Ghost Bounce 鬼跳

A matter bounce by means of ghost condensation R. Brandenberger, L. Levasseur and C. Lin arXiv:1007.2654

> Chunshan Lin IPMU@UT

Outline

L Alternative inflation models

- » Necessity
- Matter bounce
- II. Ghost condensation
 - » Basic philosophy
 - Applications
 - Interesting features
 - Instability
- Matter bounce by means of ghost condensation
 - Several advantages:
 ghost free, stable against radiation and anisotropic stress...
 - > Perturbation
 - Cut off issue

Part I

Alternative inflation models

Sin Link

Look beyond...

- Inflation suffers from some conceptual problems
 Flatness problem
 Amplitude problem $\frac{V(\varphi)}{\Delta \varphi^4} \le 10^{-12}$ Trans-Planckian problem
 Singularity problem
- Some other attempts
 Matter bounce, Ekpyrotic,
 String gas, pre big bang
 theory.....

Matter Bounce

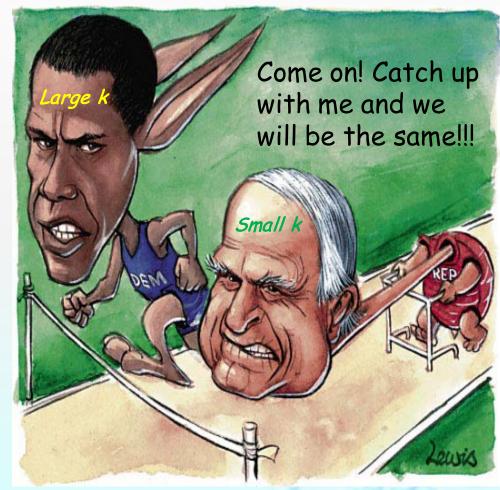
- Contracting universe before big bang
- Cold pressureless matter
- Scale invariant spectrum
 Horizon crossing

 $\delta arphi_* \propto H_* \propto t_*^{-1}$

super horizon growing

 $\varsigma(t) \propto t^{-1}$

Amplitude of the larger scale perturbation mode will catch up with the smaller scale perturbation mode.



How to realize it?

Modifying gravity

> non-singular Universe

R. H. Brandenberger, V. F. Mukhanov and A. Sornborger, gr-qc/9303001

- higher derivative gravity action
 T. Biswas, A. Mazumdar and W. Siegel
 hep-th/0508194
- > mirage cosmology

R. Brandenberger, H. Firouzjahi and O. Saremi, arXiv:0707.4181

Horava-Lifshitz gravity
 P. Horava, arXiv:0904.2835

Modifying matter

quintom bounce, Lee-wick bounce.....

- Ghost instability
 J.Cline, S.Jeon and G. Moore, hep-ph/0311312
- Bounce may be unstable
 J. Karouby and R. Brandenberge

arXiv:1004.4947

> Anisotropic stress scales as a^{-6}

How to realize it?

Modifying gravity

> non-singular Universe

R. H. Brandenberger, V. F. Mukhanov and A. Sornborger, gr-qc/9303001

- higher derivative gravity action
 T. Biswas, A. Mazumdar and W. Siegel
 hep-th/0508194
- > mirage cosmology

R. Brandenberger, H. Firouzjahi and O. Saremi, arXiv:0707.4181

Horava-Lifshitz gravity
 P. Horava, arXiv:0904.2835

Modifying matter

quintom bounce, Lee-wick bounce.....

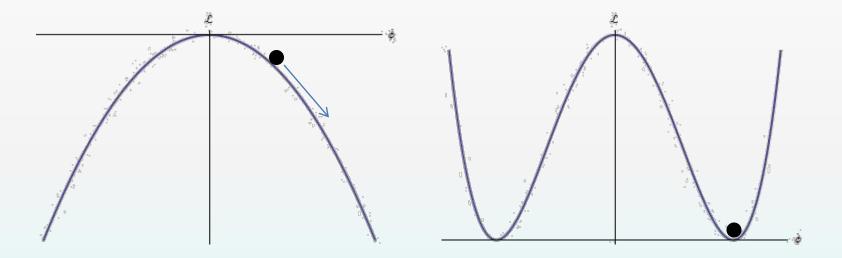
- Ghost instability
 J.Cline, S.Jeon and G. Moore, hep-ph/0311312
- Bounce may be unstable J. Karouby and R. Brandenberge arXiv:1004.4947
- > Anisotropic stress scales as a^{-6}

Part II

Ghost Condensation Theory

Ghost Condensation

$$L = -\frac{1}{2}\partial^{\mu}\phi\partial_{\mu}\phi + \dots \qquad P = \frac{1}{8}(X - c^{2})^{2}, \quad X = \partial^{\mu}\phi\partial_{\mu}\phi$$

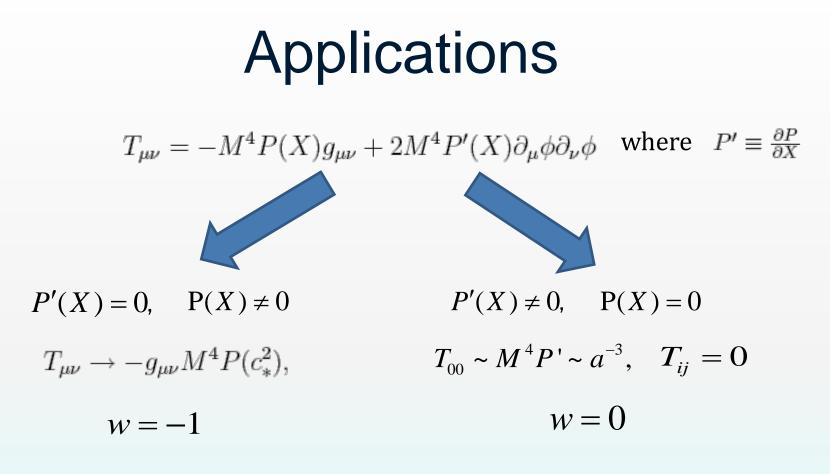


It is similar as tachyon condensation

$$V_{tachyon} = -\frac{1}{2}m^2\phi^2 + \lambda\phi^4 + \dots$$

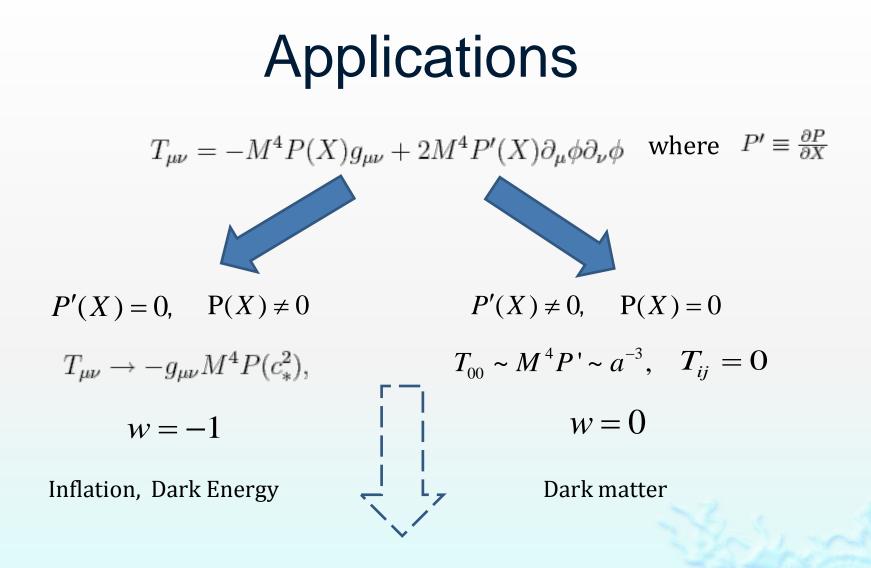
Hep-th/0312099 Shinji, Nima, et.al...

Higher order potential (kinetic) terms stablize vacuum.



Inflation, Dark Energy

Dark matter



Matter Bounce

Interesting features

More generally,

 $\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$

Ghost field locate at the minima, with scalar excitation

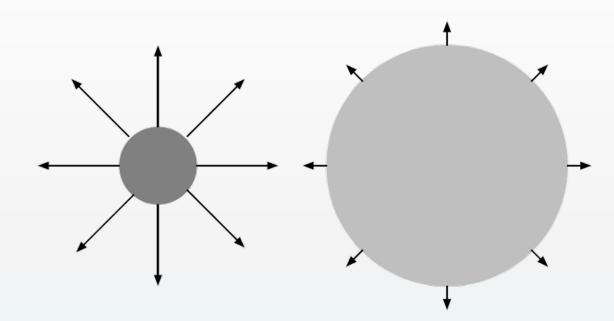
$$\phi = c t + \pi$$

Low energy effective action for $\boldsymbol{\pi}$ is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right]$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$.
Group velocity $v^2 \sim k^2/M^2$,

Interesting features



> Small lumps expand faster than larger lumps since $\omega^2 \sim \frac{k^4}{M^2}$.

> Small lumps also move faster than larger lumps since $v^2 \sim k^2/M^2$,

Lorentz invariance

Interesting Features

> "Particle physics" energy density $\mathcal{E}_{pp} = \int d^3x T_{00} - c_* Q \sim \frac{1}{2} \dot{\pi}^2 + \frac{(\nabla^2 \pi)^2}{2M^2} + \cdots$

Gravitational energy density

$$\mathcal{E}_{\rm grav} = T_{00} \sim M^2 \dot{\pi} + \cdots$$

Inertial Mass!

Gravitational Mass!

Interesting features

Lumps come from scalar excitation, its energy density always positive in terms of "particle physics", but the induced gravity can be either attractive or repulsive!

- $\dot{\pi} > 0$ attractive
- $\dot{\pi} < 0$ repulsive

Jeans instability

 $\ast~$ For a fluid with pressure p and energy density $\rho,$

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

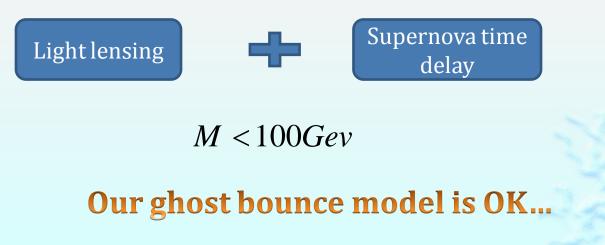
When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}, \qquad T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$$

In linear regime, fluctuation with wavelength $\lambda \gtrsim L_J$ grows on a time scale $\tau \sim T_J \frac{\lambda}{L_J}$, So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} \text{eV}$ Ghost condensation plays the role of DE.

Jeans instability

- So we need a very small M to protect the IR gravity.
 e.g. M ~ 10⁻³eV Ghost condensation plays the role of DE. The gravity is modified at length scale r_J ~ H₀⁻¹
 But we need to wait τ >> H₀⁻¹ to see this modification!
- An upper bound of M has been given in hep-ph/0507120, (N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)



Gradient stability

Up to 2nd order,

 $\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2) (\nabla^2 \pi)^2$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4$$
 where $\tilde{M}^2 = M^2(S_1+S_2)$
Ghost condensation locates at the minima of Lagrangian

P' = 0

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{grad}^2 > 0$$

Ghost condensation stablize vacuum on background and perturbation level !

Part III

Realization of Matter Bounce

Ghost bounce

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)} \qquad \rho_X \sim a(t)^{-p}$$

minimal requirementp > 3against radiationp > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

 $\mathcal{L} = M^4 P(X) - V(\phi)$

P(X) takes the prototypical form

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Ghost bounce

Ansatz for potential

 $V(\phi) = V_0 M^{-\alpha} \phi^{-\alpha}$

Divergence is cut off at M^4

Ghost field changes as

 $\phi(t) = ct + \pi(t)$

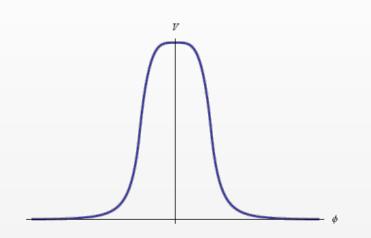
 $\pi(t)$ is the small deviation from minima, its EoM

$$\ddot{\pi} + 3H\dot{\pi} = 2c^{-2}V_0M^{-4-\alpha}\alpha(ct)^{-(\alpha+1)}$$

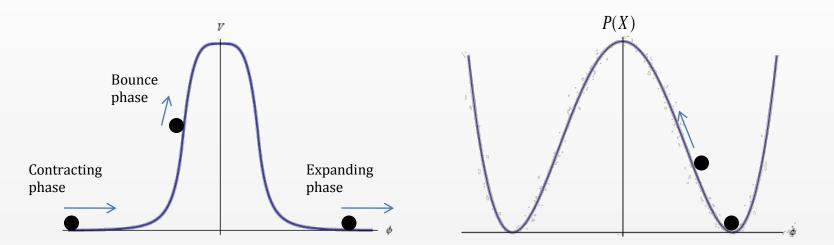
It yields $\rho_X \sim \dot{\pi} \sim t^{-\alpha}$.

 $\alpha = 4$ Marginally stable against anisotropic stress

 $\alpha = 6$ stable

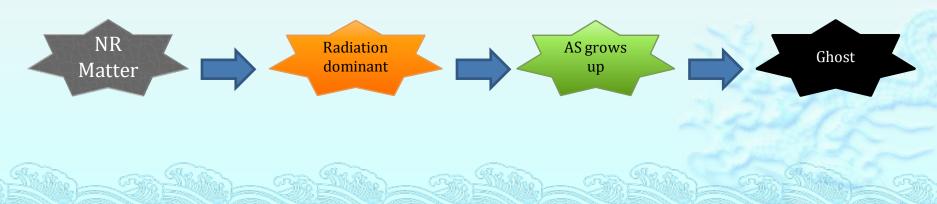


Ghost bounce

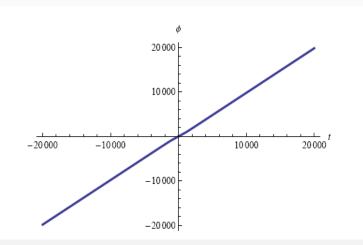


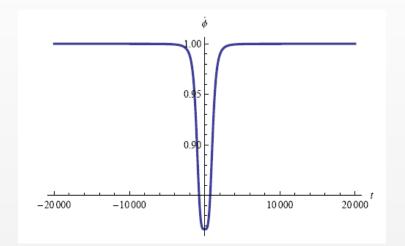
$$2M_p^2 \dot{H} = -2M^4 X P' - (1+w_m)\rho_m$$

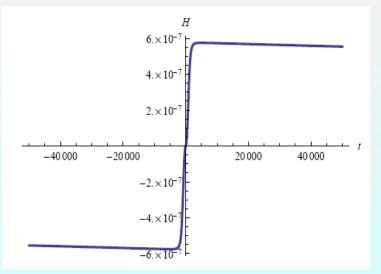
Realization of NEC violation!



Numerical results





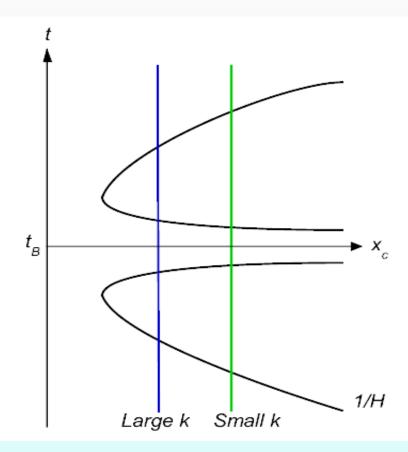


Initial condition of numerical calculation

$$\phi(0) = 0 \text{ and } \dot{\phi}(0) = \sqrt{2/3}$$

 $M = 2 \times 10^{-3}$
 $\rho_m(0) = 10^{-12}$
 $\alpha = 4$

Matter perturbation



The metric in Newtonian gauge $ds^{2} = -(1+2\Phi)dt^{2} + a(t)^{2}(1-2\Psi)d\mathbf{x}^{2}$ $\varphi(\eta, \mathbf{x}) = \varphi_0(\eta) + \delta \varphi(\eta, \mathbf{x})$ Introduce M-S Variable $v = a \left[\delta \varphi + \frac{z}{a} \Phi \right]$ $S^{(2)} = \frac{1}{2} \int d^4x \left[v'^2 - v_{,i}v_{,i} + \frac{z''}{z}v^2 \right]$ EoM: $v_k'' + k^2 v_k - \frac{z''}{z} v_k = 0$ In matter contracting phase $z \sim a$ $v(t) \sim t^{-1/3}$

Matter perturbation

M-S variable corresponds to

$$\zeta = a^{-1}v \sim t^{-1}$$

So the relation between late time ζ and ζ at horizon crossing

$$\zeta(k,t) \sim \zeta(k,t_H) \cdot \frac{t_H}{t} \sim a(k,t_H)^{-1} \upsilon(k,t_H) \cdot \frac{t_H}{t}$$

where $\upsilon(k,t_H) \sim k^{-1/2}$, $t_H(k) = k^{-1} a(t_H(k))$

So we get

$$\zeta \sim t_H(k)^{1/3} \upsilon(k, t_H) \sim k^{-3/2}$$
$$P_{\zeta}(k, t) \sim k^3 |\zeta(k, t)|^2 \sim k^0$$

Scale invariant spectrum!

Ghost perturbation

We need to prove

- a) In matter contracting phase, Ghost perturbation does NOT grow faster than matter perturbation;
- ^{b)} The spectrum of ghost perturbation can NOT be red;
- There is NO large amplification of ghost perturbation around bounce phase;
- Focus on matter dominant contracting background

 $M_{pl}^2 G_{\mu\nu} = T_{\mu\nu}^{(\phi)} + T_{\mu\nu}$

Linear decompose Newtonian potential

$$\Phi\,=\,\Phi_m+\Phi_g$$

Ghost perturbation

The Eom of Φ is [hep-th/0607181, S.Mukohyama]

$$\partial_t^2 \Phi_g + 3H \partial_t \Phi_g + (2H^2 + \dot{H}) \Phi_g + \frac{\alpha}{M^2} \left(\frac{\mathbf{k}^2}{a^2}\right)^2 \Phi_g - \frac{\alpha M^2}{2M_{pl}^2} \frac{\mathbf{k}^2}{a^2} \Phi_g = \frac{\alpha}{2} \frac{M^2}{M_{pl}^2} \frac{\mathbf{k}^2}{a^2} \Phi_m$$

Define a new variable $\tilde{\Phi} = a(t) \Phi$,

$$\tilde{\Phi}_{g}'' + \frac{81\alpha}{M^{2}} \frac{\mathbf{k}^{4} t_{0}^{4}}{\tau^{4}} \tilde{\Phi}_{g} - \frac{\alpha M^{2}}{2M_{pl}^{2}} \mathbf{k}^{2} \tilde{\Phi}_{g} = \frac{\alpha}{2} \frac{M^{2}}{M_{pl}^{2}} \mathbf{k}^{2} \tilde{\Phi}_{m}$$

The solution of the above EoM

$$\tilde{\Phi}_{g}^{p}(\tau) \simeq k^{2} \gamma \tau \left(\frac{D}{3}\tau^{3} - \frac{S}{2}\tau^{-2}\right) \qquad \text{It is blue,}$$
where
$$\tilde{\Phi}_{m} = a(t)\Phi_{m} = D\tau^{2} + \frac{S}{\tau^{3}} \qquad \text{and grows slower.}$$

Compare

Ghost perturbation

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_g + \theta \Phi_g = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

This result is still true near bounce point since $k^2 \ll \theta$ is still true.

Stability during bounce

the dispersion relation

$$\omega^{2} = \frac{-(\tilde{M}^{2}M^{4} + 4M_{pl}^{4}\dot{H})k^{2} + 2M_{pl}^{2}\tilde{M}^{2}k^{4}}{2M_{pl}^{2}M^{4}}$$

the typical instability rate

$$\omega_c = \frac{1}{4} \frac{\tilde{M}M^2}{M_{pl}^2} + \dot{H} \frac{M_{pl}^2}{M^2 \tilde{M}}$$

Its growing rate during bounce phase

$$\Delta t \omega_c \sim \left(\frac{V_0}{M^4}\right)^{1/\alpha} \left[\frac{1}{4} \frac{\tilde{M}M}{M_{pl}^2} + \dot{H} \frac{M_{pl}^2}{M^3 \tilde{M}}\right]$$

Since $\dot{H} \sim \frac{M^4 \dot{\pi}}{M_{pl}^2}$ if $V_0 \ll M^4$ We get

 $\Delta t \omega_c \ll 1$

Cut-off issue

 $\ast~$ For a fluid with pressure p and energy density $\rho,$

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}, \qquad T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$$

So we need a very small M to protect the IR gravity. A constraint condition has been given in hep-ph/0507120, where

M < 100 Gev

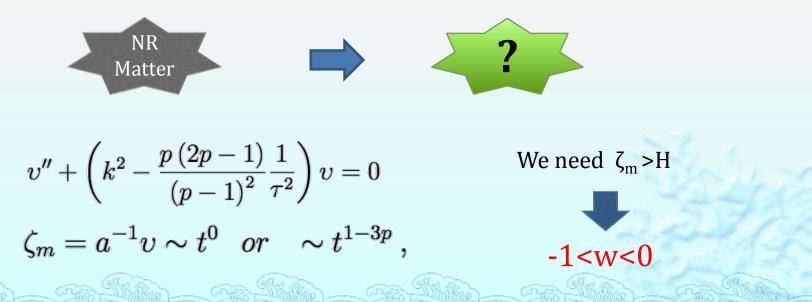
Cut-off issue

However, in matter bounce

$$\zeta_m \sim H \sim 10^{-5}$$

Much greater than 100Gev!

The problem can be solved by assuming...



Cut-off issue

 $_{\circ}$ E.g. w=-1 Deflation $\zeta_m \sim au^3 \sim a^{-3}$

Matter scalar field $m^2 \varphi^2$

Ghost field

Assume matter contracting phase end up with $H \sim 100 \text{Gev} \sim 10^{-17}$

We need e-folding $\frac{1}{3} \log \frac{10^{-17}}{10^{-5}} \simeq -10$

Conclusion & Discussion

Ghost condensation theory

- Stablize vacuum
- Interesting feature
- We realize matter bounce by means of ghost condensation Advantages:
 - 1. No ghost;
 - 2. Background is stable against radiation and anisotropic stress;

Preserve scale invariant spectrum:

- 1. Grows slower than matter perturbation;
- 2. Blue spectrum;
- 3. No large amplification during bounce phase;
- 4. The gradient instability during bounce phase has no enough time to develop.

Thank you!

ONE WORLD, ONE GHOST!