1 (H) 
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 Monopole-vortex connection   

1 Introduction

Nonabelian monopoles in spontaneously broken gauge theories have remained

somewhat obscure objects for a long time in spite of many investigations [1]-[10].

Apart from the often discussed applications in conformally invariant N = 4 the-

ories, few field theory models were known where such objects play an important

dynamical role. Although many N = 1 gauge theories, such as SQCD with appro-

priate numbers of flavors, are believed to possess Seiberg duals [11], the origin of the

“dual quarks” appearing in these models remains mysterious.

A series of papers on softly broken N = 2 gauge theories with gauge groups

SU(N), USp(2N) and SO(N) and various numbers of flavors of fundamental

matter have, however, changed the situation [12, 13, 14]. In particular, it was pointed

out [15] that the “dual quarks” appearing as the low-energy degrees of freedom of the

G = SU(N), USp(2N) or SO(N) theory, which carry the nonabelian SU(r) ⊂
G charges, can be identified with the “semiclassical” nonabelian monopoles studied

earlier by Goddard, Nuyts, Olive [4] and by E. Weinberg [7]. Also, all of the confining

vacua in strongly coupled USp(2N) and SO(N) theories with flavors and with zero

bare quark masses, involve these objects in a deformed SCFT.

Very recently, with A. Yung, we have proven the existence of nonabelian vortices

in the same class of models [16]. The analysis was done semiclassicaly, in the region

of large bare quark masses (and so large adjoint scalar VEVS), but the presence of an

appropriate number of fermions makes the results quantum mechanically correct. In

particular, a continuous family of degenerate vortex solution have been constructed,

showing the truely nonabelian nature of these vortices 1.

In this paper, we discuss some aspects relating nonabelian vortices and monopoles

appearing in the softly broken N = 2 G = SU(N) theories with Nf flavors. The

gauge group is broken at two very different mass scales, v1 " v2,

G
v1−→ H

v2−→ (1.1)

1Deceptively similar, though different, vortex configurations have been studied independently by
Hanany and Tong [17, 18].

1

vortexmonopole

[14]. Actually, the latter can be interpreted as the GNOW monopoles becoming light due to the
dynamics, at least in SU(N) theories [15]. For SO(N) or in USp(2N) theories the relation
between Seiberg’s duals and GNOW monopoles are less clear [15]. For instructive discussions on
the relation between Seiberg’s duals and semiclassical monopoles in a class of N = 1, SO(N)
models with matter fields in vector and spinor representations, see Strassler [16].

Dynamics of the system is thus a crucial ingredient: if the dual group were in Higgs phase,
the multiplet structure among the monopoles would get lost, generally. Therefore one must study
the dual (H̃) system in confinement phase.2 But then, according to the standard electromagnetic
duality argument, one must analyse the electric system in Higgs phase. The monopoles will
appear confined by the confining strings which are nothing but the vortices in the H system in
Higgs phase.

We are thus led to study the system with a hierarchical symmetry breaking,

G
v1−→ H

v2−→ ∅, (1.7)

where

v1 $ v2, (1.8)

instead of the original system (1.1). The smaller VEV breaks H completely. Also, in order for
the degeneracy among the monopoles not to be broken by the breaking at the scale |〈φ2〉|, we
assume that some global color-flavor diagnonal group

HC+F ⊂ Hcolor ⊗ GF (1.9)

remains unbroken.

It is hardly possible to emphasize the importance of the role of the massless flavors too much.
This manifests in several different aspects.

(i) In order that H must be non-asymptotically free, there must be sufficient number of massless
flavors: otherwise, H interactions would become strong at low energies and H group can
break itself dynamically;

(ii) The physics of the r vacua [9, 11] indeed shows that the non-abelian dual group SU(r)
appear only for r ≤ Nf

2
. This limit can be understood from the renormalization group: in

order for a nontrivial r vacuum to exist, there must be at least 2 r massless flavors in the
fundamental theory;

(iii) Non-abelian vortices [17, 18], which as we shall see are closely related to the concept of non-
abelian monopoles, require a flavor group. The non-abelian flux moduli arise as a result
of an exact, unbroken color-flavor diagonal symmetry of the system, broken by individual
soliton vortex.

The idea that the dual group transformations among the monopoles at the end of the vortices
follow from those among the vortices (monopole-vortex flux matching, etc.), has been discussed
in several occasions, in particular in [19]. The main aim of the present paper is to make this

2The non-abelian monopoles in the Coulomb phase suffer from the difficulties already discussed.
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• Topology and symmetry connect monopoles and vortices

• Apparent paradox  (no monopoles, no vortices ???!!! )  ➯
  monopoles are confined by vortices; vortices end at monopoles

• Non-Abelian vortices ➯  non-Abelian monopoles A 35-year old problem, 
possibley relevant to
quark confinement

Hierarchical symmetry breaking 

2 THE MODEL

1 Introduction

The last several years have witnessed a remarkable progress in our understanding of vortex configurations
in spontaneously broken gauge theories, which carry continuous, non-Abelian internal zeromodes: the
non-Abelian vortices [1, 2]. Their group-theoretical and dynamical properties of these vortices have been
studied in some depth [3]-[14].

Physics of non-Abelian vortices is deeply related to the understanding of non-Abelian monople concept,
and that of the quark confinement. Indeed, a detailed, fully quantum-mechanical analyses of 4D gauge
theories with N = 2 supersymmetry has given important hints about the low-energy, effective dual gauge
symmetry. In particular, fully quantum mechanical light non-Abelian monopoles appear as the infrared
degrees of freedom in the so-called r vacua of N = 2 supersymmetric QCD with Nf quark multiplets,
playing the role of the order parameter of confinement (of non-Abelian variety) and of dynamical symmetry
breaking [15].

The discovery of the non-Abelian vortex was partly motivated [2] by the desire to understand the
physics of the quantum r-vacua, r = 2, . . . Nf/2, from the more familiar semi-classical viewpoint. In
fact, the connection between the vortex solutions and regular ’t Hooft-Polyakov monopoles arises from the
consideration of a hierarchical gauge symmetry breaking, e.g.,

SU(N + 1)
v1−→ U(N)

v2−→ , v1 # v2 . (1)

The monopole is supported by Π2(SU(N +1)/U(N) ∼ Z (if v2 = 0); the low energy vortex solutions
correspond to nontrivial elements of Π1(U(N) ∼ Z (if v1 = ∞). The exact sequence of homotopy
groups relates the two solitons of different codimension [11], and the global symmetry consideration tells
us that non-Abelian vortex implies non-Abelian monopoles sitting at its extremes. For ∞ > v1 # v2 &= 0,
one is inevitably led to consider unstable monopole-vortex complex solitons.

The aim of this paper is to pursue further the study of the monopole-vortex complex [4], including
the numerical analysis of the field configurations involving both the magnetic monopole region and the
asymptotic vortex-like region, with all fields approaching smoothly to their VEV outside the complex. In
this sense this paper is a continuation of the work started in the paper. We clarify also some aspects of
the non-Abelian orientational moduli, extensively studied in the last several years in the context of the
vortex solutions, and to show how the properties of the non-Abelian orientational moduli can be extended
to the whole monopole-vortex complex.

2 The model

In studying the monopole-vortex complex arising from a hierarchically broken gauge symmetries, we shall
work with the softly broken N = 2 supersymmetric models, for many advantages they offer. The fields are
the N = 2 gauge multiplet (the gauge field, the gauge fermion, the adjoint scalar and fermion) together
with quark multiplets. For concreteness we take an SU(N +1) gauge theory with nf ≤ 2N + 1 flavors
of hypermultiplets (“quarks”), and the mass parameters are tuned so that at two hierarchically different
scales the gauge symmetry is broken as The Lagrangian of the underlying SU(N + 1) theory has the
structure

L =
1

8π
Im Scl

[
∫

d4θ Φ†eV Φ +

∫

d2θ
1

2
WW

]

+ L(quarks) +

∫

d2θ µ Tr Φ2; (2)

1

• Study e.g., 

Auzzi, Bolognesi, Evslin, Konishi ’04

in more detail  Cipriani, Dorigoni, Gudnason, Konishi, Michelini  ’11
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Figure 1: A pictorial representation of the exact homotopy sequence, (3.1), with the leftmost figure
corresponding to π2(G/H).

taken into account, having mass large but not infinite (Fig. 2). The low-energy vortices become
unstable also through heavy monopole pair productions which break the vortices in the middle
(albeit with small, tunneling rates [40]), which is really the same thing. Note that, even if the
effect of such string breaking is neglected, a monopole-vortex-antimonopole configuration is not
topologically stable anyway: its energy would become smaller if the string becomes shorter (so
such a composite, generally, will get shorter and shorter and eventually disappear).

However, this does not mean that such a monopole-vortex-antimonopole configuration cannot
be dynamically stabilized, or that they are not relevant as physical configurations. A rotation
can stabilize easily such a monopole-vortex-antimonopole configuration dynamically. After all,
we believe that the real-world mesons are quark-string-antiquark bound states of this sort, the
endpoints rotating almost with a speed of light! An excited meson can and indeed do decay
through a quark pair production into states made of two lighter mesons. Only the lightest mesons
are truly stable. The same occurs with our monopole-vortex-antimonopole configurations. The
lightest such systems, after the rotation modes are appropriately quantized, are truly stable
bound states of solitons, even though they cannot be simply described as static, semiclassical
configurations.

Our model is thus a reasonably faithful (dual) model of the quark confinement in QCD.

It is crucial in our argument that the monopoles of high-energy theory and the vortices of
low-energy theory are both BPS only approximately; in other words, they are almost BPS but
not exactly.6 They are unstable in the full theory. But the fact that there exists a limit (of a
large ratio of the mass scales, v1

v2
→ ∞) in which these solitons become exactly BPS and stable,

means that the magnetic flux through the surface of a small sphere surrounding the monopole
and the vortex magnetic flux through a plane perpendicular to the vortex axis, must match
exactly. These questions (the flux matching) have been discussed extensively already in [19].

Our argument, applied to the simplest case, G = SO(3), and H = U(1), is precisely
the one adopted by ’t Hooft [1] in his pioneering paper, to argue that there must be a regular
monopole of charge two (with respect to the Dirac’s minimum unit): as the vortex of winding
number k = 2 must be trivial in the full theory (with π1(SO(3)) = Z2), such a vortex must
end at a regular monopole. What is new here, as compared to the case discussed by ’t Hooft [1] is
that now the unbroken group H is non-abelian and that the low-energy vortices carry continuous,

6The importance of non-BPS soliton configurations have also been emphasized by Strassler [16].
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Exact sequence:

The gauge field equations take a slightly more complicated form than in the U(N) model
(2.1):

∂z (Ω−1∂z̄ Ω) = −
g2

N

2
Tr ( ta Ω−1 q q†) ta −

e2

4N
Tr ( Ω−1q q† − 1), Ω = S S†.(2.33)

The last equation reduces to the master equation Eq. (2.10) in the U(N) limit, gN = e.

The advantage of the moduli matrix formalism is that all the moduli parameters appear in
the holomorphic, moduli matrix H0(z). Especially, the transformation property of the vortices
under the color-flavor diagonal group can be studied by studying the behavior of the moduli
matrix.

3 Topological stability, vortex-monopole complex and con-
finement

The fact that there must be a continuous set of monopoles, which transform under the color-flavor
SU(N) group follows from the following exact homotopy sequence

· · · → π2(G) → π2(G/H) → π1(H) → π1(G) → · · · (3.1)

where π2(G) = π1(G) = ∅, in the system under consideration, G = SU(N + 1), H =
SU(N)×U(1)

ZN
∼ U(N). (Fig. 1). The nontrivial configuration of the scalar field can be inter-

preted as representing π2(G/H) while the gauge field consfiguration can be classified according
to π1(H) [42]. It follows that

π2

(
SU(N + 1)

U(N)

)
= π2(CP N) ∼ π1(U(N)) = Z : (3.2)

each nontrivial element of π1(U(N)) is associated with a nontrivial element of π2(
SU(N+1)

U(N)
).

Recalling that the latter represents the topological classification of gauge and scalar fields, this
result is consistent as the theory does not admit Dirac monopoles: all monopoles are regular ’t
Hooft-Polyakov monopoles.

However, there is something of a puzzle: when the small VEV’s are taken into account, which
break the “unbroken” gauge group completely, these monopoles must disappear somehow. A
related puzzle is this: the low-energy theory develops vortices since H is completely broken. The
vortex flux is quantized by (in our case, with H = SU(N)×U(1)

ZN
)

π1(H) = Z. (3.3)

Again, when the massive monopoles associated with the breaking G → H are taken into
account, ı.e., in the full theory, the vortices visible and stable in the low-energy approximation
must disappear, as π1(G) = ∅.

Actually, these two apparent puzzles are the two faces of a medal. The solution is that the
massive monopoles are confined by the vortices and disappear from the spectrum; on the other
hand, the vortices of the low-energy theory end at the heavy monopoles once the latter are

9

• π2 (G) = 1  ⇒  Regular monopoles confined by vortices

•  π1 (G) = 1  ⇒  All vortices  “end” at regular monopoles

‘t Hooft
G=SO(3);  
H=U(1)

•  π1 (G) = Z2  ⇒   k=2 vortices  “end” at regular monopoles!

k=1 vortices are there:  confine Dirac monopoles 

{
e.g.  SU(N)

cfr., SO(N)

Homotopy-group map

Vortex ! (but also 
monopole    Wu-Yang )    

π1 (G)=
 π1 (H)/
π2 (G/H)
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The model (softly broken SU(N+1) N =2 susy QCD with NF  =N  quarks)    

2 THE MODEL

L(quarks) =
∑

i

[

∫

d4θ {Q†
ie

V Qi + Q̃ie
−V Q̃†

i} +

∫

d2θ {
√

2 Q̃iΦQi + mi Q̃iQ
i} (3)

where mi are the bare masses of the quark fields; the complex coupling constant is

Scl ≡
θ0

π
+

8πi

g2
0

. (4)

The parameter µ is the mass of the adjoint chiral multiplet, which breaks the supersymmetry to N = 1.
After elimination of the auxiliary fields the bosonic Lagrangian takes the form,

L =
1

4g2
F 2

µν +
1

g2
|Dµφ|2 + |DµQ|2 +

∣

∣

∣Dµ
¯̃Q
∣

∣

∣

2
+ L1 + L2, (5)

where

L1 = −
1

8

∑

A

[
1

g2
(−i)fABC φ†

BφC + Q†tAQ − Q̃tAQ̃†]2

= −
1

8

∑

A

(

tA
ij [

1

g2
(−2) [φ†, φ]ji + Q†

jQi − Q̃jQ̃
†
i ]

2

)2

; (6)

L2 = −g2|µ φA +
√

2 Q̃ tAQ|2 − Q̃ [m +
√

2φ] [m +
√

2φ]† Q̃†

− Q† [m +
√

2φ]† [m +
√

2φ] Q , (7)

where A = 1, 2 . . . , (N + 1)2 − 1 runs over the SU(N + 1) generator labels. In the construction
of the monopole-vortex complex soliton solutions it turns out to be sufficient to consider the VEVs and
fluctuations around them which satisfy

[φ†, φ] = 0, Qi = Q̃†
i , (8)

therefore L1 can be set identically to zero in what follows.
The vacuum expectation values (VEV) of the scalar fields are determined from the minima of the

potential following from (2) and (3), e.g., see [15]. They are found to be

Qi
a = δi

a di, i = 1, 2, . . . , r, a = 1, 2, . . . , N ; Qi
a = 0, i = r + 1, . . . , nf ;

Q̃a
i = δa

i d̃i, i = 1, 2, . . . , r, a = 1, 2, . . . , N ; Q̃a
i = 0, i = r + 1, . . . , nf . (9)

did̃i = µ mi +
1

nc − r
µ

r
∑

k=1

mk (di > 0) , |d̃i| = di , (10)

Φ =
1

√
2

diag (−m1, −m2, . . . , −mr, c, . . . , c) ; c =
1

nc − r

r
∑

k=1

mk , (11)

where the integer

r = 0, 1, . . . , min {nf , nc − 1}, nc = N + 1, (12)
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labels the possible (classical) vacua. The vacua of a given r are further classified according to which set
of r (out of nf) masses are used to construct a solution, leading to the total of

min {nf ,nc−1}
∑

r=0

(nc − r)

(

nf

r

)

(13)

vacua.
As explained in [15], by choosing a generic set of bare masses mi and by deforming with the N = 1

mass term µ Tr Φ2 the continuous vacuum degeneracy is lifted altogether, leaving these discrete set of
vacua. At small mi and µ (" Λ) the interactions become strong in the infrared, in all these vacua. These
are indeed the vacua we are interested in.1

By tuning the bare squark masses mi to an equal, common value m, we see that an exact color-flavor
diagonal SU(r) symmetry survives in a vacuum with a given r.
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 ➭    v2    :   breaks the low-energy gauge symmetry 

 ➭   interaction terms connecting monopole and vortex 

 ➭   known BPS monopole and vortex solns  in the limit  μ ➞0,     

• Terms with  μ  (breaks N =2 susy to N =1)

• Solve the eqns  with  μ   ➭   

Δ L = μ Φ2    |ϴϴ  

flavor

co
lo

r

Φ=
adj sc

alar; 

   Q
=sq

uarks

take equal masses

    mi =m 
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〈Φ〉 ∿   m   

• Gauge symmetry broken at two hierarchically different scales

SU(N+1)     SU(N) x U(1)       
〈Q〉 ∿   √ m μ  

• Global flavor symmetry unbroken 

SU(N)color ⊗ SU(N)flavor  

 1

〈Q〉
SU(N)C+F

color-flavo
r lo

cke
d phase

➱ Monopoles in SU(N+1)/U(N) ⊃ SU(2)/U(1) 

Φ,  Ai     ̃   N

N+1

N

N+1

➱ Vortices in U(N) ⊃ U(1) 

Q  ̃  N

N+1

N

Φ,  Ai     ̃   

. ...

0 0  ...     0

....

x

SU(2) living in 
(1, N+1) subplane

winding of the squark 
in  (1,1) corner
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make an Ansatz of the form

q =

(

q1(ρ, z)
q2(ρ, z)1N−1

)

;

Aρ =
cos θ

r
(S2 cosϕ − S1 sin ϕ)∆(ρ, z) ;

Aϕ =
1

ρ





f(ρ, z)

N





1
1N

−N



 +
fNA(ρ, z)

N





N − 1
−1N−1

0



 − sin θ(S1 cos ϕ + S2 sin ϕ)∆(ρ, z)





Az = −sin θ

r
(S2 cos ϕ − S1 sin ϕ)∆(ρ, z) ;

φ =

(

v1 +
λ(ρ, z)

√

2N(N + 1)

)





1
1N

−N



 +
λNA(ρ, z)

√

2N(N − 1)





N − 1
−1N−1

0



 . (3.48)

The profile functions {q1, q2, f, fNA,∆,λ,λNA}, with appropriate boundary conditions, can be determined
numerically as we will do in the following section.

3.2 Numerical solution

In order to study these configurations numerically, we note that if the SU(N) and U(1) coupling constants
are set to be equal our monopole-vortex complex is exactly the monopole-vortex complex generated by
the symmetry breaking

SU(2)
v1−→ U(1)

v2−→ 1 , v1 # v2 , (3.49)

embedded in a larger color-flavor space. It is therefore sufficient for our purpose here to consider the
minimal case, Eq. (3.49). The generators of the SU(2) group are ta = τa/2, where τa are the Pauli
matrices and the scalar field has the form:

φa = −
√

2 m δa3 + λa ,

where λa is the fluctuation around the VEV. The Lagrangian is then:

L = − 1

4g2
(F a

µν)2 +
1

g2
|Dµφa|2 + |Dµqi|2 − g2

8

∣

∣

∣
−ξδa3 + νλa + q†i τ

aqi
∣

∣

∣

2
−

∣

∣

∣

∣

[

m12 − mτ3 +
1√
2
λaτa

]

qi

∣

∣

∣

∣

2

,

(3.50)

where we have set

ξ ≡ 4µ m , ν ≡ 2
√

2µ ,

and our convention for the covariant derivatives and field strength is

F a
µν = ∂µAa

ν − ∂νAa
µ − εabcAb

µAc
ν ; (3.51)

Dµq = ∂µq +
i

2
Aa

µτa q ; (3.52)

Dµφa = ∂µφa − εabcAb
µφc . (3.53)

After the symmetry breaking at v1, the second color component of the squark field becomes massive, so
we can set

q =

(

q1(r, z)
0

)

.

10

{q,A,φ }M V = 

• appropriate b. c.

  (i.e., reduces to the standard BPS monopole and vortex in the appopriate regions )

• breaks  SU(N)C+F   ➯  SU(N-1)xU(1)
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General remarks

(i) Monopole and vortex orientation (in color) be correlated

• Smooth monopole-vortex complex needs :

(ii) None of the fields  “wind”

     (must work in the “singular gauge”)

• Dirac string of the monopole solution hidden inside the vortex core

(i) Better said, it simply matches with the gauge field singularity in the vortex core

(ii) Innocuous as   | Di q |2    ~   | Ai |2    | q |2    and   q =0 along the core  

• Search for the minimum energy configuration under the constraint that
          the monopoles and antimonopole centers are fixed  

(iii) Relative spatial orientation fixed
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Numerical solutions: 
  for SU(2)➞U(1)➞1  embedded in  SU(N+1)➞U(N)➞1   

This behavior of Aφ matches precisely that of the gauge field along the vortex core, Eq. (25).

In order to perform a numerical calculation of the behavior of the fields of the complex, we

restrict ourselves to the simpler case of a symmetry breaking pattern such as:

SU(2) → U(1) → 1 .

In this particular case the generators of the SU(2) group are taken as ta = τa/2, where τa are

the Pauli matrices and the scalar field has the form:

φa = −
√

2mδa3 + λa

where λa is the fluctuation around the VEV. The lagrangian is then:

L = −
1

4g2
(F a

µν)
2 +

1

g2
|Dµφa|2 + |Dµq|2

− g2

∣

∣

∣

∣

−
√

2mµδa3 + µλa +
1

2
√

2
q†τaq

∣

∣

∣

∣

2

−
∣

∣

∣

∣

[

m − mτ 3 +
1

√
2
λaτa

]

q

∣

∣

∣

∣

2

(46)

and we have taken the following form for the covariant derivatives and the field strenght tensor:

F µν a = ∂µAν − ∂νAµ − εabcAµbAνc (47)

Dµq = ∂µq +
i

2
Aµaτaq (48)

(Dµφ)a = ∂µφa − εabcAµbφc (49)

Bacause of the mass that the second quark color acquires after the symmetry braking, we can

choose, without loss of generality:

q =

(

q(r, z)

0

)

This reduces a bit the set of the unknown functions. Then we can write the lagrangian reducing

the numerical factors by the redefinition of the parameters

ξ ≡ 4µm , µ ≡ 2
√

2µ

as:

L = −
1

4g2
(F a

µν)
2 +

1

g2
|Dµφa|2 + |Dµq|2

−
g2

8

∣

∣−ξδa3 + µλa + q†τaq
∣

∣

2 −
∣

∣

∣

∣

[

m − mτ 3 +
1

√
2
λaτa

]

q

∣

∣

∣

∣

2

(50)

The equations of motion for the system are, in an implicit form:

(DµF µν)a = −εabc
[

φ†c (Dνφ)b − φb (Dνφ)†c
]

+ g2 i

2

[

q†σaDνq − (Dνq)† σaq
]

(51)

10

Ansatz

Equations of motion

Equations for the profile functions, f, l, s, q

After the symmetry breaking at v1, the second color component of the squark field becomes massive, so
we can set

q =

(

q1(r, z)
0

)

.

The equations of motion for the system are:

DµF µνa = εabc
[

φ†bDνφc + φb (Dνφc)†
]

+
ig2

2

[

q†
iτaDνqi − (Dνqi)

† τaqi
]

, (3.54)

DµDµφa = −
νg4

8

(

−ξδa3 + νλa + q†
iτaqi

)

−
g2

√
2

q†
iτa

(

m12 − mτ3 +
1

√
2

λbτb

)

qi , (3.55)

DµDµq = −
g2

4

(

−ξδa3 + ν Re(λa) + Tr (q†τaq)
)

(τaq) −
∣

∣

∣

∣

m12 − mτ3 +
1

√
2

λaτa

∣

∣

∣

∣

2

q ,

(3.56)

where we have defined |X|2 = X†X. In order to solve these equations numerically, we introduce an
Ansatz adequate for the SU(2) theory, which is somewhat simpler than Eq. (3.48):

Aρ =
z

ρ2 + z2
(τ2 cos ϕ − τ1 sin ϕ)

f(ρ, z) − 1

2
;

Az =
ρ

ρ2 + z2
(τ1 sin ϕ − τ2 cos ϕ)

f(ρ, z) − 1

2
;

Aϕ = −
1

√

ρ2 + z2
(τ1 cos ϕ + τ2 sin ϕ)

f(ρ, z) − 1

2
+ τ3

1

2ρ
*(ρ, z) ;

φa = −
√

2 m δa3 + λa , λa = δa3 s(ρ, z) ;

q =

(

q1(ρ, z)
0

)

. (3.57)

Substituting this Ansatz into the equations of motion, written extensively in Eqs. (B.91)-(B.93), one
obtains the coupled differential equations Eqs. (B.95a)-(B.95g). A priori this system of equations seems
to be an overdetermined system with respect to the function f(ρ, z). However as we have shown in the
previous sections, the chosen Ansatz is well suited for both the monopole and the vortex, and hence we have
assumed the existence of a solution to all the equations, solving only the system (B.95d,B.95e,B.95f,B.95g).
After the solution was obtained, we plugged it into the constraint equations (B.96a-B.96b) as well as the
remaining second order equation (B.95b) and indeed verified that the solution satisfies all equations.

In solving the system of these differential equations the relaxation method is very useful. We introduce
a fictitious time dependence into each of the profile functions and then write all the equations as:

Ei =
∂hi

∂t
(3.58)

where Ei denotes the equation of motion for the profile function hi, which is obeyed when Ei = 0. It is
important that the equation Ei is of second order in spatial derivatives and that the sign of the Laplace
operator is positive: Ei = ∂2

j hi + · · · with j summing over spatial dimensions. In this way the equation
with the fictitious time-dependence resembles (a modified form of) the well-known heat equation, and
when a stationary solution has been found, i.e. ∂thi = 0 the equation of motion for hi has been obtained.

First we need to impose some reasonable initial conditions (i.e. a guess of the right solution) for the
profile functions at t = 0 and let the system evolve till a static solution is found. This was done by
patching together three different solutions to the equations of motion. The first solution is the non-BPS

11

z

ρ

φ z

ρ
φ

exact for   g (SU(N)) = g (U(1)) 
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Color-flavor magnetic flux in the monopole-vortex complex
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(a) (b)

Figure 4: The behavior of the magnetic field in the soliton complex near the monopole region. In (a) is
shown a stream line plot while the intensity of the magnetic field is also shown in (b) by means of the
color scheme. For negative values of the cylindrically radial coordinate ρ the plot is simply a mirror,
i.e. in order to illustrate a cross section of the system.

Figure 5: The magnetic field in the complete monopole-vortex-antimonopole soliton complex. For negative
values of the cylindrically radial coordinate ρ the plot is simply a mirror, i.e. in order to illustrate a cross
section of the system.

15

direction of the color magnetic fields
near the monopole center

the same as the left figure, 
but with the field intensity

also shown 
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•  MV complex in SU(2)➞U(1)➞1 system
     studied recently in the limit,  [monopole=point; vortex = thin line], with duality
     transformations explicitly performed

•  MV complex  in SU(2)➞U(1)➞1 system
     in a θ  vacuum of SU(2);
     Dual system solved in the presence of a
     static monopole

Chatterjee-Lahiri  JHEP  ’10

Konishi-Michelini-Ohashi  PR  ’10

Analytic results

Solving for χµν this gives

χµν =
m

2

1

a2
+ + a2

−

(a+Gµν + a−G̃µν) ; (31)

the final form of the Lagrangian is

L =
1

12
H2

µνλ −
m2

4 (1 + α2)
(GµνGµν + α GµνG̃µν) +

m

2g
GµνΣ

µν , (32)

instead of Eq. (23). Actually, we must write Fµν +Mµν instead of Fµν above, but the way Mµν

enters the final result through the constraint Eq. (24) is not modified.

The equations of motion following from Eq. (32) are:

∂σHσµν = −
m2

1 + α2
(Gµν + αG̃µν) +

m

g
Σµν, (33)

1

1 + α2
∂µ(Gµν + αG̃µν) = −

1

m
jν , α ≡

θg2

8π2
. (34)

To solve Eqs. (33) and (34), set

Kµ ≡ ∂λGµλ, Lµ ≡ ∂λG̃µλ =
1

6
εµνρσHνρσ . (35)

One has from Eq. (34)

1

1 + α2
(Kµ + αLµ) =

1

m
jµ , (36)

while from Eqs. (33)

−(∂µLν − ∂νLµ) +
m2

1 + α2
(G̃µν − αGµν) =

m

g
Σ̃µν, (37)

and hence

∂µ∂µLν +
m2

1 + α2
(Lν − αKν) = m j̃ν , (38)

where we have defined

j̃ν ≡ −
1

g
∂µ Σ̃µν, Σ̃µν ≡

1

2
εµνρσΣρσ . (39)

Combining Eq. (36) and Eq. (38) we have an explicit solution for Lµ:

∂µ∂µLν + m2Lν = m (αjν + j̃ν) , ... Lµ =
m

! + m2
(αjν + j̃ν) . (40)

7

In order to interpret the result in terms of the original electric and magnetic fields, we note that

the duality transformation Eq. (28)-Eq. (32) implies

Fµν = −
m

1 + α2
(G̃µν − αGµν) = −

1

g
Σ̃µν −

1

m
(∂µLν − ∂νLµ)

= −
1

g
Σ̃µν −

1

! + m2

[

∂µ(αjν + j̃ν) − (µ ↔ ν)
]

. (41)

For instance, let us consider a massive static monopole sitting at r = 0 with a vortex attached

to it and extending into the −ẑ direction:

Σ30 = −Σ03 = 4π n δ(x)δ(y)θ(−z) , Σµν = 0 (µν) #= (30), (03) ; (42)

j0 =
4π n

g
δ3(r), ji = 0 ; i = 1, 2, 3 ; j̃ν = −

1

g
ελν03 ∂λΣ03 . (43)

From Eq. (41) one finds that (we recall α = θg2/8π2)

Ei = F0i = α B(mon)
i , Bi =

1

2
εijkFjk = B(mon)

i + B(vor)δ3
i , (44)

where

B(mon)
i =

n

g
∂iG(r), B(vor) =

n

g
m2

∫ 0

−∞

dz′ G(x, y, z − z′) , (45)

and G(r) is the Green function, having the Yukawa form

G(r) =
4π

−∆ + m2
δ3(r) =

e−mr

r
. (46)

Note the clear-cut separation of the monopole and vortex contributions to magnetic (and electric)

fields, Eq. (44).

In order to see magnetic Gauss’ theorem at work, let us integrate the magnetic flux through

the surface of a sphere centered at the origin (the monopole position), of an arbitrary radius R,

Φ(R) =

∫

∂S

dS · B , (47)

that is,

Φ(R) =

∫

S

d3r ∂i(B
(mon)
i + B(vor)δ3

i ) =
n

g

∫

S

d3r ∆G(r) +

∫

S

d3r ∂3B
(vor) . (48)

By using Eq. (45) and Eq. (46) we see that

Φ(R) = −
4πn

g
, (49)
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In order to interpret the result in terms of the original electric and magnetic fields, we note that
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1

g
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1

m
(∂µLν − ∂νLµ)

= −
1

g
Σ̃µν −

1

! + m2
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∂µ(αjν + j̃ν) − (µ ↔ ν)
]

. (41)
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which gives rise to a functional delta function

δ(∂µbµ(x)) . (13)

The constraint can be solved by introducing antisymmetric fields Bµν(x),

bµ =
v2

2
√

2
εµνρσ∂νBρσ =

v2

6
√

2
εµνρσHνρσ , (14)

Hνρσ ≡ ∂νBρσ + ∂ρBσν + ∂σBνρ

being a completely antisymmetric tensor field. One is left with the Lagrangian

−
1

4
(Fµν + Mµν)

2 −
m

2
εµνρσAµ∂νBρσ +

1

12
H2

µνλ +
m

2g
BµνΣ

µν −
m

4
εµνρσMµνBρσ (15)

where we have set

m ≡
g v2√

2
. (16)

Now we dualize Aµ by writing

∫

[dAµ] exp i

∫

d4x {−
1

4
(Fµν + Mµν)

2 − m εµνρσAµ∂νBρσ}

=

∫

[dAµ][dχµν] exp i

∫

d4x {−χ2
µν + χµν εµνρσ(Fρσ + Mρσ)/2 − m εµνρσAµ∂νBρσ/2}

=

∫

[dχµν] δ(εµνρσ∂ν(χρσ − mBρσ/2)) exp i

∫

d4x {−χ2
µν + χµνεµνρσMρσ/2} (17)

Again the constraint can be solved by setting

χµν =
1

2
(∂µAD ν − ∂νAD µ + m Bµν) (18)

and taking the dual gauge field AD µ as the independent variables. As

jµ = ∂ν

1

2
εµνρσMρσ = ∂ν M̃µν (19)

represents the monopole current, one sees from Eq. (17) and Eq. (18) that Aµ
D is locally coupled

to it. The Lagrangian is now

L =
1

12
H2

µνλ −
1

4
(∂µAD ν − ∂νAD µ + m Bµν)

2 +
m

2g
BµνΣ

µν + ADµ jµ . (20)

Finally, observing that there is a (dual) gauge invariance of the form,

δBµν = ∂µΛν − ∂νΛµ; δAµ
D = −m Λµ , (21)

5

Witten’s effect (U(1) elec. charge of the monopole) visible only near the monopole center
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• The whole  MV  complex breaks SU(N)C+F  (exact degeneracy under):   

•  The degeneracy between e.g.,  (1 N+1) and (2 N+1) monopoles,  is broken by the  
   squark vev   (cfr. old difficulties of non-Abelian monopoles)
   Demise of the naïve “non-Abelian monopole”  ( no multiplet of  SU(N) ⊂ SU(N+1)  )

•  Resurrection  of  an exact SU(N)C+F  symmetry  (continuous CPN-1  degeneracy) under the 
simultaneous CF rotations of the whole complex  ⇒ 

• A new exact (magnetic) continuous symmetry for the monopole;
under which  monopole ~  N  of  SU(N)    :   
the origin of the dual SU(N) group     

 (cfr.   Jackiw-Rebbi effects
       at   ~  1 / v1  )

Remarks:

• Non BPS:   Born-Oppenheimer type approximation 

As explained in Ref. [18], by choosing a generic set of bare masses mi and by deforming with the
N = 1 mass term µ Tr Φ2 the continuous vacuum degeneracy is lifted altogether, leaving these discrete
set of vacua. At small mi and µ (! Λ) the interactions become strong in the infrared, in all these vacua.
These are indeed the vacua we are interested in.1

By tuning the bare squark masses mi to an equal, common value m, we see that an exact color-flavor
diagonal SU(r) symmetry survives in a vacuum with a given r. For definiteness, below we shall work

with the classical r = N vacuum where

〈φ〉 = v1

(

1N×N 0N×1

01×N −N

)

, 〈q〉 = 〈q̃†〉 = v2

(

1N×N

01×N

)

. (2.14)

and

v1 ≡ −
m
√

2
, v2 ≡

√

(N + 1) m µ . (2.15)

are obtained by taking such a limit. Note that in this vacuum the gauge group SU(N +1) is completely
broken; at the same time, however, the color-flavor diagonal global SU(N) symmetry

qU =

(

U
1

)

q U−1 ,
(

φU, AU
i

)

=

(

U
1

)

(φ, Ai)

(

U−1

1

)

, (2.16)

(U ∈ SU(N) ⊂ SU(N + 1)) remains unbroken by both VEVs. It is an exact global symmetry of the
whole system. The system is in the so-called color-flavor locked phase. A hierarchical symmetry breaking
pattern (1.1) is realized if

|m| ) |µ| ) Λ , ∴ |v1| ) |v2| . (2.17)

Remarks

(i) The terms containing the adjoint scalar mass µ play two crucial roles in our model. On the one hand,
they induce the small squark condensates, (2.14), bringing the system into a completely Higgsed
phase. The existence of the vortex solutions in the low-energy approximation and their properties,
all rely on this parameter. Note that due to supersymmetry, the high-energy approximate monopole
solution (v2 = 0) and low-energy approximate vortex solutions (v1 = ∞) are both BPS-saturated.

On the other hand, non-vanishing µ introduces terms in V2 which make both the low-energy vortex
and high-energy monopole “solutions” unstable (non-BPS). It is these terms which allow the two
solitons of different codimensions to get smoothly combined into a monopole-vortex complex.

(ii) Of course such a complex “soliton” is not a true solution of the field’s equations of motion; it is only
so under the condition that the monopole center positions are kept fixed. Under the assumption
of a hierarchical gauge symmetry breaking (2.17), this is not a problem: it is a perfectly sensible
(Born-Oppenheimer) procedure, as the motion of the massive monopole can be neglected in the first
instance, in the study of low-energy fluctuations of orientational zero modes of the whole complex.

(iii) Actually the case for working with non-BPS objects as these complex solitons can be made stronger.
Just as in the case of the real-world quark-antiquark-chromoelectric string composites (the mesons),

1This is one of the motivations for considering the system with generic masses and with µ += 0 first, and then eventually
taking the equal-mass or massless limit. On the contrary, if we considered directly the massless theory, or equal mass cases,
we would find flat directions (continuum vacuum degeneracy); at a generic point along such Higgs branches, the coupling
constant remain small at all scales.

3

cfr.  real-world mesons !

  ⇒  orientational zeromodes living in   SU(N)/U(N-1) ~ CPN-1
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Summary of Part I 

•  Global flavor SU(N) symmety unbroken (no Nambu-Goldstone bosons in 4D)

•  Soliton monopole-vortex complex breaks it to   SU(N-1)xU(1) 
      ➯ orientational zeromodes  (can fluctuate)  

b(z,t)

〈Φ〉 ∿   m   

SU(N+1)     SU(N) x U(1)       

〈Q〉 ∿   √ m μ  

 1

•  Gauge symmetry completely (hierarchically) broken

• ➯ Study  dynamics of b(z,t)  in the low-energy approximation for 
   general gauge group: non-Abelian vortices

endow the monopole
with fluctuating CPN-1  modes

~   N of a new (dual) SU(N) :
Origin of the dual gauge group

b(t)
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II.  Vortex zeromodes:
Nature of its fluctuation and GNO duality
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Non-Abelian vortices 

• Global (flavor) symmetry:      e.g.   U(N)  theory  with  Nf  = N  “squarks” 

•  “Color-flavor locked” phase

〈q〉=  v  1NxN

Hanany-Tong,                           ‘03
Auzzi-Bolognesi-Evslin-Konishi-Yung.    

Shifman-Yung, ... (Minnesota).
Eto-Nitta-Ohashi-Sakai- ... (TiTech, Tokyo).
Tong,   (Cambridge). 
Pisa group,                             ‘03-’11

Def:    Vortex solutions with continuous (non-Abelian) moduli

color

flavor • Local gauge symmetry broken (Higgs) 

•  Global symmetry  GF  = GC+F =SU(N)  unbroken

•  Individual vortex breaks it 

 ➯ Orientational zeromodes  in  SU(N)/ U(N-1) =CPN-1      

➯  vortex solutions

 Natural generalizations of   ANO vortex  

➯ They can fluctuate in (z,t)

(q)i
α =





q(1)
1 q(2)

1 · · · q(N)
1

q(1)
2 q(2)

2

...
...

...
...

. . . . . .
...

...
...

q(1)
N q(2)

N · · · 0 q(N)
N
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1 Introduction

The last several years have witnessed quite an unforeseen progress in our understanding of

non-Abelian vortices, i.e. soliton vortex solutions in four (or three-) dimensional gauge theo-

ries possessing exact, continuous non-Abelian moduli. These continuous zero-modes arise from

the breaking (by the soliton vortex) of an exact color-flavor diagonal symmetry of the system

under consideration. The structure of their moduli, the varieties and group-theoretic properties

of these modes as well as their dynamics, and the dependence of all these on the details of the

theory such as the matter content and gauge groups, etc. turn out to be surprisingly rich. In

spite of quite an impressive progress made in the last several years, the full implication of these

theoretical developments is as yet to be seen.

In the present work we turn our attention to the low-energy vortex dynamics. In particular our

aim is to construct the low-energy effective action describing the fluctuations of the orientational

moduli parameters on the vortex worldsheet, generalizing the results found several years ago in

the context of U(N) models [1]-[3]. For concreteness and for simplicity, we start our discussion

with the case of the SO(2N) × U(1) and USp(2N) × U(1) theories, although our method

is quite general. In the case of the SU(N) × U(1) theory our result exactly reduces to the

one found earlier; furthermore we shall obtain the effective action for a few other cases with

higher-winding vortices in U(N) and SO(2N) theories.

2 Self-dual vortex solutions and the orientational moduli

Our system is a simple generalization of the Abelian Higgs model with quartic scalar potentials

L = −
1

4e2
F 0

µνF 0µν −
1

4g2
F a

µνF aµν + (Dµqf)
† Dµqf −

e2

2

∣
∣
∣
∣
q†

f t0qf −
v2

√
4N

∣
∣
∣
∣

2

−
g2

2

∣
∣
∣q

†
f taqf

∣
∣
∣

2
,

(1)

to a general class of gauge groups G′ × U(1) where G′ is any simple Lie group. To concretize

our idea let us consider two classes of theories G′ = SO(2N), USp(2N) with any N ≥ 1.

The repeated indices are summed: a = 1, . . . , dim(G′) labels the generators of G′, 0 indicates

the Abelian gauge field, f = 1, . . . , Nf labels the matter flavors (“scalar quark” fields), all of

them in the fundamental representation of G′.1 The covariant derivatives and the field tensors

1We adopt the convention where the metric ηµν = diag(+, −, −, −).

1

The models  (with G’ x U(1), G’ = SU(N), SO(N), USp(2N),... gauge groups with appprop flavor)

• G’ =SU(N) case studied extensively   ➯  Examples of  SU(2)xU(1) 

Nature of the orientational zero modes

How they transform  (GNO duality !);   higher-winding cases subtle

How they fluctuate  (Worldsheet effective action) 

• Rich physics and mathematics  (general gauge groups, structure of the vortex 
moduli space -- non-trivial complex manifold;  semi-local vortices;  fractional vortices; non 
BPS vortices; interactions and stability; higher-winding vortices; group theory of NA 
vortices; vortices in high-density QCD; multi-component superconductors  )     

•  Here: 

 ‘03-’11

•  Ignore the massive monopoles  of   G ➞ G’ x U(1);  ϕ = 〈ϕ〉

➯ Vortices are BPS 
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Methods of analysis

 • The standard field equations of motion 
     (most physical, and intuitive; standard differential eqs,   Taubes eqs., existence, stability analysis  )

• The moduli-matrix
    (vortex moduli as complex manifolds; transformation properties )

• The Kähler-quotient 
    (group-theoretic aspects)
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A global continuous symmetry broken spontaneously  
➯ a massless (Nambu-Goldstone) particle

“vacuum”

Nambu-Goldstone modes  ( Cfr.  π  mesons
  of  SU(2)×SU(2) /SU(2)  )

Orientational zeromodes are sort of Nambu-Goldstone modes propagating along the 
vortex axis only (no symmetry breaking in the bulk) 

V ∝ (|φ|2 − ξ)2

Re Φ

Im Φ

z

t

Effective vortex worldsheet action 

Gudnason, Jiang, Konishi  2010

t

z

Vortex worldsheet

⏎
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A naïve guess:

In a similar spirit, we study in a later section certain subclasses of vortices among given

winding-number solutions, transforming according to some definite irreducible representation of

the (dual of the) color-flavor group.

4 Vortex moduli fluctuations: the worldsheet action

As the orientational modes considered in Eq. (18) represent exact Nambu-Goldstone-like zero-

modes, nothing can prevent them from fluctuating in the space-time, from one point to another,

with an arbitrarily small expenditure of energy. However, they are not genuine Nambu-Goldstone

modes, as the vacuum itself is symmetric under SO(2N)C+F or USp(2N)C+F : they are

massive modes in the 4-dimensional space-time bulk. They propagate freely only along the

vortex-axis and in time. To study these excited modes we set the moduli parameters B to be

(quantum) fields of the form

B = B(xα) , xα = (x3, x0) . (28)

When this expression is substituted into the action
∫

d4x L, however, one immediately notes

that

∑

α=0,3

[
2N
∑

f=1

|∂αqf |2 +
∑

i=1,2

1

2g2
|Fiα|2

]

, (29)

leads to an infinite excitation energy, whereas one knows that the system must be excitable

without mass gap (classically).5

The way how the system reacts to the space-time dependent change of the moduli parameters,

can be found by an appropriate generalization of the procedure adopted earlier for the vortices

in U(N) theories. A key observation [1]-[3] is to introduce non-trivial gauge field components,

Aα, to cancel the large excitation energy from (29). A näıve guess would be

Aα = −i ρ(r) U−1∂αU , (30)

with U of Eq. (19) and some profile function ρ. This however does not work. The problem is

that even though

i U−1∂αU = i

(

X−1
2 B†∂αBX−1

2 − ∂αX
1
2 X−1

2 −X−1
2 ∂αB†Y −1

2

Y −1
2 ∂αBX−1

2 Y −1
2B∂αB†Y −1

2 − ∂αY
1
2Y −1

2

)

,

(31)

5Whereas in the far infrared, we expect that either the world-sheet effective sigma model will by quantum

effects develop a dynamic mass gap (as the CP N−1 model) or end up in a conformal vacuum – a possibility for

SO, USp theories [14].

7

➞ No  (massive as well as massless 
modes) 

certainly is in the algebra g′ of G′, it in general contains the fluctuations also in the U(N)

directions (massive modes). To extract the massless modes, we first project it on directions

orthogonal to the fixed matter-field orientation, Eq. (14), that is

i
(

U−1∂αU
)

⊥
≡

i

2

(

U−1∂αU − TU−1∂αUT
)

= i

(

0 −X−1
2 ∂αB†Y −1

2

Y −1
2 ∂αBX−1

2 0

)

,(32)

such that Tr [U−1∂αU |⊥ q0] = 0, where q0 indicates the vortex (14). As the quark fields

fluctuate in the SO(2N) (or USp(2N)) group space, we must keep Aα orthogonal to them.

The appropriate Ansatz then is

Aα = i ρ(r) U
(

U−1∂αU
)

⊥
U−1 , α = 0, 3 , (33)

together with q and Ai of Eq. (18). One sees that the following orthogonality conditions

Tr {Aα} = 0 , Tr
{

Aα UTU−1
}

= 0 , Tr
{

Aα ∂α

(

UTU−1
)}

= 0 (34)

are satisfied: the first two hold by construction; the third can easily be checked. The constant

BPS tension is independent of the vortex orientation; the excitation above it arises from the

following terms of the action

Tr |Dα q|2 = −
[
ρ2

2

(

φ2
1 + φ2

2

)

+ (1 − ρ) (φ1 − φ2)
2

]

Tr
[(

U−1∂αU
)

⊥

]2
, (35)

1

g2
Tr F 2

iα = −
1

g2

[

(∂rρ)2 +
1

r2
f2

NA (1 − ρ)2

]

Tr
[(

U−1∂αU
)

⊥

]2
, (36)

where we have used the identity

Tr
(

∂α

(

UTU−1
))2

= −Tr
(

U−1∂αU − TU−1∂αUT
)2

= −4 Tr
[(

U−1∂αU
)

⊥

]2
. (37)

By using Eq. (32) one arrives at the world-sheet effective action

S1+1 = 2β

∫

dtdz tr
{

X−1∂αB†Y −1∂αB
}

= 2β

∫

dtdz tr
{

(

1N + B†B
)−1

∂αB†
(

1N + BB†
)−1

∂αB
}

, (38)

where

β =
2π

g2
I (39)

and the trace tr acts on N × N matrices. Even though the sigma-model metric reflects the

specific symmetry breaking patterns of the system under consideration, the coefficient I turns
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8

certainly is in the algebra g′ of G′, it in general contains the fluctuations also in the U(N)

directions (massive modes). To extract the massless modes, we first project it on directions

orthogonal to the fixed matter-field orientation, Eq. (14), that is

i
(

U−1∂αU
)

⊥
≡

i

2

(

U−1∂αU − TU−1∂αUT
)

= i

(

0 −X−1
2 ∂αB†Y −1

2

Y −1
2 ∂αBX−1

2 0

)

,(32)

such that Tr [U−1∂αU |⊥ q0] = 0, where q0 indicates the vortex (14). As the quark fields

fluctuate in the SO(2N) (or USp(2N)) group space, we must keep Aα orthogonal to them.

The appropriate Ansatz then is

Aα = i ρ(r) U
(

U−1∂αU
)

⊥
U−1 , α = 0, 3 , (33)

together with q and Ai of Eq. (18). One sees that the following orthogonality conditions

Tr {Aα} = 0 , Tr
{

Aα UTU−1
}

= 0 , Tr
{

Aα ∂α

(

UTU−1
)}

= 0 (34)

are satisfied: the first two hold by construction; the third can easily be checked. The constant

BPS tension is independent of the vortex orientation; the excitation above it arises from the

following terms of the action

Tr |Dα q|2 = −
[
ρ2

2

(

φ2
1 + φ2

2

)

+ (1 − ρ) (φ1 − φ2)
2

]

Tr
[(

U−1∂αU
)

⊥

]2
, (35)

1

g2
Tr F 2

iα = −
1

g2

[

(∂rρ)2 +
1

r2
f2

NA (1 − ρ)2

]

Tr
[(

U−1∂αU
)

⊥

]2
, (36)

where we have used the identity

Tr
(

∂α

(

UTU−1
))2

= −Tr
(

U−1∂αU − TU−1∂αUT
)2

= −4 Tr
[(

U−1∂αU
)

⊥

]2
. (37)

By using Eq. (32) one arrives at the world-sheet effective action

S1+1 = 2β

∫

dtdz tr
{

X−1∂αB†Y −1∂αB
}

= 2β

∫

dtdz tr
{

(

1N + B†B
)−1

∂αB†
(

1N + BB†
)−1

∂αB
}

, (38)

where

β =
2π

g2
I (39)

and the trace tr acts on N × N matrices. Even though the sigma-model metric reflects the

specific symmetry breaking patterns of the system under consideration, the coefficient I turns

8

➯
Projection onto
the Nambu-Goldstone
modes

In our case,  the scalar q  rotates:  the correct  Ansatz  is:

certainly is in the algebra g′ of G′, it in general contains the fluctuations also in the U(N)

directions (massive modes). To extract the massless modes, we first project it on directions

orthogonal to the fixed matter-field orientation, Eq. (14), that is

i
(

U−1∂αU
)

⊥
≡

i

2

(

U−1∂αU − TU−1∂αUT
)

= i

(

0 −X−1
2 ∂αB†Y −1

2

Y −1
2 ∂αBX−1

2 0

)

,(32)

such that Tr [U−1∂αU |⊥ q0] = 0, where q0 indicates the vortex (14). As the quark fields

fluctuate in the SO(2N) (or USp(2N)) group space, we must keep Aα orthogonal to them.

The appropriate Ansatz then is

Aα = i ρ(r) U
(

U−1∂αU
)

⊥
U−1 , α = 0, 3 , (33)

together with q and Ai of Eq. (18). One sees that the following orthogonality conditions

Tr {Aα} = 0 , Tr
{

Aα UTU−1
}

= 0 , Tr
{

Aα ∂α

(

UTU−1
)}

= 0 (34)

are satisfied: the first two hold by construction; the third can easily be checked. The constant

BPS tension is independent of the vortex orientation; the excitation above it arises from the

following terms of the action

Tr |Dα q|2 = −
[
ρ2

2

(

φ2
1 + φ2

2

)

+ (1 − ρ) (φ1 − φ2)
2

]

Tr
[(

U−1∂αU
)

⊥

]2
, (35)

1

g2
Tr F 2

iα = −
1

g2

[

(∂rρ)2 +
1

r2
f2

NA (1 − ρ)2

]

Tr
[(

U−1∂αU
)

⊥

]2
, (36)

where we have used the identity

Tr
(

∂α

(

UTU−1
))2

= −Tr
(

U−1∂αU − TU−1∂αUT
)2

= −4 Tr
[(

U−1∂αU
)

⊥

]2
. (37)

By using Eq. (32) one arrives at the world-sheet effective action

S1+1 = 2β

∫

dtdz tr
{

X−1∂αB†Y −1∂αB
}

= 2β

∫

dtdz tr
{

(

1N + B†B
)−1

∂αB†
(

1N + BB†
)−1

∂αB
}

, (38)

where

β =
2π

g2
I (39)

and the trace tr acts on N × N matrices. Even though the sigma-model metric reflects the

specific symmetry breaking patterns of the system under consideration, the coefficient I turns

8

certainly is in the algebra g′ of G′, it in general contains the fluctuations also in the U(N)

directions (massive modes). To extract the massless modes, we first project it on directions

orthogonal to the fixed matter-field orientation, Eq. (14), that is

i
(

U−1∂αU
)

⊥
≡

i

2

(

U−1∂αU − TU−1∂αUT
)

= i

(

0 −X−1
2 ∂αB†Y −1

2

Y −1
2 ∂αBX−1

2 0

)

,(32)

such that Tr [U−1∂αU |⊥ q0] = 0, where q0 indicates the vortex (14). As the quark fields

fluctuate in the SO(2N) (or USp(2N)) group space, we must keep Aα orthogonal to them.

The appropriate Ansatz then is

Aα = i ρ(r) U
(

U−1∂αU
)

⊥
U−1 , α = 0, 3 , (33)

together with q and Ai of Eq. (18). One sees that the following orthogonality conditions

Tr {Aα} = 0 , Tr
{

Aα UTU−1
}

= 0 , Tr
{

Aα ∂α

(

UTU−1
)}

= 0 (34)

are satisfied: the first two hold by construction; the third can easily be checked. The constant

BPS tension is independent of the vortex orientation; the excitation above it arises from the

following terms of the action

Tr |Dα q|2 = −
[
ρ2

2

(

φ2
1 + φ2

2

)

+ (1 − ρ) (φ1 − φ2)
2

]

Tr
[(

U−1∂αU
)

⊥

]2
, (35)

1

g2
Tr F 2

iα = −
1

g2

[

(∂rρ)2 +
1

r2
f2

NA (1 − ρ)2

]

Tr
[(

U−1∂αU
)

⊥

]2
, (36)

where we have used the identity

Tr
(

∂α

(

UTU−1
))2

= −Tr
(

U−1∂αU − TU−1∂αUT
)2

= −4 Tr
[(

U−1∂αU
)

⊥

]2
. (37)

By using Eq. (32) one arrives at the world-sheet effective action

S1+1 = 2β

∫

dtdz tr
{

X−1∂αB†Y −1∂αB
}

= 2β

∫

dtdz tr
{

(

1N + B†B
)−1

∂αB†
(

1N + BB†
)−1

∂αB
}

, (38)

where

β =
2π

g2
I (39)

and the trace tr acts on N × N matrices. Even though the sigma-model metric reflects the

specific symmetry breaking patterns of the system under consideration, the coefficient I turns

8

certainly is in the algebra g′ of G′, it in general contains the fluctuations also in the U(N)

directions (massive modes). To extract the massless modes, we first project it on directions

orthogonal to the fixed matter-field orientation, Eq. (14), that is

i
(

U−1∂αU
)

⊥
≡

i

2

(

U−1∂αU − TU−1∂αUT
)

= i

(

0 −X−1
2 ∂αB†Y −1

2

Y −1
2 ∂αBX−1

2 0

)

,(32)

such that Tr [U−1∂αU |⊥ q0] = 0, where q0 indicates the vortex (14). As the quark fields

fluctuate in the SO(2N) (or USp(2N)) group space, we must keep Aα orthogonal to them.

The appropriate Ansatz then is

Aα = i ρ(r) U
(

U−1∂αU
)

⊥
U−1 , α = 0, 3 , (33)

together with q and Ai of Eq. (18). One sees that the following orthogonality conditions

Tr {Aα} = 0 , Tr
{

Aα UTU−1
}

= 0 , Tr
{

Aα ∂α

(

UTU−1
)}

= 0 (34)

are satisfied: the first two hold by construction; the third can easily be checked. The constant

BPS tension is independent of the vortex orientation; the excitation above it arises from the

following terms of the action

Tr |Dα q|2 = −
[
ρ2

2

(

φ2
1 + φ2

2

)

+ (1 − ρ) (φ1 − φ2)
2

]

Tr
[(

U−1∂αU
)

⊥

]2
, (35)

1

g2
Tr F 2

iα = −
1

g2

[

(∂rρ)2 +
1

r2
f2

NA (1 − ρ)2

]

Tr
[(

U−1∂αU
)

⊥

]2
, (36)

where we have used the identity

Tr
(

∂α

(

UTU−1
))2

= −Tr
(

U−1∂αU − TU−1∂αUT
)2

= −4 Tr
[(

U−1∂αU
)

⊥

]2
. (37)

By using Eq. (32) one arrives at the world-sheet effective action

S1+1 = 2β

∫

dtdz tr
{

X−1∂αB†Y −1∂αB
}

= 2β

∫

dtdz tr
{

(

1N + B†B
)−1

∂αB†
(

1N + BB†
)−1

∂αB
}

, (38)

where

β =
2π

g2
I (39)

and the trace tr acts on N × N matrices. Even though the sigma-model metric reflects the

specific symmetry breaking patterns of the system under consideration, the coefficient I turns

8

then 

certainly is in the algebra g′ of G′, it in general contains the fluctuations also in the U(N)

directions (massive modes). To extract the massless modes, we first project it on directions

orthogonal to the fixed matter-field orientation, Eq. (14), that is

i
(

U−1∂αU
)

⊥
≡

i

2

(

U−1∂αU − TU−1∂αUT
)

= i

(

0 −X−1
2 ∂αB†Y −1

2

Y −1
2 ∂αBX−1

2 0

)

,(32)

such that Tr [U−1∂αU |⊥ q0] = 0, where q0 indicates the vortex (14). As the quark fields

fluctuate in the SO(2N) (or USp(2N)) group space, we must keep Aα orthogonal to them.

The appropriate Ansatz then is

Aα = i ρ(r) U
(

U−1∂αU
)

⊥
U−1 , α = 0, 3 , (33)

together with q and Ai of Eq. (18). One sees that the following orthogonality conditions

Tr {Aα} = 0 , Tr
{

Aα UTU−1
}

= 0 , Tr
{

Aα ∂α

(

UTU−1
)}

= 0 (34)

are satisfied: the first two hold by construction; the third can easily be checked. The constant

BPS tension is independent of the vortex orientation; the excitation above it arises from the

following terms of the action

Tr |Dα q|2 = −
[
ρ2

2

(

φ2
1 + φ2

2

)

+ (1 − ρ) (φ1 − φ2)
2

]

Tr
[(

U−1∂αU
)

⊥

]2
, (35)

1

g2
Tr F 2

iα = −
1

g2

[

(∂rρ)2 +
1

r2
f2

NA (1 − ρ)2

]

Tr
[(

U−1∂αU
)

⊥

]2
, (36)

where we have used the identity

Tr
(

∂α

(

UTU−1
))2

= −Tr
(

U−1∂αU − TU−1∂αUT
)2

= −4 Tr
[(

U−1∂αU
)

⊥

]2
. (37)

By using Eq. (32) one arrives at the world-sheet effective action

S1+1 = 2β

∫

dtdz tr
{

X−1∂αB†Y −1∂αB
}

= 2β

∫

dtdz tr
{

(

1N + B†B
)−1

∂αB†
(

1N + BB†
)−1

∂αB
}

, (38)

where

β =
2π

g2
I (39)

and the trace tr acts on N × N matrices. Even though the sigma-model metric reflects the

specific symmetry breaking patterns of the system under consideration, the coefficient I turns

8

➯

out to be universal, and indeed is formally identical to the one found for the U(N) model 6

I =

∫ ∞

0

dr r

[

(∂rρ)2 +
1

r2
f2

NA (1 − ρ)2 +
g2ρ2

2

(

φ2
1 + φ2

2

)

+ g2(1 − ρ) (φ1 − φ2)
2

]

.

(40)

The equation of motion for ρ minimizing the coupling constant β (the Kähler class) of the vortex

world-sheet sigma model can be solved accordingly by [2, 3]

ρ = 1 −
φ1

φ2

, (41)

as can be checked by a simple calculation making use of the BPS equations for the profile functions

φ1,2, fNA. The integral I turns out to be a total derivative

I =

∫ ∞

0

dr ∂r

(

fNA

[
(

φ1

φ2

)2

− 1

])

, (42)

and by using the boundary conditions (12) the final result is

I = fNA(0) = 1 . (43)

The action found in Eq. (38) is precisely that of the (1 + 1)-dimensional sigma model on

Hermitian symmetric spaces SO(2N)/U(N) and USp(2N)/U(N) [6, 15].7 The metric is

Kählerian, with the Kähler potential given by

K = tr log
(

1N + BB†
)

, gIJ̄ =
∂2K

∂BI∂B†J̄
, (44)

where I, J̄ = {(i, j) = 1, . . . , N | i ≤ j}.

In the context of N = 2 supersymmetric models, the low-energy effective vortex action is a

two-dimensional, N = (2, 2) supersymmetric sigma model [15]:

Ssusy
1+1 = 2β

∫

dtdz d2θ d2θ̄ K(B, B̄) (45)

in terms of the Kähler potential Eq. (44), where B now is a matrix chiral superfield (B̄ anti-

chiral superfield containing B†). The β-functions for these sigma models have been determined

in [15]. In the supersymmetric case, the number of quantum vacua is given by the Euler charac-

teristic of the manifold on which the world-sheet action lives [17, 18], which can be found in the

mathematical literature [19] and we show the relevant numbers in Table 1.

6In that case the effective sigma model has a CP N−1 target space [2, 3]; see Subsec. 5.1 below.
7In Ref. [16], these NLσMs on Hermitian symmetric spaces were obtained from supersymmetric gauge theories

by gauging a symmetry big enough to absorb all quasi-Nambu-Goldstone bosons (which are contained in mixed-

type multiplets) and hence obtain a compact manifold parametrized by only pure-type multiplets.
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1 Introduction

The last several years have witnessed quite an unforeseen progress in our understanding of

non-Abelian vortices, i.e. soliton vortex solutions in four (or three-) dimensional gauge theo-

ries possessing exact, continuous non-Abelian moduli. These continuous zero-modes arise from

the breaking (by the soliton vortex) of an exact color-flavor diagonal symmetry of the system

under consideration. The structure of their moduli, the varieties and group-theoretic properties

of these modes as well as their dynamics, and the dependence of all these on the details of the

theory such as the matter content and gauge groups, etc. turn out to be surprisingly rich. In

spite of quite an impressive progress made in the last several years, the full implication of these

theoretical developments is as yet to be seen.

In the present work we turn our attention to the low-energy vortex dynamics. In particular our

aim is to construct the low-energy effective action describing the fluctuations of the orientational

moduli parameters on the vortex worldsheet, generalizing the results found several years ago in

the context of U(N) models [1]-[3]. For concreteness and for simplicity, we start our discussion

with the case of the SO(2N) × U(1) and USp(2N) × U(1) theories, although our method

is quite general. In the case of the SU(N) × U(1) theory our result exactly reduces to the

one found earlier; furthermore we shall obtain the effective action for a few other cases with

higher-winding vortices in U(N) and SO(2N) theories.

2 Self-dual vortex solutions and the orientational moduli

Our system is a simple generalization of the Abelian Higgs model with quartic scalar potentials

L = −
1

4e2
F 0

µνF 0µν −
1

4g2
F a

µνF aµν + (Dµqf)
† Dµqf −

e2

2

∣
∣
∣
∣
q†

f t0qf −
v2

√
4N

∣
∣
∣
∣

2

−
g2

2

∣
∣
∣q

†
f taqf

∣
∣
∣

2
,

(1)

to a general class of gauge groups G′ × U(1) where G′ is any simple Lie group. To concretize

our idea let us consider two classes of theories G′ = SO(2N), USp(2N) with any N ≥ 1.

The repeated indices are summed: a = 1, . . . , dim(G′) labels the generators of G′, 0 indicates

the Abelian gauge field, f = 1, . . . , Nf labels the matter flavors (“scalar quark” fields), all of

them in the fundamental representation of G′.1 The covariant derivatives and the field tensors

1We adopt the convention where the metric ηµν = diag(+, −, −, −).
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the context of U(N) models [1]-[3]. For concreteness and for simplicity, we start our discussion

with the case of the SO(2N) × U(1) and USp(2N) × U(1) theories, although our method
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to a general class of gauge groups G′ × U(1) where G′ is any simple Lie group. To concretize

our idea let us consider two classes of theories G′ = SO(2N), USp(2N) with any N ≥ 1.

The repeated indices are summed: a = 1, . . . , dim(G′) labels the generators of G′, 0 indicates

the Abelian gauge field, f = 1, . . . , Nf labels the matter flavors (“scalar quark” fields), all of

them in the fundamental representation of G′.1 The covariant derivatives and the field tensors

1We adopt the convention where the metric ηµν = diag(+, −, −, −).
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1By choosing the plus sign for all of the U(1)N ⊂ G′ factors, one finds a solution of the form3

q =

(

eiθφ1(r)1N 0

0 φ2(r)1N

)

=
eiθφ1(r) + φ2(r)

2
12N +

eiθφ1(r) − φ2(r)

2
T ,

Ai =
1

2
εij

xj

r2
[(1 − f(r)) 12N + (1 − fNA(r))T ] , (10)

where

T = diag (1N, −1N) , (11)

and z, r, θ are cylindrical coordinates. The appropriate boundary conditions are

φ1,2(∞) =
v

√
2N

, f(∞) = fNA(∞) = 0 , φ1(0) = 0 , ∂rφ2(0) = 0 , f(0) = fNA(0) = 1 .

(12)

By going to singular gauge,

q → diag
(

e−iθ1N, 1N

)

q , (13)

the vortex takes the form

q =

(

φ1(r)1N 0

0 φ2(r)1N

)

=
φ1(r) + φ2(r)

2
12N +

φ1(r) − φ2(r)

2
T ,

Ai = −
1

2
εij

xj

r2
[f(r) 12N + fNA(r) T ] ; (14)

in this gauge the whole topological structure arises from the gauge-field singularity along the

vortex axis. The BPS equations (5)-(7) for the profile functions are given (in both gauges) by

∂rφ1 =
1

2r
(f + fNA) φ1 , ∂rφ2 =

1

2r
(f − fNA) φ2 , (15)

1

r
∂rf =

e2

2

(

φ2
1 + φ2

2 −
v2

N

)

,
1

r
∂rfNA =

g2

2

(

φ2
1 − φ2

2

)

. (16)

The above is a particular vortex solution with a fixed (++ . . . +) orientation. As the system

has an exact SO(2N)C+F or USp(2N)C+F color-flavor diagonal (global) symmetry, respected

3It is convenient to work with the skew-diagonal basis for the SO(2N) group, i.e. the invariant tensors are

taken as

J =

(

0 1N

ε1N 0

)

, (9)

where ε = ± for SO(2N) and USp(2N) groups, respectively.
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3

f=1,2, ...  2N

are defined in the standard manner

Dµqf = ∂µqf + iAµq , Fµν = ∂µAν − ∂νAµ + i [Aµ, Aν] , Aµ = A0
µt0 + Aa

µta ,

(2)

with the normalization as follows

Tr
(

tatb
)

=
1

2
δab , t0 ≡

12N√
4N

. (3)

To allow the system to possess a vacuum with the maximally color-flavor locked symmetry, we

assume that number of matter flavors is Nf = 2N . The squark fields q can then conveniently

be represented as a color-flavor mixed matrix of dimension 2N × 2N , the color (flavor) index

running vertically (horizontally). The vacuum in which we work in2 is characterized by the

squark vacuum expectation value (VEV)

〈q〉 =
v

√
2N

12N . (4)

Performing a Bogomol’nyi completion one obtains the BPS (or self-dual) equations

D̄q = 0 , (5)

F 0
12 −

e2

√
4N

(

Tr(qq†) − v2
)

= 0 , (6)

F a
12t

a −
g2

4

(

qq† − J†(qq†)TJ
)

= 0 , (7)

where 2D̄ ≡ D1 + iD2 and z ≡ x1 + ix2 is the standard complex coordinate in the transverse

plane. A glance at Eq. (1) reveals that the BPS-saturated tension [4]

T = πv2k , k ∈ Z+ , (8)

is related to the U(1) winding only.

This last fact shows that a minimal vortex solution can be constructed [5] by letting the

scalar field wind (far from the vortex axis) by an overall U(1) phase rotation with half angle

(π), and completing (or canceling) it by a half winding (+π or −π) in each and all of the Cartan

subgroups U(1)N ⊂ G′. Depending on which signs are chosen in the N U(1) factors, we find

2N distinct solutions.
2See Subsec. 3.3 below.
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boundary
conditions
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Vortex of generic orientation  (singular gauge)

by the vacuum (4), which is broken by such a minimum vortex, the latter develops “orientational”

zero-modes. Degenerate vortex solutions can indeed be generated by color-flavor SO(2N) (or

USp(2N)) transformations

q → U q U−1 , Ai → UAi U−1 , (17)

as

q = U

(

φ1(r)1N 0

0 φ2(r)1N

)

U−1 =
φ1(r) + φ2(r)

2
12N +

φ1(r) − φ2(r)

2
UTU−1 ,

Ai = −
1

2
εij

xj

r2

[

f(r) 12N + fNA(r) UTU−1
]

, i = 1, 2 . (18)

Actually, the full SO(2N) (or USp(2N)) group does not act on the solution, as the latter

remains invariant under U(N) ⊂ SO(2N) (or USp(2N)). Only the coset SO(2N)/U(N)

(or USp(2N)/U(N)) acts non-trivially on it, and thus generates physically distinct solutions.4

An appropriate parametrization of the coset, valid in a coordinate patch including the above

solution, has been known for some time (called the reducing matrix) [6, 4],

U =

(

1N −B†

0 1N

) (

X−1
2 0

0 Y −1
2

) (

1N 0

B 1N

)

=

(

X−1
2 −B†Y −1

2

BX−1
2 Y −1

2

)

, (19)

where the matrices X and Y are defined by

X ≡ 1N + B†B , Y ≡ 1N + BB† , (20)

in terms of an N × N complex matrix B, being antisymmetric for SO(2N) and symmetric for

USp(2N). Note that the matrix (19) indeed satisfies the defining properties the two groups

U−1 = U†, UTJU = J , (21)

with the respective invariant tensor (9). The matrix B parametrizes the “Nambu-Goldstone”

modes of symmetry breaking (by the vortex)

SO(2N) → U(N) , or USp(2N) → U(N) , (22)

4As was studied in detail in Ref. [4], the vortex moduli space in SO(2N) (or USp(2N)) theories is a

non-trivial complex manifold, requiring at least 2N−1 (or 2N ) local coordinate neighborhoods (patches). The

moduli space structure is actually richer, as these vortices possess semi-local moduli (related to the size and shape

moduli) as well, besides the orientational moduli under consideration here, even with the minimum number of

flavors needed for a color-flavor locked phase, in contrast to the original U(N) model. Here we consider only the

orientational moduli related to the exact symmetry of the system.
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U=  “reducing 

matrix”
Delduc,Valent ’85

B = antisymm NxN  for  SO(2N);
    symm NxN  for  USp(2N);

1x N-1  for SU(N)
Allow the zeromodes to slowly fluctuate:

In a similar spirit, we study in a later section certain subclasses of vortices among given

winding-number solutions, transforming according to some definite irreducible representation of

the (dual of the) color-flavor group.

4 Vortex moduli fluctuations: the worldsheet action

As the orientational modes considered in Eq. (18) represent exact Nambu-Goldstone-like zero-

modes, nothing can prevent them from fluctuating in the space-time, from one point to another,

with an arbitrarily small expenditure of energy. However, they are not genuine Nambu-Goldstone

modes, as the vacuum itself is symmetric under SO(2N)C+F or USp(2N)C+F : they are

massive modes in the 4-dimensional space-time bulk. They propagate freely only along the

vortex-axis and in time. To study these excited modes we set the moduli parameters B to be

(quantum) fields of the form

B = B(xα) , xα = (x3, x0) . (28)

When this expression is substituted into the action
∫

d4x L, however, one immediately notes

that

∑

α=0,3

[
2N
∑

f=1

|∂αqf |2 +
∑

i=1,2

1

2g2
|Fiα|2

]

, (29)

leads to an infinite excitation energy, whereas one knows that the system must be excitable

without mass gap (classically).5

The way how the system reacts to the space-time dependent change of the moduli parameters,

can be found by an appropriate generalization of the procedure adopted earlier for the vortices

in U(N) theories. A key observation [1]-[3] is to introduce non-trivial gauge field components,

Aα, to cancel the large excitation energy from (29). A näıve guess would be

Aα = −i ρ(r) U−1∂αU , (30)

with U of Eq. (19) and some profile function ρ. This however does not work. The problem is

that even though

i U−1∂αU = i

(

X−1
2 B†∂αBX−1

2 − ∂αX
1
2 X−1

2 −X−1
2 ∂αB†Y −1

2

Y −1
2 ∂αBX−1

2 Y −1
2B∂αB†Y −1

2 − ∂αY
1
2Y −1

2

)

,

(31)

5Whereas in the far infrared, we expect that either the world-sheet effective sigma model will by quantum

effects develop a dynamic mass gap (as the CP N−1 model) or end up in a conformal vacuum – a possibility for

SO, USp theories [14].
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5Whereas in the far infrared, we expect that either the world-sheet effective sigma model will by quantum

effects develop a dynamic mass gap (as the CP N−1 model) or end up in a conformal vacuum – a possibility for

SO, USp theories [14].
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Aα, to cancel the large excitation energy from (29). A näıve guess would be
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that even though
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2 − ∂αX
1
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➞ No  (massive as well as massless 
modes) 

certainly is in the algebra g′ of G′, it in general contains the fluctuations also in the U(N)

directions (massive modes). To extract the massless modes, we first project it on directions

orthogonal to the fixed matter-field orientation, Eq. (14), that is

i
(

U−1∂αU
)

⊥
≡

i

2

(

U−1∂αU − TU−1∂αUT
)

= i

(

0 −X−1
2 ∂αB†Y −1

2

Y −1
2 ∂αBX−1

2 0

)

,(32)

such that Tr [U−1∂αU |⊥ q0] = 0, where q0 indicates the vortex (14). As the quark fields

fluctuate in the SO(2N) (or USp(2N)) group space, we must keep Aα orthogonal to them.

The appropriate Ansatz then is

Aα = i ρ(r) U
(

U−1∂αU
)

⊥
U−1 , α = 0, 3 , (33)

together with q and Ai of Eq. (18). One sees that the following orthogonality conditions

Tr {Aα} = 0 , Tr
{

Aα UTU−1
}

= 0 , Tr
{

Aα ∂α

(

UTU−1
)}

= 0 (34)

are satisfied: the first two hold by construction; the third can easily be checked. The constant

BPS tension is independent of the vortex orientation; the excitation above it arises from the

following terms of the action

Tr |Dα q|2 = −
[
ρ2

2

(

φ2
1 + φ2

2

)

+ (1 − ρ) (φ1 − φ2)
2

]

Tr
[(

U−1∂αU
)

⊥

]2
, (35)

1

g2
Tr F 2

iα = −
1

g2

[

(∂rρ)2 +
1

r2
f2

NA (1 − ρ)2

]

Tr
[(

U−1∂αU
)

⊥

]2
, (36)

where we have used the identity

Tr
(

∂α

(

UTU−1
))2

= −Tr
(

U−1∂αU − TU−1∂αUT
)2

= −4 Tr
[(

U−1∂αU
)

⊥

]2
. (37)

By using Eq. (32) one arrives at the world-sheet effective action

S1+1 = 2β

∫

dtdz tr
{

X−1∂αB†Y −1∂αB
}

= 2β

∫

dtdz tr
{

(

1N + B†B
)−1

∂αB†
(

1N + BB†
)−1

∂αB
}

, (38)

where

β =
2π

g2
I (39)

and the trace tr acts on N × N matrices. Even though the sigma-model metric reflects the

specific symmetry breaking patterns of the system under consideration, the coefficient I turns
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are satisfied: the first two hold by construction; the third can easily be checked. The constant

BPS tension is independent of the vortex orientation; the excitation above it arises from the

following terms of the action

Tr |Dα q|2 = −
[
ρ2

2

(

φ2
1 + φ2

2

)

+ (1 − ρ) (φ1 − φ2)
2

]

Tr
[(

U−1∂αU
)

⊥

]2
, (35)

1

g2
Tr F 2

iα = −
1

g2

[

(∂rρ)2 +
1

r2
f2

NA (1 − ρ)2

]

Tr
[(

U−1∂αU
)

⊥

]2
, (36)

where we have used the identity

Tr
(

∂α

(

UTU−1
))2

= −Tr
(

U−1∂αU − TU−1∂αUT
)2

= −4 Tr
[(

U−1∂αU
)

⊥

]2
. (37)

By using Eq. (32) one arrives at the world-sheet effective action

S1+1 = 2β

∫

dtdz tr
{

X−1∂αB†Y −1∂αB
}

= 2β

∫

dtdz tr
{

(

1N + B†B
)−1

∂αB†
(

1N + BB†
)−1

∂αB
}

, (38)

where

β =
2π

g2
I (39)

and the trace tr acts on N × N matrices. Even though the sigma-model metric reflects the

specific symmetry breaking patterns of the system under consideration, the coefficient I turns

8

then 

certainly is in the algebra g′ of G′, it in general contains the fluctuations also in the U(N)

directions (massive modes). To extract the massless modes, we first project it on directions

orthogonal to the fixed matter-field orientation, Eq. (14), that is

i
(

U−1∂αU
)

⊥
≡

i

2

(

U−1∂αU − TU−1∂αUT
)

= i

(

0 −X−1
2 ∂αB†Y −1

2

Y −1
2 ∂αBX−1

2 0

)

,(32)
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2
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U−1∂αU
)

⊥

]2
, (35)

1

g2
Tr F 2

iα = −
1

g2

[

(∂rρ)2 +
1

r2
f2

NA (1 − ρ)2

]

Tr
[(

U−1∂αU
)

⊥

]2
, (36)

where we have used the identity

Tr
(

∂α

(

UTU−1
))2

= −Tr
(

U−1∂αU − TU−1∂αUT
)2

= −4 Tr
[(

U−1∂αU
)

⊥

]2
. (37)

By using Eq. (32) one arrives at the world-sheet effective action

S1+1 = 2β

∫

dtdz tr
{

X−1∂αB†Y −1∂αB
}

= 2β

∫

dtdz tr
{

(

1N + B†B
)−1

∂αB†
(

1N + BB†
)−1

∂αB
}

, (38)

where

β =
2π

g2
I (39)

and the trace tr acts on N × N matrices. Even though the sigma-model metric reflects the

specific symmetry breaking patterns of the system under consideration, the coefficient I turns
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➯

out to be universal, and indeed is formally identical to the one found for the U(N) model 6

I =

∫ ∞

0

dr r

[

(∂rρ)2 +
1

r2
f2

NA (1 − ρ)2 +
g2ρ2

2

(

φ2
1 + φ2

2

)

+ g2(1 − ρ) (φ1 − φ2)
2

]

.

(40)

The equation of motion for ρ minimizing the coupling constant β (the Kähler class) of the vortex

world-sheet sigma model can be solved accordingly by [2, 3]

ρ = 1 −
φ1

φ2

, (41)

as can be checked by a simple calculation making use of the BPS equations for the profile functions

φ1,2, fNA. The integral I turns out to be a total derivative

I =

∫ ∞

0

dr ∂r

(

fNA

[
(

φ1

φ2

)2

− 1

])

, (42)

and by using the boundary conditions (12) the final result is

I = fNA(0) = 1 . (43)

The action found in Eq. (38) is precisely that of the (1 + 1)-dimensional sigma model on

Hermitian symmetric spaces SO(2N)/U(N) and USp(2N)/U(N) [6, 15].7 The metric is

Kählerian, with the Kähler potential given by

K = tr log
(

1N + BB†
)

, gIJ̄ =
∂2K

∂BI∂B†J̄
, (44)

where I, J̄ = {(i, j) = 1, . . . , N | i ≤ j}.

In the context of N = 2 supersymmetric models, the low-energy effective vortex action is a

two-dimensional, N = (2, 2) supersymmetric sigma model [15]:

Ssusy
1+1 = 2β

∫

dtdz d2θ d2θ̄ K(B, B̄) (45)

in terms of the Kähler potential Eq. (44), where B now is a matrix chiral superfield (B̄ anti-

chiral superfield containing B†). The β-functions for these sigma models have been determined

in [15]. In the supersymmetric case, the number of quantum vacua is given by the Euler charac-

teristic of the manifold on which the world-sheet action lives [17, 18], which can be found in the

mathematical literature [19] and we show the relevant numbers in Table 1.

6In that case the effective sigma model has a CP N−1 target space [2, 3]; see Subsec. 5.1 below.
7In Ref. [16], these NLσMs on Hermitian symmetric spaces were obtained from supersymmetric gauge theories

by gauging a symmetry big enough to absorb all quasi-Nambu-Goldstone bosons (which are contained in mixed-

type multiplets) and hence obtain a compact manifold parametrized by only pure-type multiplets.
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Remarks

• S  is a 2D sigma model with target Hermitian symmetric spaces

          SO(2N)/U(N)    or   USp(2N)/U(N)        

• Coupling given by 2π/g2     (calculation of β  universal )

• U(N)  model  

( justify/explain  the prescription there ) 

moduli space M χ(M)

SO(2N)
U(N)

2N−1

USp(2N)
U(N)

2N

CP N−1 = SU(N)
SU(N−1)×U(1)

N

GrN,k = SU(N)
S(U(k)×U(N−k))

 

N

k

!

QN−2 = SO(2N)
SO(2)×SO(2N−2)

2N

Table 1: Number of quantum vacua for the relevant vortices under consideration which is given

by the Euler characteristic χ.

5 Other examples

Our recipe for constructing the effective vortex action appears to be of considerable generality;

below a few other examples will be discussed.

5.1 U(N) vortices and the CP N−1 sigma model

For the fundamental (i.e. of the minimum winding) vortex of the U(N) model discussed by

Shifman et. al. [2, 3], the vortex Ansatz is very similar to Eq. (10) except for changes in the field

Ansatz and accordingly the reducing matrix U :

q =

(

eiθφ1(r) 0

0 φ2(r)1N−1

)

=
eiθφ1(r) + φ2(r)

2
1N +

eiθφ1(r) − φ2(r)

2
T , (46)

Ai = εij

xj

r2

[
1

N
(1 − f(r)) 1N +

1

2
(1 − fNA(r))

(

T −
2 − N

N
1N

)]

, T =

(

1 0

0 −1N−1

)

,

with the boundary conditions

φ1,2(∞) =
v

√
N

, f(∞) = fNA(∞) = 0 , φ1(0) = 0 , ∂rφ2(0) = 0 , f(0) = fNA(0) = 1 .

(47)

The unitary transformation U (the reducing matrix) giving rise to vortices of generic orientation

has the same form as in Eq. (19), except that the matrix B is now an (N − 1)-component

column-vector

B =







b1

...

bN−1







, (48)
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  ➞   CPN-1   sigma model                Auzzi-Bolognesi-Evslin-Konishi-Yung (2003);, 

                                                                              Gorsky-Shifman-Yung (2004) 

with the boundary conditions

φ1,2(∞) =
v

√
N

, f(∞) = fNA(∞) = 0 , φ1(0) = 0 , ∂rφ2(0) = 0 , f(0) = fNA(0) = k .

(55)

Being a composition of k vortices of minimum winding in the same orientation, it is obvious that

the vortex (54) transforms under the totally symmetric representation:

· · ·
︸ ︷︷ ︸

k

,

of the color-flavor SU(N)C+F group.

The construction of the effective vortex action in this case is almost identical to that in the

preceding subsection, in particular the reducing matrix acting non-trivially on the vortex is the

same as in the single U(N) vortex case, see Eqs. (48)-(49). The effective vortex action is the

same CP N−1 model (38). The only difference is in the value of the gauge profile functions at

the vortex core, Eq. (55). As a consequence the coefficient (the coupling strength) in front of the

action (38) (see Eq. (42)) is now given by

β =
2π

g2
I , I = fNA(0) = k . (56)

5.3 Completely antisymmetric k-winding vortices in the U(N) model

Consider now a k-vortex (with k < N) of the form

q :=

(

eiθφ1(r)1k 0

0 φ2(r)1N−k

)

, T =

(

1k 0

0 −1N−k

)

, (57)

Ai = εij

xj

r2

[
k

N
(1 − f(r)) 1N +

1

2
(1 − fNA(r))

(

T −
2k − N

N
1N

)]

,

with the following boundary conditions

φ1,2(∞) =
v

√
N

, f(∞) = fNA(∞) = 0 , φ1(0) = 0 , ∂rφ2(0) = 0 , f(0) = fNA(0) = 1 .

(58)

It is invariant under an SU(k) × SU(N − k) × U(1) ⊂ SU(N)C+F subgroup, showing that

it belongs to the completely antisymmetric k-th tensor representation:

...













k .
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The color-flavor transformations U acting non-trivially on it belong to the coset

GrN,k =
SU(N)

SU(k) × SU(N − k) × U(1)
, (59)

and is again of the standard form of the reducing matrix, Eq. (19), but now the matrix B is

a (N − k) × k complex matrix field, whose elements are the local coordinates of the Grass-

mannian manifold. The effective action – the world-sheet sigma model – is then simply given by

Eq. (38) with the standard normalization, Eqs. (39)-(43) and the Kähler potential is then given

by Eq. (44).

5.4 Higher-winding vortices in the SO(2N) model

Let us now consider doubly-wound vortex solutions in the SO(2N) × U(1) system. They fall

into distinct classes of solutions which do not mix under the SO(2N) transformations of the

original fields [5]; they are:8

k = 2 ,













n+
1 n−

1

n+
2 n−

2
...

...

n+
N−1 n−

N−1

n+
N n−

N













=













2 0

2 0
...

...

2 0

2 0













,













2 0

2 0
...

...

2 0

0 2













,













2 0

2 0
...

...

2 0

1 1













. . .













2 0

1 1
...

...

1 1

1 1













,













1 1

1 1
...

...

1 1

1 1













. (60)

These correspond to different SO(2N)C+F orbits, living in coset spaces SO(2N)/[U(N −
!) × SO(2!)], where ! is the number of (1, 1) pairs. Analogously vortices with k ≥ 3 can be

constructed. As was explained in Ref. [5], the argument that the minimum vortices transform

as two spinor representations implies that the k = 2 vortices (60) transform as various irre-

ducible antisymmetric tensor representations of SO(2N)C+F , appearing in the decomposition

of products of two spinors [24]:

2N−1 ⊗ 2N−1 or 2N−1 ⊗ 2N−1 , (61)

where the spinors of different chiralities are distinguished by the bar. For instance, the last

configuration of Eq. (60) is a singlet, the second last is the 2N representation, and so on.

8Here we use the notation of [5]. n±
i = k

2
± Ni ∈ Z, where k

2
is the winding in the overall U(1); Ni is the

winding number of the i-th Cartan U(1) factor. Ni ∈ Z/2 are quantized in half integers [5, 4]. In this notation

the fundamental vortex of Eq. (10) is simply







1 0
...

...

1 0







.

13

Kahler potential

out to be universal, and indeed is formally identical to the one found for the U(N) model 6

I =

∫ ∞

0

dr r

[

(∂rρ)2 +
1

r2
f2

NA (1 − ρ)2 +
g2ρ2

2

(

φ2
1 + φ2

2

)

+ g2(1 − ρ) (φ1 − φ2)
2

]

.

(40)

The equation of motion for ρ minimizing the coupling constant β (the Kähler class) of the vortex

world-sheet sigma model can be solved accordingly by [2, 3]

ρ = 1 −
φ1

φ2

, (41)

as can be checked by a simple calculation making use of the BPS equations for the profile functions

φ1,2, fNA. The integral I turns out to be a total derivative

I =

∫ ∞

0

dr ∂r

(

fNA

[
(

φ1

φ2

)2

− 1

])

, (42)

and by using the boundary conditions (12) the final result is

I = fNA(0) = 1 . (43)

The action found in Eq. (38) is precisely that of the (1 + 1)-dimensional sigma model on

Hermitian symmetric spaces SO(2N)/U(N) and USp(2N)/U(N) [6, 15].7 The metric is

Kählerian, with the Kähler potential given by

K = tr log
(

1N + BB†
)

, gIJ̄ =
∂2K

∂BI∂B†J̄
, (44)

where I, J̄ = {(i, j) = 1, . . . , N | i ≤ j}.

In the context of N = 2 supersymmetric models, the low-energy effective vortex action is a

two-dimensional, N = (2, 2) supersymmetric sigma model [15]:

Ssusy
1+1 = 2β

∫

dtdz d2θ d2θ̄ K(B, B̄) (45)

in terms of the Kähler potential Eq. (44), where B now is a matrix chiral superfield (B̄ anti-

chiral superfield containing B†). The β-functions for these sigma models have been determined

in [15]. In the supersymmetric case, the number of quantum vacua is given by the Euler charac-

teristic of the manifold on which the world-sheet action lives [17, 18], which can be found in the

mathematical literature [19] and we show the relevant numbers in Table 1.

6In that case the effective sigma model has a CP N−1 target space [2, 3]; see Subsec. 5.1 below.
7In Ref. [16], these NLσMs on Hermitian symmetric spaces were obtained from supersymmetric gauge theories

by gauging a symmetry big enough to absorb all quasi-Nambu-Goldstone bosons (which are contained in mixed-

type multiplets) and hence obtain a compact manifold parametrized by only pure-type multiplets.
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Susy 4D ➞  2D (2,2) susy
 sigma models:  exact beta fn,
Morozov, Perelomov, Shiman ’84

The effective action of the






2 0
...

...

2 0







, (62)

vortex (the first of Eq. (60)) has the same form as that found for the fundamental vortices in

Sec. 4: a sigma model in the target space SO(2N)/U(N). The normalization constant in front

is however different: it is now given by

β =
2π

g2
I , I = fNA(0) = 2 . (63)

As a last nontrivial example, let us consider the vortex solutions belonging to the second last

group of (60). The orientational modes of the vortex now live in the coset space

SO(2N)/[SO(2) × SO(2N − 2)] , (64)

a real Grassmannian space. The construction of the reducing matrix in this case is slightly more

elaborated, but has already been done by Delduc and Valent [6].

The Ansatz for this vortex can be written as

q =







eiθφ0(r)12N−2 0 0

0 ei2θφ1(r) 0

0 0 φ2(r)







= eiθφ012N +
1

2

(

ei2θφ1 + φ2 − 2eiθφ0

)

T1 +
1

2

(

ei2θφ1 − φ2

)

T2 ,

Ai = εij

xj

r2
[(1 − f) 12N + (1 − fNA) T2] , (65)

where the relevant matrices are

T1 ≡







02N−2

1

1







, T2 ≡







02N−2

1

−1







, (66)

and the following relations are useful

T 2
1 = T1 , T 2

2 = T1 , T1T2 = T2T1 = T2 . (67)

We will also need the BPS equations for this vortex

∂rφ0 =
1

r
fφ0 ,

1

r
∂rf =

e2

4N

(

2(N − 1)φ2
0 + φ2

1 + φ2
2 − v2

)

, (68)

∂rφ1 =
1

r
(f + fNA) φ1 ,

1

r
∂rfNA =

g2

4

(

φ2
1 − φ2

2

)

(69)

∂rφ2 =
1

r
(f − fNA) φ2 , (70)
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• Supersymmetric models ➯  (2,2) susy sigma models
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Meaning of the Ansatz  (⋇) Jiang, 2011 unpublished,
Fujimori et. al.  2011

0.1 Zeroth order Lagrangian

The zeroth order Lagrangian is only the background non-Abelian vortex solutions, which are

written as

L0 = Tr

{

−
1

e2
F12F

12 −
1

g2
F̂12F̂

12 + Diq(Diq)† − e2
∣

∣X0t0 − ξt0
∣

∣

2 − g2
∣

∣Xata
∣

∣

2
}

, (0.1)

where i = 1, 2 denote two transverse dimension of the vortex string. The Bogomol’nyi comple-

tion is done in the last section. which gives the zeroth order (background) solution of non-Abelian

vortices.

Now we want to consider SO(2M) and USp(2M) vortices as concrete examples. By

choosing the plus sign for all of the U(1)N ⊂ G′ factors, one finds a solution of the form1

q =

(

eiθφ1(r)1M 0

0 φ2(r)1M

)

=
eiθφ1(r) + φ2(r)

2
12M +

eiθφ1(r) − φ2(r)

2
T ,

Ai =
1

2
εij

xj

r2
[(1 − f(r)) 12M + (1 − fNA(r)) T ] , (0.3)

where

T = diag (1M, −1M) , (0.4)

and z, r, θ are cylindrical coordinates. The appropriate boundary conditions are

φ1,2(∞) =
v

√
2M

, f(∞) = fNA(∞) = 0 ,

φ1(0) = 0 , ∂rφ2(0) = 0 , f(0) = fNA(0) = 1 . (0.5)

By going to singular gauge,

q → Uq, Ai → U AiU
† + i∂iUU† , (0.6)

where U = diag
(

e−iθ1M, 1M

)

. The vortex takes the form

q =

(

φ1(r)1M 0

0 φ2(r)1M

)

=
φ1(r) + φ2(r)

2
12M +

φ1(r) − φ2(r)

2
T ,

Ai = −
1

2
εij

xj

r2
[f(r) 12M + fNA(r) T ] ; (0.7)

1It is convenient to work with the skew-diagonal basis for the SO(2M) group, i.e. the invariant tensors are

taken as

J =

(

0 1M

ε1M 0

)

, (0.2)

where ε = ± for SO(2M) and USp(2M) groups, respectively.

1

➯  Minimum-tension BPS vortex solutions, indep. on the orientations  U

and the number of independent parameters in B, M(M −1) or M(M +1), correctly matches

the (real) dimension of the coset SO(2M)/U(M) or USp(2M)/U(M). The following iden-

tities turn out to be useful below:

B Xm = Y mB , XmB† = B†Y m ,
[

Xm, B†B
]

= 0 ,
[

Y m, BB†
]

= 0 . (0.16)

We promote the collective modes B to be dependent of xα = (t, x3), i.e.,

B → B(xα). (0.17)

The zeroth order Lagrangian describe the static configuration of the system. However, the zero-

mode varibles should satisfy the equations of motion for the system, which minimizes the energy.

In order to construct the low energy effective Lagrangian for non-Abelian vortices, the second

order Lagrangian must be included.

0.2 The second order Lagrangian

The second order Lagrangian originates from the bulk 4-dimenision Lagrangian, which is written

as

L(2) = Tr

{

−
1

e2
FαiF

αi −
1

g2
F̂αiF̂

αi + Dαq(Dαq)†

}

, (0.18)

in which α = 0, 3 and i = 1, 2 as aforementioned. The background vortex solutions are given

as

q(r, xα) =
φ1(r) + φ2(r)

2
12M +

φ1(r) − φ2(r)

2
U(xα)TU(xα)† ,

Ai(r, xα) = −
1

2
εij

xj

r2

[

f(r) 12M + fNA(r) U(xα)TU(xα)†
]

, . (0.19)

However, if Aα = 0, one immediately notes that the energy of the system

E =

∫

dx0dx3Tr

[

∂αq∂αq† +
1

g2
|Fiα|2 +

1

e2
FαiF

αi

]

, (0.20)

leads to an infinite excitation energy, whereas one knows that the system must be excitable

without mass gap (classically). The method to cancel the divergence of |∂αq|2 is to introduce

the gauge field Aα, which should minimize the action corresponding to Eq.(??). The equation

of motion takes the form

0 =
1

e2
∂iF 0

iα − iTr
[

q†t0Dαq − (Dαq)†t0q
]

, (0.21)

0 =
1

g2
DiF a

iα − iTr
[

q†taDαq − (Dαq)†taq
]

, (0.22)

0 =DαDαq, (0.23)

3

i=1,2

α=3,0

will leads to massive excitations once  U  fluctuates,  U= U(z,t) 
UNLESS  Aα  is introduced such that  4D equations of motions 
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1

g2
|Fiα|2 +

1
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leads to an infinite excitation energy, whereas one knows that the system must be excitable

without mass gap (classically). The method to cancel the divergence of |∂αq|2 is to introduce

the gauge field Aα, which should minimize the action corresponding to Eq.(??). The equation

of motion takes the form

0 =
1

e2
∂iF 0

iα − iTr
[

q†t0Dαq − (Dαq)†t0q
]

, (0.21)

0 =
1

g2
DiF a

iα − iTr
[

q†taDαq − (Dαq)†taq
]

, (0.22)

0 =DαDαq, (0.23)

3

Solution ➯  Ansatz (⋇) + extremization with respect to  ρ(r)   !!!    
Gorsky-Shifman-Yung,  Gudnason-Jiang-Konishi

 are obeyed. 

Symmetric criticality

N.B.
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Goddard-Nuyts-Olive-Weinberg (GNOW) duality

the SO(2N) transformations of the original fields. These observations suggest that the vortices

transform according to spinor representations of the GNO dual of SO(2N) or USp(2N),

i.e. as two 2N−1 dimensional spinor representations of Spin(2N), or as a 2N-dimensional

representation of SO(2N + 1), respectively.

That they do so can be checked explicitly. The reducing matrix Eq. (19) shows that the

infinitesimal transformations of the vortex are generated by the complex matrices B

U = 12N +

(

0N −B†

B 0N

)

+ . . . , (94)

where B is an infinitesimal antisymmetric (SO(2N)) or symmetric (USp(2N)) N×N matrix.

Transformations around any other point P is generated by the conjugation

R

(

0 −B′ †

B′ 0

)

R−1 , (95)

where R is a finite SO(2N) (or USp(2N)) transformation of the form of Eq. (19), bringing

the origin of the moduli space to P .

The spinors can be represented by using a system made of N spin-1
2

subsystems: |s1〉 ⊗
|s2〉 ⊗ · · · ⊗ |sN〉 . The SO(2N) generators Σij in the spinor representation can be expressed

in terms of the (anti-commuting) creation and annihilation operators ai, a†
i in the well-known

fashion [24] (see Appendix A). The k-th annihilation operators acts as

ak =
1

2
τ3 ⊗ · · · ⊗ τ3
︸ ︷︷ ︸

k−1

⊗τ− ⊗ 1 ⊗ · · · ⊗ 1
︸ ︷︷ ︸

N−k

, k = 1, 2, . . . N , (96)

while τ− is replaced by τ+ in a†
k.

We map the special vortex configurations and the spinor states as follows:

(±, · · · , ±) ∼ |s1〉 ⊗ |s2〉 ⊗ · · · |sN〉 , |sj〉 = |↓〉 or |↑〉 . (97)

In particular, the (+ + . . . +) vortex solution described by Eq. (10) is mapped to the all-spin-

down state

(+ . . . +) ∼ |↓ . . . ↓〉 . (98)

An infinitesimal transformation of this spinor state is given by

S = eiωij Σij = 1 +
N

∑

i,j=1

(ωij − ωN+i,N+j − i ωi,N+j − i ωN+i,j) a†
ia

†
j + . . . , (99)
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•  Infinitesimal transformations of the k=1 vortex (SO(2N) case):

BT  = - B, 

•  An abstract spinor of  SO(2N) group
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The color-flavor rotation G′
C+F generates other moduli matrices in a G′

C+F/U(M)-orbit. It is
obvious that the action of the U(M) subgroup of G′ = SO(2M), USp(2M)

U0 =

(

uT

u−1

)

∈ G′
C+F , u ∈ U(M) , (3.5)

can be undone by a V -transformation (2.26) due to the fact that H
( 1
2 ,··· ,12 )

0 U0 = U0H
( 1
2 ,··· ,12 )

0 "
H

( 1
2 ,··· ,12)

0 . Therefore, we find the orientational moduli as parametrizing the following spaces [23]

Mori =
G′

C+F

U(M)C+F

=
SO(2M)

U(M)
or

USp(2M)

U(M)
, (3.6)

both of which are Hermitian symmetric spaces [51, 52]. The real dimension of the moduli spaces
is M(2M ∓ 1) − M2 + 2 = M(M ∓ 1) + 2. Where the two corresponds to the position of
the vortex.

In order to see explicitly G′
C+F/U(M), let us take the following element of G′

U =

(

1M −b†
A,S

1M

)






√

1M + b†
A,SbA,S

(√

1M + bA,S b†
A,S

)−1






(

1M

bA,S 1M

)

, (3.7)

where bS (bA) is an arbitrary M -by-M symmetric (antisymmetric)11 matrix for the SO(2M)
(USp(2M)) case. The first two matrices in U can be eliminated by V -transformations, such

that the action of U brings the moduli matrix H
( 1
2 ,··· ,12)

0 onto the following form

H
( 1
2 ,··· ,12)

0 (z)U
V→ H

( 1
2 ,··· ,12 )

0 (z; bA,S) ≡
(

z1M

bA,S 1M

)

=

(

z1M

1M

) (

1M

bA,S 1M

)

.(3.8)

We denote the patch described by the above moduli matrix the (1
2
, · · · , 1

2
)-patch of the manifold

G′
C+F/U(M). The complex parameters in the M × M matrix bA,S are the (local) inhomo-

geneous coordinates of Mori. Indeed, the moduli matrix has M(M∓1)
2

+ 1 complex parameters
which is in fact the dimension of the moduli space as will be demonstrated in Sec. 4.1. This in
turn implies that, in the present case, the moduli space for the local vortex is entirely generated
by a G′ orbit, except for the position moduli.

By a similar argument we find 2M patches, starting from the special points !̃µ = (±1
2
, · · · , ±1

2
)

given in Eq. (2.36). Indeed, this can easily be done by means of permutations, e.g.

H(
0

r
︷ ︸︸ ︷

−1
2 ,··· ,−1

2 ,

M−r
︷ ︸︸ ︷
1
2 ,··· ,12 )(z; bA,S) = P −1

r H
( 1
2 ,··· ,12 )

0 (z; bA,S)Pr , (3.9)

where the permutation matrix is

Pr ≡







0r ε 1r

1M−r 0M−r

1r 0r

0M−r 1M−r







, P T
r JPr = J . (3.10)

11Similar symbols will be used below to indicate a symmetric or antisymmetric constant matrix.
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with the origin

 but 

Identify the points on the vortex moduli and spinor states

Σij   in terms of and  (ak ) †

vortex spin

Notes

eiωαβΣαβ ! 1 + αij a†iaj + βij a†ia
†
j + β†

ij aiaj + i ω2i,2i−1 + O(ω2)

βij ≡ −[ω2i,2j − ω2i−1,2j−1 + i ω2i−1,2j + i ω2i,2j−1 ]where

Bij = βij➯  Identify  locally
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Vortex moduli ~  spinor state moduli  =   SO(2N)/U(N)⊕ SO(2N)/U(N)

B = local coordinates   (2N-1  coordinate patches)*

Fluctuation of SO(2N) vortex orientations  ~
    fluctuation of massless Spin(2N) spinor states    

R = finite U transformation

* USp(2N) theory  ➯  2N  coordinate patches;  moduli space = USp(2N)/U(N)
  =  spinor states of SO(2N+1) 
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The vortex (and kink monopoles) in a mass-
deformed theories  (mi  ≠mj )

 •   SO(2N)/U(N) or USp(2N)/U(N) vortex moduli replaced by

      2N-1   ⊕  2N-1       (or   2N   )   points    

   Kinks along the vortex connecting different Abelian vortices =  Abelian monopoles 

•   SO(2N)/U(N)  or  USp(2N)/U(N)  sigma model replaced by massive sigma models 

Eto, Fujimori, Gudnason, Jiang, Konishi, Ohashi, Nitta
about to appear   2011

also
Arai, Shin   2011

SO(2N), USp(2N) theory

SU(N)
Gorsky-Shifman-Yung  2004〈Φ〉 = − 1√

2





m1

. . .
mN

−m1 −m2 − . . . mN





SU(N) ➯ U(1)N-1

•

 •   CPN-1  vortex moduli replaced by  N-1 points

•  Flavor symmetric limit   mi   ➞ m  NON SMOOTH  (colored clouds!)  

|m1 - m2 |/g

1 2 3

E. Weinberg 
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where the second term represents the vortex tension. Note that the adjoint scalar Φ approaches

the VEV 〈Φ〉 = M at spatial infinity

lim
x3→±∞

Φ = m σ3 . (4.4)

The energy of Eq. (4.3) is given by the mass of the monopole and the vortex tension. Hence we

can interpret this as the energy of the 1/4 BPS configuration of the confined monopole attached

to two vortices having magnetic flux λhighest and λlowest, respectively (see Fig. 1). Fig. 1 is the

first full numerical solution of a confined monopole.

!4 !2 0 2 4

!3

!2

!1

0

1

2

3

x3

!z!

!4 !2 0 2 4

!3

!2

!1

0

1

2

3

x3

!z!

(a) energy density (b) Tr[Bi(1 + σ3)] (c) Tr[Bi(1 − σ3)]

Fig. 1: (a) The energy density profile of the vortex-monopole configuration (numerical solution

of the 1/4 BPS equations). The energy is localized along the vortex (|z| = |x1 + ix2| = 0) and

around the monopole (|z| = x3 = 0). (b, c) The magnetic flux projected onto 1 + σ3 ∝ λhighest

and 1 − σ3 = λlowest. The monopole is attached to two vortices with magnetic flux λhighest and

λlowest, respectively. The plots for negative |z| are simply mirror images in order to illustrate the

cross section of the configuration.

We can discuss the same configuration using the worldsheet effective action of the vortex.

Using the effective action (3.6) for the U(2) vortex in the massive theory, we can easily find the

BPS equation for the kink by rewriting the energy of the static configuration as follows

E =

∫
dx3

4π

g2

|∂x3
b − 2mb|2

(1 + |b|2)2 +

∫
dx3

4π

g2
∂x3

σ ≥
4π

g2
[σ(∞) − σ(−∞)] , (4.5)

where σ is the standard height function of CP 1 which is given by

σ = − m
1 − |b|2

1 + |b|2
. (4.6)

The BPS equation and its solution are given by

∂x3
b − 2mb = 0 =⇒ b(x3) = b0 e2mx3 , (4.7)
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3.2 The SO(2n)/U(n) and USp(2n)/U(n) sigma models

Let us now apply the aforementioned technique to the SO(2n)/U(n) and USp(2n)/U(n)

sigma models on the vortex worldsheet. We will treat them on the same footing in the following.

For SO(2n)/U(n) the field BT = −B is an anti-symmetric matrix valued field while for

USp(2n)/U(n) it is symmetric BT = B. The Kähler potential

K =
4π

g2
Tr log

(
1n + BB†

)
, (3.14)

gives rise to the Lagrangian which we found in the previous section, i.e.,

L =
4π

g2
Tr

{(
1n + B†B

)−1
∂αB†

(
1n + BB†

)−1
∂αB

}
. (3.15)

Since we have assumed that M is in the Cartan subalgebra of G, the mass matrix takes the form

M =

(
Mn

−Mn

)

, Mn = diag(m1, m2, · · · , mn) . (3.16)

The U(1)M action on B can be seen from U → e−iϑMUeiϑM to be

B → eiMnϑBeiMnϑ . (3.17)

As above, we expand the field in modes and keep just the lowest mode giving rise to

B(t, z, ϑ) = eiMnϑB0(t, z)eiMnϑ . (3.18)

Upon inserting this field in the Lagrangian (3.15) and dropping the suffix, we obtain the following

mass-deformed sigma model

L =
4π

g2
Tr

{ (
1n + B†B

)−1
∂αB†

(
1n + BB†

)−1
∂αB

−
(
1n + B†B

)−1 {
Mn, B†

} (
1n + BB†

)−1
{Mn, B}

}
. (3.19)

As the mass matrix is Hermitian, the vacuum equation reads

{Mn, B} = 0 , (3.20)

which in general can only be satisfied for B = 0. 8 However, there exist other vacua in the

coordinate patches which are not covered by B. In the next section we will see that the numbers

of vacua of the SO(2n)/U(n) and USp(2n)/U(n) sigma models are

nSO(2n)
vacua = 2n−1 , nUSp(2n)

vacua = 2n , (3.21)

8We assume that mi #= ±mj to break the color-flavor group to Cartan generators.
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  III.  Non-Abelian monopoles
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Non-Abelian monopoles 

•  Embedding  of  ‘t Hooft-Polyakov monopole  SU(2)➞U(1)   in
    G ➞  H,  e.g.     SU(N+1) ➞SU(N)xU(1)
     

Difficulties     -  topological obstructions 
                     -  non-normalizable zeromodes 

In fact, 

•  Degenerate monopoles to transform under the GNO dual 
    of  H,  not under  H itself   (non-local field transformations)

•  Light non-Abelian monopoles in N=2  supersymmetric QCD 

Goddard-Nuyts-Olive, E.Weinberg, Lee,Yi,  
Bais, Schroer, .... ’77-80, ....

Abouelsaad et.al. 
Coleman, et. al.,   ’83-’84

Seiberg-Witten ’94

Argyres,Plesser,Seiberg,’96
Hanany-Oz, ’96

•   2-1  Correspondence  between classical (r,  NF  - r )  and quantum  
    r- vacua      

Carlino-Konishi-Murayama ‘00

•  N=1 perturbation ➭ confinement  as non-Abelian dual Meissner effect

•  Almost SCFT vacua :  confinement by condensation of  monopole composites

Bolognesi-Konishi-et.al  ’05

in the r -vacua,   r ≦ NF  / 2       (flavor essential)

•   Many different types of confining vacua in N=1 susy models (confinement index, etc.)  
Okouchi-Konishi ’10 

Di Pietro, Giacomell   ’11

 -  colored cloud
Dorey, Hollowood, et. al.       

E. Weinberg

Auzzi,Grena,Konishi
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Making bridge between semi-classical and quantum 
monopoles and vortices -  a highly nontrivial task

•  Dynamical Abelianization 

•  Isomonodromy

Quark singularity (at large  mi )  ➠  Monopole singularity (at small  mi )  

Higgs vacuum                      ➠    Confining vacuum     

Bilal-Ferrari, ’96
Cappelli, Valtancoli, Vergnano

’97
for SU(2) 

Di Pietro, Giacomell    ’11
    SU(N) 
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Vortex worldsheet action  (U(2))

We see that in order to have a finite contribution coming from TrF 2
ni we have to

impose

f(0) = 1. (5.4)

Now substituting the field strength (5.3) into the action (3.2) and taking into

account also kinetic term for quarks we finally arrive at

S(1+1)
σ = β

∫

d2x
1

2
(∂ na)2 , (5.5)

where the integration goes over world sheet coordinates xn while the coupling con-

stant β is given by

β =
2π

g2
2

∫ ∞

0

r dr

{

(

d

dr
f(r)

)2

+
1

r2
f2

3 (1 − f)2+

+g2
2

[

1

2
f2(φ2

1 + φ2
2) + (1 − f)(φ1 − φ2)

2

]}

. (5.6)

We see that the effective world sheet theory for the string orientational zero mode

is given by an O(3) sigma model. The symmetry group of this sigma model is

nothing but global SU(2)C+F whose 3-dimensional representation acts as the group

of orientation preserving isometries on the target space, CP1. The coupling constant

of this sigma model is determined by the minimum of action (5.6) for the function f .

A numerical solution for the profile function f(r) is given in Fig. 6. Note that the

2 4 6 8 10

0.2

0.4

0.6

0.8

1

Figure 6: The profile function f(r).

function f satisfies a second order equation because, once we allow the dependence of

na on world sheet coordinates, the vortex is no longer BPS saturated. The emergence

31

+  fermionic terms 

  N=(2,2) supersymmetric  CP1   sigma model

(Seiberg-Witten)

Dynamical Abelianization

Tong, Gorsky-Shifman-Yung  

Global SU(2) unbroken  (Coleman)

≡   Gauge dynamics in 4D in Coulomb phase 

Realization of 2D - 4D duality Dorey

dt dz

Hori, Vafa  

Auzzi, Bolognesi,Evslin,Konishi,Yung, 
Shifman-Yung 

• U can fluctuate,   U= U(z,t) :  gapless excitations ----  only along (z,x)   

Vortex dynamically Abelianizes

Hanany-Tong,
Shifman et. al. 

•

•
•

•

where γ5 = τ3. The fact that there are two values of chiral condensate indicates that

there are two vacua in the sigma model.

The physics of the model becomes more transparent in the mirror description.

This is a description of the model in terms of the Coulomb gas of instantons, and

is equivalent to a sine-Gordon theory [33]. Explicitly, the model (5.8) is dual to the

N = 2 sine-Gordon theory [18]

S(1+1)
σ =

∫

d2x

[

d2θ d2θ̄
1

β
Ȳ Y + Λσ dθ1dθ̄2 cosh Y

]

. (5.15)

Here the last term is a dual superpotential induced by instantons, while Y is a twisted

chiral superfield with the expansion

Y = y +
√

2 θ1χ̄1 +
√

2 θ̄2χ
2 + · · · . (5.16)

This theory has a mass gap of order of Λσ, indicating that there is no spontaneous

breaking of SU(2)C+F and no Goldstone bosons.

5.3. N = 2 CPN−2 sigma model in (1+1) dimensions

An analogous conclusion follows in the more general case of an SU(N) theory,

Eq.(4.2), Eq.(4.3), Eq.(4.4). The low-energy action and its vacuum respect a global

SU(N − 1)C+F symmetry, which is broken however by an individual vortex con-

figuration to SU(N − 2) × U(1). See Eq.(4.26). We assume that a consideration

analogous to the one given for the SU(3) theory leads to an N = 2 ,

SU(N − 1)

SU(N − 2) × U(1)
∼ CPN−2 (5.17)

sigma model on the vortex world sheet. A study of such systems [34] shows that the

number of vacua in this sigma model is N − 1.
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  2 vacua  ➞  kinks   = (Abelian) monopoles ! 

beta function and the spectrum match
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Although the theory described by the above Lagrangian has many degenerate vacua, we are
interested in the vacuum where (see [11] for the detail)

〈Φ〉 = −
1

√
2





m 0 0 0

0
. . .

...
...

0 . . . m 0
0 . . . 0 −N m




; (2.22)

Q = Q̃† =





d 0 0 0 0 . . .

0
. . . 0

...
... . . .

0 0 d 0 0 . . .
0 . . . 0 −N d 0 . . .




, d =

√
(N + 1) µ m % m. (2.23)

This is a particular case of the so-called r vacuum, with r = N . Although such a vacuum
certainly exists classically, the existence of the quantum r = N vacuum in this theory requires
Nf ≥ 2 N , which we shall assume.4

To start with, ignore the smaller squark VEV, (2.23). As π2(G/H) ∼ π1(H) = π1(U(1)) =
Z, the symmetry breaking (2.22) gives rise to regular magnetic monopoles with mass of order of
O(v1

g
), whose continuous transformation property is our main concern here. The semiclassical

formulas for their mass and fluxes are well known [4, 34] and will not be repeated here.

2.3 Low-energy approximation

At scales much lower than v1 = m but still neglecting the smaller squark VEV v2 = d =√
(N + 1) µ m % v1, the theory reduces to an SU(N) × U(1) gauge theory with Nf light

quarks qi, q̃i (the first N components of the original quark multiplets Qi, Q̃i). By integrating
out the massive fields, the effective Lagrangian valid between the two mass scales has the form,

L =
1

4g2
N

(F a
µν)

2 +
1

4g2
1

(F 0
µν)

2 +
1

g2
N

|Dµφa|2 +
1

g2
1

|Dµφ0|2 + |Dµq|2 +
∣∣Dµ

¯̃q
∣∣2

− g2
1

∣∣∣∣ −
µ m
√

2
+

1
√

N(N + 1)
q̃ q

∣∣∣∣
2

− g2
N|

√
2 q̃ taq |2 + . . . (2.24)

where a = 1, 2, . . . N2 − 1 labels the SU(N) generators, ta; the index 0 refers to the U(1)
generator t0 = 1√

2N(N+1)
diag(1, . . . , 1, −N). We have taken into account the fact that the

SU(N) and U(1) coupling constants (gN and g1) get renormalized differently towards the
infrared.

4This might appear to be a rather tight condition as the original theory loses asymptotic freedom for Nf ≥
2 N + 2. This is not so. An analogous discussion can be made by starting from a larger gauge group and
by considering the breaking SU(M) → SU(N) × U(1)M−N . In this case the condition for the quantum
non-abelian vacuum is 2 M ≥ Nf ≥ 2 N , which is a much looser condition. Also, although the corresponding
U(N) theory (2.1) with such a number of flavor has semilocal strings [35, 27, 23], these moduli are not directly
related to the derivation of the dual gauge symmetry, which is our interest in this paper. We shall come back to
these questions elsewhere.
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• U(N), Nf =N model from  SU(N+1) ⇒ SU(N) × U(1)/ZN 

• r= Nf    vacuum (classical)

• quantum mechanically only  r < Nf  / 2    

• classical r ( > Nf /2)  ⇔   quantum (Nf  - r)  vacua 

m ≫ μ ≫ Λ :        m ∼ μ ≪ Λ :       ⇔

• U(N) Nf =N :  quantum  r =0 vacua  (Abelian monopoles !   OK with MV )

(which occurs when the adjoint scalar masses µ Φ2 are added in the theory) does not

break SU(Nf) symmetry, consistently with the finding from the vortex dynamics.2

On the other hand, one knows [36, 32] that in four dimensional N = 2 su-

persymmetric QCD there appear light monopoloes carrying non-Abelian charges (r

vacua with 2 ≤ r ≤ Nf/2 in Table 1), and one wonders whether such truly non-

Abelian vortices which do not Abelianize dynamically can be found in some appropri-

ate regime, through which one can identify a semi-classical origin of the non-Abelian

monopoles and the associated vortices.

We shall show below that such a system can indeed be found. The underlying

model is the same as the one discussed in [2, 32]: an N = 2 supersymmetric SU(N)

gauge theory with Nf = N flavors. But the gauge group is broken partially down

to SU(n) × SU(r) × U(1) gauge symmetry (N = n + r) by the adjoint scalar

VEV.

r Deg. Freed. Eff. Gauge Group Phase Global Symmetry

0 monopoles U(1)N−1 Confinement U(nf)

1 monopoles U(1)N−1 Confinement U(Nf − 1) × U(1)

2, .., [Nf −1
2 ] NA monopoles SU(r) × U(1)N−r Confinement U(Nf − r) × U(r)

Nf/2 rel. nonloc. - Almost SCFT U(Nf/2) × U(Nf/2)

Table 1: Confining vacua of SU(N) gauge theory with Nf flavors. In the superconformal r =

Nf/2 vacuum, relatively nonlocal monopoles and dyons appear both as the low-energy effective

degrees of freedom. “Almost SCFT” means that the theory is a non-trivial superconformal theory

when µ = 0 but confines upon µ $= 0 perturbation. In the theory with Nf = N considered

here, the vacua at the “baryonic root”, in free magnetic phase, are absent. They appear only for

Nf > N , with an effective gauge group, SU(Nf − N).

2The authors thank R. Auzzi and G. Marmorini for discussions on this point.
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But non-Abelian vortices which do not dynamically Abelianize should exist   --

   in the right vacua

(Vacuum counting; symmetry)

global symmetry

Carlino-Murayama-Konishi

Bolognesi-Konishi-Marmorini

SU(N) SQCD
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The Model:   the same SU(N), Nf =N, softly broken 
N=2 SQCD,  but with appropriately tuned masses*   

2. Non-Abelian vortices which do not dynamically reduce to

ANO vortices

The model on which we shall base our consideration is the softly broken N = 2

supersymmetric QCD with SU(N) and Nf = N flavors of quark multiplets,

L =
1

8π
Im τcl

[
∫

d4θ Tr (Φ†eV Φe−V ) +

∫

d2θ
1

2
Tr (WW )

]

+L(quarks)+

∫

d2θ µ Tr Φ2;

(2.1)

L(quarks) =
∑

i

[
∫

d4θ (Q†
i eV Qi + Q̃i e−V Q̃†

i) +

∫

d2θ (
√

2 Q̃i Φ Qi + mi Q̃i Qi) .

]

(2.2)

where τcl ≡ θ0/π+8πi/g2
0 contains the coupling constant and the theta parameter,

µ is the adjoint scalar mass, breaking softly N = 2 supersymmetry to N = 1. We

tune the bare quark masses as

m1 = . . . = mn = m(1); mn+1 = mn+2 = . . . = mn+r = m(2) , N = n+r ;

n m(1) + r m(2) = 0 , (2.3)

or

m(1) =
r m0√
r2 + n2

, m(2) = −
n m0√
r2 + n2

, (2.4)

and their magnitude is taken as

|m0| $ |µ| $ Λ . (2.5)

The adjoint scalar VEV can be taken to be

〈Φ〉 = −
1

√
2

(

m(1)
n×n 0

0 m(2)
r×r

)

(2.6)

Below the mass scale v1 ∼ |mi| the system thus reduces to a gauge theory with

gauge group

G =
SU(n) × SU(r) × U(1)

K

, K = LCM {n, r} (2.7)

where K is the least common multiple of n and r. The higher n color components

of the first n flavors (with the bare mass m(1)) remain massless, as well as the lower
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0 contains the coupling constant and the theta parameter,

µ is the adjoint scalar mass, breaking softly N = 2 supersymmetry to N = 1. We

tune the bare quark masses as

m1 = . . . = mn = m(1); mn+1 = mn+2 = . . . = mn+r = m(2) , N = n+r ;

n m(1) + r m(2) = 0 , (2.3)

or

m(1) =
r m0√
r2 + n2

, m(2) = −
n m0√
r2 + n2

, (2.4)

and their magnitude is taken as

|m0| $ |µ| $ Λ . (2.5)

The adjoint scalar VEV can be taken to be

〈Φ〉 = −
1

√
2

(

m(1)
n×n 0

0 m(2)
r×r

)

(2.6)

Below the mass scale v1 ∼ |mi| the system thus reduces to a gauge theory with

gauge group

G =
SU(n) × SU(r) × U(1)

K

, K = LCM {n, r} (2.7)

where K is the least common multiple of n and r. The higher n color components

of the first n flavors (with the bare mass m(1)) remain massless, as well as the lower

4

Adjoint scalar VEV 

SU(N) local ⇒ 

fields U(1) SU(n) SU(r)

q(1) λ1 n 1

q̃(1) −λ1 n∗ 1

q(2) −λ2 1 r

q̃(2) λ2 1 r∗

Table 2:

where

M =

(

m(1)
n×n 0

0 m(2)
r×r

)

is the mass matrix and the (massless) squark fields have the form,

Q(x) =

(

q(1)(x)n×n 0

0 q(2)(x)r×r

)

, Q̃(x) =

(

q̃(1)(x)n×n 0

0 q̃(2)(x)r×r

)

,

(2.14)

if written in a color-flavor mixed matrix notation. The light squarks (supersymmet-

ric partners of the left-handed quarks in supersymmetric model) are summarized in

Table 2.

We set VD to zero identically, in the vacuum and in the vortex configurations, by

keeping

q̃(1) = (q(1))†, q(2) = −(q̃(2))† ; (2.15)

the redefinition

q(1) →
1

√
2

q(1), q̃(2) →
1

√
2

q̃(2) (2.16)

brings the kinetic terms for these fields back to the original form.

The VEVs of the adjoint scalars are given by

〈Φ(0)〉 = −m0, 〈Φ(a)〉 = 〈Φ(b)〉 = 0, (2.17)

while the squark VEVs are given (from the vanishing of the first line of Eq. (2.13))

by

〈Q〉 =

(

v(1)
n×n 0

0 −v(2) ∗
r×r

)

, 〈Q̃〉 =

(

v(1) ∗
n×n 0

0 v(2)
r×r

)

,

(2.18)
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Figure 1: Numerical result for the profile functions f1,2, g1,2 as functions of the radius ρ, for

SU(3) × SU(2) × U(1) theory. The coupling constants and the ratio of the VEVs are taken to

be g0 = 0.1, g3 = 10, g2 = 1, |v2|/|v1| = 3.

where ρ and φ stand for the polar coordinates in the plane perpendicular to the

vortex axis, f1,2, g1,2 are profile functions. The adjoint scalar fields Φ are taken to

be equal to their VEVs, Eq. (??). They are accompanied by the appropriate gauge

fields so that the tension is finite. The BPS equations for the squark and gauge fields,

and the properties of their solutions are discussed in Appendix A. The behavior of

numerically integrated vortex profile functions f1,2, g1,2 is illustrated in Fig. ??.

We note here only that the necessary boundary conditions on the squark profile

functions have the form,

f1(∞) = f2(∞) = v(1), g1(∞) = g2(∞) = v(2),

while at the vortex core,

f1(0) = 0, g1(0) = 0, f2(0) #= 0, g2(0) #= 0, (2.26)

The most important fact about these minimum vortices is that one of the q(1)

and one of the q̃(2) fields must necessarily wind at infinity, simultaneously. As the

individual vortex breaks the (global) symmetry of the vacuum as

[SU(n) × SU(r) × U(1)]C+F → SU(n − 1) × SU(r − 1) × U(1)3, (2.27)

the vortex acquires Nambu-Goldstone modes parametrizing

CP n−1 × CP r−1 : (2.28)

they transform under the exact color-flavor symmetry SU(n) × SU(r) as the bi-

fundamental representation, (n, r). Allowing the vortex orientation to fluctuate along
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Vortex moduli ~

* select the right
quantum vacuum
at mi ➔ 0    (cfr 
N=1 SQCD)

Idea:  for n > r  (r < Nf /2),  the CPn-1  Abelianizes, leaving weakly fluctuating
CPr-1      
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Figure 1: Numerical result for the profile functions f1,2, g1,2 as functions of the radius ρ, for

SU(3) × SU(2) × U(1) theory. The coupling constants and the ratio of the VEVs are taken to

be g0 = 0.1, g3 = 10, g2 = 1, |v2|/|v1| = 3.

where ρ and φ stand for the polar coordinates in the plane perpendicular to the

vortex axis, f1,2, g1,2 are profile functions. The adjoint scalar fields Φ are taken to

be equal to their VEVs, Eq. (??). They are accompanied by the appropriate gauge

fields so that the tension is finite. The BPS equations for the squark and gauge fields,

and the properties of their solutions are discussed in Appendix A. The behavior of

numerically integrated vortex profile functions f1,2, g1,2 is illustrated in Fig. ??.

We note here only that the necessary boundary conditions on the squark profile

functions have the form,

f1(∞) = f2(∞) = v(1), g1(∞) = g2(∞) = v(2),

while at the vortex core,

f1(0) = 0, g1(0) = 0, f2(0) #= 0, g2(0) #= 0, (2.26)

The most important fact about these minimum vortices is that one of the q(1)

and one of the q̃(2) fields must necessarily wind at infinity, simultaneously. As the

individual vortex breaks the (global) symmetry of the vacuum as

[SU(n) × SU(r) × U(1)]C+F → SU(n − 1) × SU(r − 1) × U(1)3, (2.27)

the vortex acquires Nambu-Goldstone modes parametrizing

CP n−1 × CP r−1 : (2.28)

they transform under the exact color-flavor symmetry SU(n) × SU(r) as the bi-

fundamental representation, (n, r). Allowing the vortex orientation to fluctuate along
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Global symmetry,   “broken” by the vortex
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IV.  Summary 

Flavor to Dual Gauge Symmetry
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• Flavor symmetric limit  mi  ➞  m  subtle 

 Quantum r vacua cannot be reached from the mass-deformed theory 

mi      ↔    m 
U(1)N-1

• Strong indication (both semi-classically and quantum mechanically) that
the dual gauge group = a manifestation of the flavor symmetry in 
conjunction with gauge dynamics (monopoles and vortices) 

•

SU(r) x U(1)N-r

Orientational zeromodes and their fluctuation in M-V-M  complex 
the most direct way to see such a connection so far

{ϕ}

• non-Abelian monopoles in r   instead of              Abelian monopoles NF

(Nf
r

)

vacua

(Nf
r

)

required by the correct flavor SU(NF) symmetry realization (WI’s) 
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Real world QCD

• Cannot say much, but if    XSB ~ Confinement

Scenario 1 〈M j
i 〉 = δj

i v #= 0

Scenario 1I 

with Abelian monopoles M of
U(1)2  ⊂ SU(3)

〈Mα
i M̃ j

α〉 = δj
i v #= 0 with nonAbelian monopoles M, M 

of   U(2)  ⊂ SU(3)

Scenario 1I preferred from the correct flavor symmetry realization 

END

i= SUL(NF),   j= SUR(NF)

AND...

∼
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