Black holes in nearby galaxies

Black holes in nearby galaxies (today)

- 1. Prior evidence for black holes
- 2. Posterior evidence for black holes
- 3. The relations between black holes and their host galaxies
- 4. Binary black holes

Dynamics of galaxy centers (Friday)

- 1. Hypervelocity stars
- 2. The nucleus of M31
- 3. Statistical mechanics in galaxy centers

1 parsec (pc) = 3.26 light years = 3.086 × 10¹⁶ meters 1000" = 3600 pc = 3.6 kpc

solar mass = M_{\odot} = 2 X 10³⁰ kg

total mass of stars ~ $10^{11}~M_{\odot}$

black hole of mass ~10^8 M_{\odot}

1. Prior evidence for black holes

- quasars are the most luminous active galactic nuclei (AGN)
- emit up to ~10¹³ L_{\odot} , or 100–1000 times a typical galaxy luminosity
- energy source for all AGN is believed to be accretion of material onto a black hole of mass up to $10^{10} M_{\odot}$
- corresponding Schwarzschild radius 1.6×10^{15} cm (M/10¹⁰M_{\odot}) = 5 mpc (M/10¹⁰M_{\odot})

directional stability of radio jets over timescales of ~10⁵ yr requires a gyroscope that could be provided by a spinning black hole

Krichbaum et al. (1998)

• apparent superluminal motion of radio jets

Hubble Space Telescope images

time variability on timescales of weeks

size < ct ~ 2×10^{16} cm × (t/1 week) = 7 mpc × (t/1 week)

• gravitational lensing by individual stars implies emitting region smaller than Einstein radius of the star

Wambsganss (2006)

Burning a mass ΔM produces energy ΔE with efficiency

$$\epsilon = \frac{\Delta E}{\Delta M c^2}$$

- $\epsilon < 0.008$ for nuclear reactions
- ϵ = 0.057 for accretion onto a non-rotating black hole
- $\epsilon = 0.3$ for accretion onto a black hole in equilibrium spin state
- ϵ = 0.423 for accretion onto a maximally rotating black hole

Emission of energy Δ E produces "ash" of mass

$$\frac{1-\epsilon}{\epsilon}\frac{\Delta E}{c^2}$$

if

- black holes are the power source for quasars
- the present comoving number density of quasars is much less than the density at earlier epochs
- quasars are found in galaxies

then

```
many nearby galaxies must contain massive black holes or "dead
quasars" (Lynden-Bell 1969)
```

• expected density of quasar ash ~ 3×10^5 ($\epsilon/0.1$) M_o/Mpc³ (Soltan 1982)

Black holes in the centers of galaxies

why are they at the center?

- that's the bottom of the potential well
- that's the only place we can find them
- dynamical friction causes orbits of massive bodies to spiral to the center

consider a mass, M, moving through a uniform sea of stars. Stars in the wake are displaced inward.

this results in an enhanced region of density behind the mass, with a drag force, F_d known as dynamical friction

J. Schombert, University of Oregon

 $10^6 M_{\odot}$

if more than one black hole spirals to the center, we may expect that binary black holes or black-hole mergers are common at galactic centers

2. Posterior evidence for black holes

The black hole in the Galactic center

The black hole in the Galactic center

 center of attraction is located at the radio source Sagittarius A* which is presumably the black hole

smallest pericenter is only ~ 0.5 mpc
3X distance to Neptune; and
smallest orbital period is only 16 yr

 orbits are closed ellipses so central mass must be not bigger than 0.5 mpc

- M = (3.95±0.06)×10⁶ M_o if distance $R_0 = 8000 \text{ pc} = 8 \text{ kpc}$
- R₀ = 8.33±0.35 kpc

(Gillessen et al. 2009)

Sgr A*

- \cdot Galactic center contains 4×10^6 M_{\odot} in < 0.5 mpc (3X distance to Neptune)
- event horizon for this mass is only 0.2 µpc (20% of Mercury's orbit)
- all plausible alternatives to a black hole have very short lifetimes (e.g., cluster of neutron stars)
- some implausible alternatives can survive:
 - cluster of 10¹⁰ Saturn-mass black holes
 - Bose-Einstein condensate of some unknown elementary particle

• Galactic center contains 4×10^{6} M $_{\odot}$ in < 0.5 mpc (3X distance to Neptune)

 event horizon for this mass is only 0.2 µpc (20% of Mercury's orbit)

 all plausible alternatives to a black hole have very short lifetimes (e.g., cluster of neutron stars)

• some implausible alternatives can survive:

• cluster of 10¹⁰ Saturn-mass black holes

• Bose-Einstein condensate of some unknown elementary particle

NGC 4258

.

NGC 4258

- four observational data:
 - amplitude of Keplerian
 rotation curve
 - proper motion of systemic masers, 31.5±1 milliarcseconds/ yr
 - acceleration of systemic masers, 9.3±0.3 km/s/yr
 - velocity versus distance for systemic masers
- three unknown parameters:
 - radius of systemic masers
 - distance of galaxy d
 - black-hole mass M
- M=(3.9±0.1)×10⁷ M_o
- d=7.1±0.2 and 7.2±0.2 Mpc

UGC 3789

finding black holes in "normal" nearby galaxies

• measure optical spectrum of light from the galaxy at a given position

• if typical star as a spectrum $F^*(\lambda)$ and the number of stars as a function of line-of-sight velocity is n(v)dv, the actual spectrum will be

 $F(\lambda) = \int F^*(\lambda - v/c)n(v)dv$

knowing F and F* gives n(v) -- parametrize by mean velocity <v> and dispersion σ
central black hole of mass M influences kinematics only inside a radius r such that

 $GM/r > max[\sigma^2, \langle v \rangle^2]$ "sphere of influence"

• crucial problem is to resolve the sphere of influence -- number of galaxies in which a black hole can be detected varies as FWHM³ where FWHM is full-width half-maximum of telescope point-spread function

- typical ground-based telescope at excellent site FWHM = 0.5-1"
- Hubble Space Telescope FWHM = 0.08"
- 8-meter ground-based telescope with adaptive optics FWHM = 0.1"

finding black holes in "normal" nearby galaxies

Gaussian point-spread function with dispersions = 0.3,1,3

finding black holes in "normal" nearby galaxies

(Siopis et al 2009)

the history of BH mass determinations in M32

The history of the black hole in M87

• Sargent et al. (1978): ~ $5 \times 10^9 M_{\odot}$ (ground-based, stars)

- Harms et al. (1994): (2.4±0.7) × 10⁹ M_o (HST, gas)
- Macchetto et al. (1997) (3.2±0.9)×10⁹ M_☉ (HST, gas)
- Gebhardt & Thomas (2009), Gebhardt et al. (2010): (5.5 \pm 0.4) × 10⁹ M_{\odot} (ground-based adaptive optics, stars)
 - near IR integral-field spectrograph (NIFS) on Gemini + SAURON to 10"+ VIRUS to 250"
 - FWHM for kinematics is 0.16"

3. The relation between black holes and their host galaxies

spiral (disk)

spiral (disk + medium bulge)

spiral (disk + small bulge)

elliptical + spiral (disk)

spiral (disk + big bulge)

elliptical

elliptical

Wednesday, November 9, 2011

spiral (disk)

spiral (disk + medium bulge)

ellipticals + spiral bulges = "hot" components

spiral (disk + small bulge)

elliptical

elliptical

spiral (disk + big bulge)

elliptical + spiral (disk)

• by now there are ~40-50 detections of a massive dark object in nearby galaxies, $10^6\text{--}10^9~\text{M}_\odot$

mass determinations from

- stellar dynamics
- gas dynamics
- maser disks
- black-hole mass correlates with luminosity of hot component; roughly

$M \propto L$

in terms of stellar mass M
 ≈ 0.002 M_{stars}

Gültekin et al (2009)

Wednesday, November 9, 2011

 tighter correlation is with velocity dispersion o of hot component of host galaxy; roughly

$M \propto \sigma^4$

with scatter of 0.3 in log₁₀M for elliptical galaxies • almost all hot components contain black holes

velocity dispersion of host galaxy (km/s)

Gültekin et al. (2009,2011)

Are the black holes in nearby galaxies dead quasars?

- masses of central black holes in nearby galaxies are about 0.2% of the stellar mass in hot component
- knowing the average density of galaxies we can estimate the average density in black holes,

 $\rho_{BH} = 3 \times 10^5 M_{\odot} Mpc^{-3}$

we know the local energy density in quasar photons. Expected density of quasar ash is
 ρ_{QSO} = 3 × 10⁵ M_☉ (ε/0.1) Mpc⁻³ (Soltan 1982)

٠

Origin of the M- σ relation

- masses of central black holes in nearby galaxies are only about 0.2% of the stellar mass in hot component
- however, energy released in forming the black hole is much larger than energy released in forming the galaxy

$$\frac{M_{\rm BH}c^2}{M_{\rm galaxy}\sigma^2}\approx 5000 \left(\frac{200\,{\rm km~s^{-1}}}{\sigma}\right)^2$$

 black hole dominates the energy budget of the galaxy if even 0.1% of energy release is absorbed by the galaxy ("feedback")

•

Circumstantial evidence for feedback

• AGNs were most active at about the time galaxies were forming

AGN luminosity density

Wednesday, November 9, 2011

Circumstantial evidence for feedback

- AGNs were most active at about the time galaxies were forming
- blue-shifted X-ray absorption lines seen in some quasars suggest strong winds (e.g., Reeves et al. 2003)
- bimodal color distribution of galaxies seems to require expulsion of cold gas after mergers (Springel et al. 2005)
- central cooling times in some clusters of galaxies are short but there is no evidence of cool gas, suggesting that AGN heating balances radiative cooling
 - AGNs found in most clusters with short cooling times
 - bubbles of hot gas

Circumstantial evidence for feedback

central cooling times in some clusters of galaxies are short but there is no evidence of cool gas suggesting that AGN heating balances radiative cooling

- AGNs found in most clusters with short cooling times
- bubbles of hot gas

Wednesday, November 9, 2011

A toy model for feedback

Natural upper limit to black-hole luminosity is the Eddington luminosity $L_{\rm Edd}=\frac{4\pi GM_{\rm BH}c}{\kappa_T}$

where κ_T is the Thomson scattering opacity.

If galaxy is optically thick to dust, the dust and gas absorb momentum at a rate L_{Edd}/c

Gravitational force from stars on gas is GM^*M_{gas}/R^2

where $M_{gas} = f M^*$ with f~0.1 and galaxy mass M^* and radius R are related to dispersion by $\sigma^2 \sim 0.2GM^*/R$. Then gas is blown out if

$$M_{\rm BH} > \frac{f\kappa}{4\pi (0.2)^2 G^2} \sigma^4 \simeq 1 \times 10^9 M_{\odot} \frac{f}{0.1} \left(\frac{\sigma}{200 \, \rm km \ s^{-1}}\right)^4$$

(Silk & Rees 1998, Fabian 1999, King 2003, Murray et al. 2005)

A toy model for feedback

(Silk & Rees 1998, Fabian 1999, King 2003, Murray et al. 2005)

(Silk & Rees 1998, Fabian 1999, King 2003, Murray et al. 2005)

4. Binary black holes

 $10^6 M_{\odot}$

if more than one black hole spirals to the center, we may expect that binary black holes or black-hole mergers are common at galactic centers

10⁸M

The bottleneck radius

• dynamical friction becomes more and more effective as the secondary black hole spirals from ~ 30 kpc to ~ 10 pc

- dynamical friction becomes less and less effective as the secondary black hole spirals from ~ 10 pc inwards
 - \bullet once the black holes form a bound binary, the orbital velocity grows as v $\sim r^{-\frac{1}{2}}$, and friction timescale grows as v^3
 - mass of black hole can exceed the mass of all the stars that can interact with it
- gravitational radiation becomes more and more effective at even smaller radii
- •leads to a bottleneck at 10 pc 1 mpc
- decay times at the bottleneck are generally larger than the Hubble time (Begelman, Blandford & Rees 1980)

estimates of decay timescales for ~30 nearby galaxies using BH masses from the M- σ relation (Yu 2002)

The bottleneck radius

- dynamical friction becomes more and more effective as the secondary black hole spirals from ~ 30 kpc to ~ 10 pc
- dynamical friction becomes less and less effective as the secondary black hole spirals from ~ 10 pc inwards
- gravitational radiation becomes more and more effective at even smaller radii
- leads to a bottleneck at 10 pc 1 mpc
- decay times at the bottleneck are generally larger than the Hubble time (Begelman, Blandford & Rees 1980)

spherical galaxies, varying mass ratios (Yu 2002)

The final parsec problem: decay times

at the bottleneck are generally larger than the Hubble time (Begelman, Blandford & Rees 1980)

Ways around the problem:

• oblate or triaxial galaxies produce torques that can bring in fresh stars to interact with the black-hole binary

- gas drag or migration due to interactions with a massive disk
- gravitational interactions with additional merging black holes

triaxial galaxies, equal masses (Yu 2002)

The final parsec problem:

 this is not a "problem" unless you want to detect gravitational waves from merging black holes

 most or all binary black holes may survive for the age of the universe

typical radii 0.01-0.1 pc; orbital periods
 10-10⁴ yr; orbital velocities 10²-10⁴ km/s

•could be detected as double nuclei, double radio sources, double-peaked or displaced AGN emission lines, periodicity in AGN emission, precession of radio jets

• only a handful of plausible cases so far but it's hard to know what to expect (e.g., can two black holes in a close binary be AGN at the same time?)

Yu (2002)

Summary

- dark, compact objects of 10⁶-10¹⁰ solar masses are present at the centers of galaxies containing hot components (ellipticals and spiral bulges)
- their properties are inconsistent with any plausible, long-lived astrophysical system except black holes
- $\boldsymbol{\cdot}$ arguments based on energy budgets strongly suggest that these are dead quasars
- black-hole masses are correlated with properties of the host galaxy, in particular velocity dispersion
- the correlation may arise from feedback, i.e., energy input from the black hole plays a central role in galaxy formation
- \cdot formation of black-hole binaries of ~ parsec separation is a common process, but the lifetime of these binaries is not known
- rate of black-hole mergers is unknown