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Black holes in nearby galaxies (today)

1. Prior evidence for black holes

2. Posterior evidence for black holes

3. The relations between black holes and their host galaxies
4. Binary black holes

Dynamics of galaxy centers (Friday)

1. Hypervelocity stars
2. The nucleus of M31
3. Statistical mechanics in galaxy centers
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1. Prior evidence for black holes

quasars are the most luminous active galactic nuclei (AGN)
emit up to ~1013 Lo, or 100-1000 times a typical galaxy luminosity

energy source for all AGN is believed to be accretion of material onto a black
hole of mass up to 10°°M,

corresponding Schwarzschild radius 1.6x10'° cm (M/10°Ms) = 5 mpc (M/10°M,)

Wednesday, November 9, 2011



why quasars
require black
holes

directional stability of radio
jets over timescales of ~10°
yr requires a gyroscope that
could be provided by a
spinning black hole

VIBI1.3cm

ﬂ/j

05 PC

VLB] 7/mm
Krichbaum et al. (1998)
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why quasars require black holes

« apparent superluminal motion of

Q radio jets
Superluminal Motion in the M87 Jet
1994
q : .f«-,.,e_«:i..,.;c’_‘s,j 1995
1996
1997
. 1998

6.0c 55¢c 6.1c 6.0c

Hubble Space Telescope images
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why quasars require black holes

*  time variability on timescales of weeks

size < ct ~ 2x10% cm x (1/1 week) = 7 mpc x (/1 week)

* gravitational lensing by individual stars implies emitting
region smaller than Einstein radius of the star

Gravitational Lens G2237+0305

Ann. Phys. (Leipzig) 15, No. 1 -2 (2006)
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why quasars require black holes

relativistically broadened and
redshifted X-ray emission lines

iron Kt rest
wavelength

2x107% 4x107%* 6%x107* 8x107*

Line flux Fy (keV em © s ! keVY)
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Energy (keV)
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why quasars require black holes

Burning a mass AM produces energy AE with efficiency

 AE
 AMc2

€

€ <0.008 for nuclear reactions

€ = 0.057 for accretion onto a non-rotating black hole

€=0.3 for accretion onto a black hole in equilibrium spin state
€ = 0423 for accretion onto a maximally rotating black hole

Emission of energy A E produces "ash” of mass

1—eAFE

€ c?
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if

black holes are the power source for quasars

the present comoving number density of quasars is much less
than the density at earlier epochs

quasars are found in galaxies

then

many nearby galaxies must contain massive black holes or "dead
quasars” (Lynden-Bell 1969)

- expected density of quasar ash ~ 3x10° (¢/0.1) Mo/Mpc® (Sottan 1982)
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Black holes in the centers of galaxies

why are they at the center?

- that's the bottom of the
potential well

*  that's the only place we can
find them

» dynamical friction causes
orbits of massive bodies to
spiral o the center

J. Schombert,
University of Oregon

consider a mass, M, moving through a uniform sea of stars. Stars in the
wake are displaced inward.

this results in an enhanced region of density behind the mass, with a
drag force, Fcl known as dynamical friction
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2. Posterior evidence for black holes
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The black hole in the Galactic center
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The black hole in the Galactic center

- center of attraction is located at
the radio source Sagittarius A* which
is presumably the black hole

- smallest pericenter is only ~ 0.5 mpc
~ 3X distance to Neptune; and
smallest orbital period is only 16 yr

- orbits are closed ellipses so central
mass must be not bigger than 0.5 mpc

- M = (3.95+0.06)x10° M, if distance
R,= 8000 pc = 8 kpc

- Ry = 8.33+0.35 kpc
(Gillessen et al. 2009)
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1000 AV

- Galactic center contains 4x10°
M, in < 0.5 mpc (3X distance to

Neptune)

- event horizon for this mass is
only 0.2 ypc (20% of Mercury's
orbit)

- all plausible alternatives to a
black hole have very short
lifetimes (e.g., cluster of
neutron stars)

- some implausible alternatives
can survive:

* cluster of 109 Saturn-mass
black holes

» Bose-Einstein condensate of
some unknown elementary
particle
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NGC 4258
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Miyoshi et al. (1995)

Herrnstein et al. (1999)
Humphreys et al. (2007)
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NGC 4258
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- four observational data:

- amplitude of Keplerian
rotation curve

* proper motion of systemic
masers, 31.5+1 milliarcseconds/
yr

- acceleration of systemic
masers, 9.3+0.3 km/s/yr

- velocity versus distance for
systemic masers

* three unknown parameters:

* radius of systemic masers
- distance of galaxy d
* black-hole mass M

. M=(3.9:0.1)x107 M,

- d=7.1+0.2 and 7.2+0.2 Mpc
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UGC 3789
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finding black holes in "normal” nearby galaxies

* measure optical spectrum of light from the galaxy at a given position
« if typical star as a spectrum F*(A\) and the number of stars as a function of
line-of-sight velocity is n(v)dv, the actual spectrum will be

F(A) = J F*(A-v/c)n(v)dv

« knowing F and F* gives n(v) -- parametrize by mean velocity <v> and dispersion o
- central black hole of mass M influences kinematics only inside a radius r such
that

GM/r > max[o?, <v>*] “sphere of influence"

- crucial problem is to resolve the sphere of influence -- number of galaxies in
which a black hole can be detected varies as FWHM?3 where FWHM is full-width
half-maximum of telescope point-spread function

* typical ground-based telescope at excellent site FWHM = 0.5-1"

 Hubble Space Telescope FWHM = 0.08"

« 8-meter ground-based telescope with adaptive optics FWHM = 0.1"
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finding black holes in "normal” nearby galaxies

velocity dispersion profile

G=M=1, asymptotic velocity dispersion = 1
Gaussian point-spread function with dispersions = 0.3,1,3

24
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finding black holes in "normal” nearby galaxies
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the history of BH mass
determinations in M32
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The history of the black hole in M87

* Sargent et al. (1978): ~ 5 x 10° M, (ground-based,
stars)

* Harms et al. (1994): (2.4+0.7) = 10° M, (HST, gas)
* Macchetto et al. (1997) (3.2+0.9)x10° M, (HST, gas)
* Gebhardt & Thomas (2009), Gebhardt et al. (2010):
(5.5£0.4) x 10° M. (ground-based adaptive optics,

stars)
* near IR integral-field spectrograph (NIFS) on Gemini +
SAURON to 10"+ VIRUS to 250"
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3. The relation between black holes and their host

galaxies
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elliptical

“elliptical

spiral (disk + big bulge) -
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i/ 4

 spiral (disk + meditm bulge)”
elliptical e R

ellipticals + spiral bulges
= "hot” components

spiral (disk'+ small bulge)
“elliptical -~ '

spiral (disk + big bulge) -
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black hole mass (solar masses)
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* by now there are ~40-50
detections of a massive dark

object in nearby galaxies,
106-10° M,

‘mass determinations from

- stellar dynamics
- gas dynamics
* maser disks
* black-hole mass correlates

with luminosity of hot
component; roughly

Mo L

- in terms of stellar mass M
=0.002 M

stars
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Are the black holes in nearby galaxies dead quasars?

- masses of central black holes in nearby
galaxies are about 0.2% of the stellar mass
in hot component

- knowing the average density of galaxies we
can estimate the average density in black
holes,

perH = 3 x 10° M_ Mpc™®

« we know the local energy density in quasar
photons. Expected density of quasar ash is

pqso = 3 x 10° M, (¢/0.1) Mpc™®
(Soltan 1982)

M M)
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Origin of the M-o relation

masses of central black holes in nearby
galaxies are only about 0.2% of the stellar
mass in hot component

however, energy released in forming the
black hole is much larger than energy
released in forming the galaxy

2
MBH62

2
~ 5000 (200km s )

a

black hole dominates the energy budget of
the galaxy if even 0.1% of energy release is
absorbed by the galaxy (“feedback")

M (M)
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Circumstantial evidence for feedback

- AGNs were most active at about the time galaxies were forming

AGN luminosity density

p(z,M;<-27.6) (Mpc3)

107% e T e e T g
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Circumstantial evidence for feedback

AGNs were most active at about the time galaxies were forming

blue-shifted X-ray absorption lines seen in some quasars suggest
strong winds (e.g., Reeves et al. 2003)

bimodal color distribution of galaxies seems to require expulsion of
cold gas after mergers (Springel et al. 2005)

central cooling times in some clusters of galaxies are short but there
is no evidence of cool gas, suggesting that AGN heating balances
radiative cooling

- AGNs found in most clusters with short cooling times
- bubbles of hot gas

Wednesday, November 9, 2011 36



105 LR LR | A D | LR R IR R
Circumstantial evidence for Lo
feedback
103 .
central cooling times in some clusters of galaxies ° Ll ]
are short but there is no evidence of cool gas &
suggesting that AGN heating balances radiative g o ) i
cooling « i |
- AGNs found in most clusters with short Y
P O _
cooling times Ry
07 o e e T e T e e

- bubbles of hot gas

Licm (<rcoor)(1042 erg s—1)

Sound Waves

: Cavities <——

#@— Black Hole

McNamara & Nulsen
(2007)

Wednesday, November 9, 2011 37




A toy model for feedback

Natural upper limit to black-hole luminosity is the Eddington luminosity
47I'GMBHC

KT

Lgaa =

where k1 is the Thomson scattering opacity.

If galaxy is optically thick to dust, the dust and gas absorb momentum at a
rate Ledd/c

Gravitational force from stars on gas is GM Mgqs/R?

where Mges = f M* with f~0.1 and galaxy mass M” and radius R are related to
dispersion by 0?2 ~ 0.26M"/R. Then gas is blown out if

fe 4 9 f o 3
M —— o " ~1x10°My— | ——
BH 2 1r(0.2)2G2° & ©0.1 \200km s~ !

(Silk & Rees 1998, Fabian 1999, King 2003, Murray et al. 2005)
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4. Binary black holes - - 1w,
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The bottleneck radius

« dynamical friction becomes more and more effective as the
secondary black hole spirals from ~ 30 kpc to ~ 10 pc

e dynamical friction becomes less and less effective as the secondary
black hole spirals from ~ 10 pc inwards

* once the black holes form a bound binary, the orbital velocity grows as v ~
r'¢, and friction timescale grows as v3

* mass of black hole can exceed the mass of all the stars that can interact
with it

e gravitational radiation becomes more and more effective at even
smaller radii

*leads to a bottleneck at 10 pc - 1 mpc

* decay times at the bottleneck are generally larger than the Hubble
time (Begelman, Blandford & Rees 1980)
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gravitational radiation «—  dynamical friction

bottleneck radius

1binar‘y <«<—> unbound
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estimates of decay timescales for ~30 nearby galaxies using BH
masses from the M-o relation (Yu 2002)

o Hubble time
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The bottleneck radius

e dynamical friction becomes more and
more effective as the secondary black
hole spirals from ~ 30 kpc to ~ 10 pc

* dynamical friction becomes less and
less effective as the secondary black
hole spirals from ~ 10 pc inwards

* gravitational radiation becomes more
and more effective at even smaller radii

* leads to a bottleneck at 10 pc - 1 mpc

e decay times at the bottleneck are
generally larger than the Hubble time
(Begelman, Blandford & Rees 1980)
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The final parsec problem: decay times
at the bottleneck are generally larger
than the Hubble time (Begelman,
Blandford & Rees 1980)

Ways around the problem:

* oblate or triaxial galaxies produce torques
that can bring in fresh stars to interact with
the black-hole binary

* gas drag or migration due to interactions
with a massive disk

* gravitational interactions with additional
merging black holes
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The final parsec problem:
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orbits of nearby stars
not Keplerian
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Summary

» dark, compact objects of 10°-10% solar masses are present at the centers of galaxies
containing hot components (ellipticals and spiral bulges)

* their properties are inconsistent with any plausible, long-lived astrophysical system
except black holes

* arguments based on energy budgets strongly suggest that these are dead quasars

- black-hole masses are correlated with properties of the host galaxy, in particular
velocity dispersion

* the correlation may arise from feedback, i.e., energy input from the black hole plays a
central role in galaxy formation

- formation of black-hole binaries of ~ parsec separation is a common process, but the
lifetime of these binaries is not known

- rate of black-hole mergers is unknown
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