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Overview:

1. Introductory remarks on c-theorem

2. Holographic c-theorem I: Einstein gravity

3. Holographic c-theorem II: Higher curvature gravity

4. a4, Entanglement Entropy and Beyond

5. Concluding remarks



Zamolodchikov c-theorem (1986):

e renormalization-group (RG) flows can seen as one-parameter
motion d 9
N OF
in the space of (renormalized) coupling constants{g¢*, i =1,2,3,---}
with beta-functions as “velocities”

o for unitary, renormalizable QFT’s in two dimensions, there exists
a positive-definite real function of the coupling constants c(g):

. . d
1. monotonically decreasing along flows: Ec(g) <0

2. “stationary” at fixed points ¢’ = (3°)" :

8'(g") = 0 5gic(9) =0

3. at fixed points, it equals central charge of corresponding CFT
c(g”) = c



Zamolodchikov c-theorem (1986):

e renormalization-group (RG) flows can seen as one-parameter
motion d 9
N OF
in the space of (renormalized) coupling constants{g¢*, i =1,2,3,---}
with beta-functions as “velocities”

o for unitary, renormalizable QFT’s in two dimensions, there exists

a positivi sc(g):
Consequence for any RG flow:
1. mon(

2. “statl UV

3. at fix ding CFT

CUv > CIR



C-theorems in higher dimensions??

\
d=2: (T,*) = ——=R

12
d=a: (T, = @

a
— E, — R
1672 T@

]4 — CMVPOCMZ/PG and E4 — RW/'OJR/M/,OG L 4RMVR/LI/ T R2

« in 4 dimensions, have three central charges: ¢, a, @’
» do any of these obey a similar “c-theorem” under RG flows?

x a' -theorem: «’ is scheme dependent (not globally defined)

X c -theorem: there are numerous counter-examples




C-theorems in higher dimensions??

\
d=2: (T,*) = ——=R

12
d=a: (T, = @

a
% g, - R
1672 ¢ @

]4 — CMVPOCMZ/PG and E4 — RW/'OJR/M/,OG L 4RMVR/LI/ T R2

« in 4 dimensions, have three central charges: ¢, a, @’
» do any of these obey a similar “c-theorem” under RG flows?

a -theorem:. proposed by Cardy (1988)

e nUMerous nontrivial examples, eqg, perturbative fixed points
(Jack & Osborn), SUSY gauge theories (Anselmi et al; Intriligator & Wecht)




(Anselmi, Freedman, Grisaru & Johansen, hep-th/9708042)
SUSY example:

* SU(N,) supersymmetric QCD with N; flavors of massless quarks
with 3/2 < Ny/N. < 3

 in UV, asymptotically free:

—;%@M59+WWNJ

1
= — (3N —-3+2N;N.)
24
* in IR, flows to nontrivial conformal fixed point:

3 N4
= —[2N*—-1-3=¢
T ( c f{%)

1 N4
= —|7TN?—-2-9¢
IR = 6 ( c f{%)




(Anselmi, Freedman, Grisaru & Johansen, hep-th/9708042)

SUSY example:

* SU(N,) supersymmetric QCD with N; flavors of massless quarks
with  3/2 < Ny/N, < 3

32
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C-theorems in higher dimensions??
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(Jack & Osborn), SUSY gauge theories (anselmi et al; Intriligator & Wecht)

 holographic field theories with Einstein gravity dual



C-theorems in higher dimensions??
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« in 4 dimensions, have three central charges: ¢, a, @’
» do any of these obey a similar “c-theorem” under RG flows?

a -theorem:. proposed by Cardy (1988)

e nUMerous nontrivial examples, eqg, perturbative fixed points
(Jack & Osborn), SUSY gauge theories (Anselmi et al; Intriligator & Wecht)

/  holographic field theories with Einstein gravity dual

(Gaiotto, Seiberg & Tachikawa)



C-theorems in higher dimensions??

\
d=2: (T,*) = ——=R

12
d=4: (1,/')= @

a
% g, - R
1672 ¢ T@

]4 — CMVPOCMZ/PG and E4 — RW/'OJR/M/,OG L 4R/M/R'uy T R2

« in 4 dimensions, have three central charges: ¢, a, @’
» do any of these obey a similar “c-theorem” under RG flows?

a -theorem:. proposed by Cardy (1988)

/ e+ numerous nontrivial examples, eg, perturbative fixed points
(Jack & Osborn), SUSY gauge theories (Anselmi et al; Intriligator & Wecht)

/< holographic field theories with Einstein gravity dual

 holographic theories with higher curvature dual for any d
* F-theorem for d=3 (and general odd d)
« d=4 “proof” using dilaton effective action
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(Freedman, Gubser, Pilch & Warner, hep-th/9904017)
(Girardello, Petrini, Porrati and Zaffaroni, hep-th/9810126)

Holographic RG flows:

1 5%
1= dx\/_[R——(a(b) V(9)

e imagine potential has stationary points giving negative A
12
— 3%
« consider metric: ds® = > (—dt? + dz? + dx2 + da2) + dr?

—_—> V(¢i,cr> —

e at stationary points, AdS; vacuum: A(r) = r/L with L = L/,

* RG flows are solutions starting at one stationary point and
ending at another >

V(g) 1Y




(Freedman, Gubser, Pilch & Warner, hep-th/9904017)
(Girardello, Petrini, Porrati and Zaffaroni, hep-th/9810126)

Holographic RG flows:

2

: : B /Iy
o for general flow solutions, define: a(r) = EYUGE
372 2
"(r) = — A (r) = — T, —T",.) >0
@(r) 3 A () (r) 3 A (r)s (" ) >
Einstein equationsJ null energy conditionJ

(T 00 >0)

- at stationary points, a(r) — «* = 7% L?/¢% and hence

[abv > a}R]

« using holographic trace anomaly: a™ = a
(e.g., Henningson & Skenderis)

—> supports Cardy’s conjecture
o for Einstein gravity, central charges equal(a — c) CUV = CIR



(Freedman, Gubser, Pilch & Warner, hep-th/9904017)
Holographic RG flows:

[ o [ v | R 002 - V(o)
204 2
« same story is readily extended to (d+1) dimensions
; 2d/2
e defining: =
ehning: a1 = L ) ()™
/ (d B 1)7Td/2 /" Wd/Q t
= — A'(r) = — T —T",) >
= Tamaaen VT T g ae T 20
Einstein equations J null energy conditionJ

. at stationary points, a(r) = a* = 792 /T'(d/2) (L/¢p)?* ' and so

[a?ﬂ/ > G?R]

« using holographic trace anomaly: a* o central charges
(for even d! what about odd d?) (e.9., Henningson & Skenderis)
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Improved Holographic RG Flows:

 add higher curvature interactions to bulk gravity action

—> provides holographic field theories with, eg, a # ¢
so that we can clearly distinguish evidence of a-theorem

(Nojiri & Odintsov; Blau, Narain & Gava)
e construct “toy models” with fixed set of higher curvature terms
(where we can maintain control of calculations)

What about the swampland?

 constrain gravitational couplings with consistency tests
(positive fluxes; causality; unitarity) and use best judgement

» seems an effective approach with, e.g., Gauss-Bonnet gravity

(eg, Brigante, Liu, Myers, Shenker,Yaida, de Boer, Kulaxizi, Parnachev, Camanho,
Edelstein, Buchel, Sinha, Paulos, Escobedo, Smolkin, Cremonini, Hofman, . . ..

e ultimately one needs to fully develop string theory for
Interesting holographic backgrounds



' : : Myers & Robinsion, 1003.5357
Qua5|-TopoIog|caI gravity: (My )

A
I = d’zy—g | + R+ L L= Z
2@ x [ + R+ L5 xa+ L 2
with X4 = R*““Rgpeq — 4Ry R* + R
1
Zs = ROIRSIRAY+ — (21Rupea RR — T2Rgpea R% R

56
+120Rapca R R + 144R) R, R — 132R R R + 15R?)

e three dimensionless couplings,L/¢p, A, u, allow us to explore
dual CFT’s with most general three-point function (Top Teqd Te s )

“maintain control of calculations”
 analytic black hole solutions

* linearized eom in AdS; are second order (in fact, Einstein eq’s!)

 can be extended to higher dimensions (D=7)
e gravitational couplings constrained (Myers, Paulos & Sinha, 1004.2055)



I : - Myers, Paulos & Sinha, 1004.2055
Quasi-Topological gravity: (My )
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' : : Myers & Robinsion, 1003.5357
Qua5|-TopoIog|caI gravity: (My )

I = d°z\/—g [%—F R+ L@x4 + L @25]

253
with xa = R™“Rupeq — 4R, R + R?

1
25 = RSOR{RS+ oo (A Rabea R R — T2Rapea R, R
+120Rupea R R + 144R) R, R — 132R R, R + 15R?)

e let's calculate!

. L (¢
e cUrvature in AdS; vacuum: —=— =,

L2

where  o? — foo + Af2 +pufl =0

 holographic trace anomaly: (Myers, Paulos & Sinha, 1004.2055)

LS 2 2L3 2
P



RG flows in Quasi-Topological gravity:

« consider metric: ds® = e*4) (—dt? + da? + dr3 + dx3) + dr’
-> AdS; vacua: A(r)=r/L

* need to define “flow functions” which extend

o L7 2
“P
o L? 2
c=T F(l—Q)\fOO—Sufoo)
P

for general flows away from fixed points



RG flows in Quasi-Topological gravity:

« consider metric: ds® = e*4) (—dt? + da? + dr3 + dx3) + dr’
-> AdS; vacua: A(r)=r/L

e natural to define “flow functions”:

2
T 1 — 6AL2A'(r)? + 9uL* A’ (r)%)

CL(T) = €3PA/(T>3 (
= (1—=2XL2A'(r)* = 3uL* A'(r)*)

7

C\T) =
"= G
where at stationary points: a(r) =a, c(r) =c

* “simplest” r-dependent functions satisfying this condition



RG flows in Quasi-Topological gravity:

71.2

a(r) = BAT (1 — 6AL2A(r)* + 9,uL4A’(7“)4)
c(r) = 83132’2(7‘)3 (1 —2AL? A (r)* — 3,uL4A’(7’)4)

where at stationary points: a(r) =a, c(r) =c

* in general flows:

/ 3 7 2 A1/ N2 EVIRY
= — A 1 —2)\L°A —3ul”"A
(1) = s A0 (r)? — UL A ()
2 )
-
p— — Tt - Trrrr' > <
€3PA’(7“)4 ( t ) >0 zj’j

A T

assume null energy condition

gravitational equations of motion



RG flows in Quasi-Topological gravity:

,n.2

a(r) = BAT (1 — 6AL2A(r)* + 9,uL4A’(7“)4)
c(r) = B%X/Q(T)S (1 —2AL2A (r)? — 3uL*A'(r)*)

where at stationary points: a(r) =a, c(r) =c

* in general flows:

/ 3 7 2 A1/ N\2 4 A1/ N4
= — A 1 —2)\L°A — 3ul*A
) = gy A0) (- DA ) = 3L A )Y
w2 ;
= T, —=T",.) >
63]314’(7")4 ( t ) =0
/ 37T2 17 2 2 Al 2 4 4/ 4
= — A 1 — =MNL°A —ul*A
c (T> E%A/(T)zl (T) 3)\ (Ir) /’L (T)

_ w2 1 — %)\LQA/(T)Q — LA A’ (r)? (Tt g ) or
K%A’(T)‘l 1 — 2AL2A/(r)2 — 3uLl4 A ()4 t r) 7




RG flows in Quasi-Topological gravity:

WQ

a(r) = BAT (1 — 6AL2A(r)* + 9,uL4A’(7“)4)
c(r) = B%X/Q(T)S (1 —2AL2A (r)? — 3uL*A'(r)*)

where at stationary points: a(r) =a, c(r) =c

* in general flows:

/ 371-2 /! 2 Al 2 4 A/ 4
= — A 1 —2)\L°A — 3ul*A
() = gy A (L= LA = LA (r)')
w2 ;
- — T, —=T",.) >
63]314’(7")4 ( t ) =

e can try to be more creative in defining c(r) but we were unable
to find a expression where flow is guaranteed to be monotonic

e our toy model seems to provide support for Cardy’s “a-theorem”
In four dimensions



Higher Dimensions: D =d+1 (u =0 for d =5)
o straightforward to reverse engineer “a-theorem” flows
e eg’s of motion:
T —T". = (d—1)A"(r) (1 —2AL*A'(r)* — 3uL*A’(r)*)
« expression with natural flow:

_ /2 2(d=1) 1oy o 3d=1) —y . 4
") = T a72) (A () (1_ i—3 AU et A(T))
) ()= e (7" —T",) >0

T(d/2) A ()

|

assume null energy condition



Higher Dimensions: D =d+1 (u =0 for d =5)
o straightforward to reverse engineer “a-theorem” flows
e eg’s of motion:
T —T". = (d—1)A"(r) (1 —2AL*A'(r)* — 3uL*A’(r)*)
« expression with natural flow:

_ m/2 Q(d_l) 2 AT N2 S(d—l) A At/ N4
ad(r)zf(d/?)(ﬁpA’(r))d—l (1— T3 ALZA"(r)* — T r L A(r))
7Td/2 t r
‘ Cld(’]") p— _I‘(d/2)€dp—1A/(7«)d (T t — T 7“) Z O

- flow between stationary points (where a); = aq(7)| 445)

(GJZZ)UV > (GZ)IR



What is aj; ??

d/2fd—1 2(d — 1 d—1
af=— (1— ( )Afoo—3<_5)uf§o>

I'(d/2)¢% ! d—3 d
1 o0
where AdS curvature: 77 = ];—2 0% — foo AL 4 ufS =0

« ay is NOT Cr, coefficient of leading singularity in

<Tab(x) Tcd<0) > — " od Iab,cd(aj)

. aj is NOT Cgs, coefficient in entropy density: s = Cg 79}



What is aj; ??

d/2d=1 2(d — 1 3(d —1
ay = i =1 (1 _ X ))‘foo _ 3 )uffo>
I'(d/2)¢% d—3 d—5

1 =
where AdS curvature: 77 = ];—2 0% — foo AL 4 ufS =0
o trace anomaly for CFT’s with even d: (Deser & Schwimmer)

(T,") = Z B;(Weyl invariant); — 2(—)% @Euler density)q
o verify that we have precisely reproduced central charge

a;=A

(Henningson & Skenderis; Nojiri & Odintsov; Blau, Narain & Gava,;
Imbimbo, Schwimmer, Theisen & Yankielowicz)

—> agrees with Cardy’s proposal



What is aj; ??

d/2d-1 2(d — 1 3(d—1
4§ = S (1— | ))‘foo_ ( )uffo>
T(d/2)6% d—3 d—5

1 =
where AdS curvature: 77 = ];—2 0% — foo AL 4 ufS =0
o trace anomaly for CFT’s with even d: (Deser & Schwimmer)

(T,") = Z B;(Weyl invariant); — 2(—)% @Euler density)q
o verify that we have precisely reproduced central charge

a;=A

(Henningson & Skenderis; Nojiri & Odintsov; Blau, Narain & Gava,;
Imbimbo, Schwimmer, Theisen & Yankielowicz)

What is a; for odd d?? (One moment!)



How robust is Holographic C-theorem?:

 quasi-topological gravity obeys c-theorem in very nontrivial way
» generalize to start with arbitrary curvature-cubed action

—1 ~ ~
I = gd - /dd“xw [ @12y Ry 12 4 143
where X = b RupeaR™ + byRypR™ + b3 R? |
Z = aRS'RSRY + oo RadeRcdef R, ;" + c3 Rapea R, R
+ ¢4 RabcdR“deR + 5 Rapea R“R™ + ¢ R’R,°R °
+c R'RYR + cs R,
1
» AdS vacua: = = ‘200 where o — foo + A2 +pufs =0
d—3
A= —— (2bi+dby +d(d+1)bs)
d—5
u = —ﬁ((d—1)61—|~4Cg+2d63—|—2d(d—|—1)64

+d* c5s 4+ d° cg + d*(d+ 1) cr + d*(d + 1)°cs)



More Improved Holographic RG Flows:

* IS it reasonable to expect any theory to obey a c-theorem? NO

* how do we constrain theory to be physically reasonable?

* recall one of the nice properties of quasi-top. gravity was that
linearized graviton equations in AdS were 2" order

« greatly facilitates calculations but deeper physical significance

« analogy with higher derivative scalar field eq. (in flat space)

I A 1 1 1
(V‘I‘M2(V))¢—O >q2(1_aq2/M2)_q2Tq2_M2/a
ghost

e graviton ghosts will be generic with 4" order equations

—> couple to additional non-unitary tensor operator in dual CFT



More Improved Holographic RG Flows:

1 d+1 d(d o 1) 2 2 v 4 5
I = ST /d z\/—g [ oot RELAX 4+ L2
where X = b RupeaR™ + by Ry R + bsR?
Z = aRSYREIRAY + o Ry ™R, R, ™ + c3 Rapea R* R

+ ¢4 Rapea R*““R + ¢5 Rapea R*“ R 4 ¢ RPR,°R °
+e RPROR+ cs R

« demand linearized graviton equations are 2" order in RG flow

i.e., around background geometry: ds? = 24" (—dt? + dz?) + dr?



More Improved Holographic RG Flows:

1 d(d—1 ~ ~
I= T /dd+1x\/—g [ (L2 Jo? L R+ X4 142
where X = b Rupea R + by Ry R* + b3 R? |
ZV — ¢ RacbdRcedeeafb 1o RabcdRCdefRefab 4 c3 RabcdRabceRde

+ ¢4 Rapea R*““R + ¢5 Rapea R*“ R 4 ¢ RPR,°R °
+c;RPRAR+ s R?.

« demand linearized graviton equations are 2" order in RG flow

bo = —4by, b3 =01 RZ interaction is X4
B 1 d+5 2(d+9) d—+38
&= d(d+1)(_2(d+1)cl+ dr1 273 @
5 constraints — 3 free parameters .|
1
cr = PTEE (301 — 24co —4(d+1)es —4d(d+ 1)ey — (2d — 1)es — 3dc6>



More Improved Holographic RG Flows:
 as before, try to reverse engineer “c-theorem” flows

 with above constraints, flow eq’s of motion yield:
T —T". = (d—1)A"(r) (1 —2AL*A'(r)* — 3uL*A’(r)*)

« expression with natural flow:

/2 20d—1) . 5., o 3(d
aq(T) T(d/2) ((p A/ (r)) -1 (1 — ANLZA (1) —

_1) 4 At 4
d—3 d—5 ”LA(T)>

, /2
) . (7r) = —
) = TN
« flow between stationary points (where aj; = aq(r)| 449)
*
(ag)vv 2 (ag) 1R
 also extends to Lovelock and R" theories (Liu, Sabra & Zhao)

- (T =T") 20

- for even d, find same match: a; = A —> Cardy’s proposal
What about odd d?
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General result for any CFT (Casini, Huerta & RCM)

 take CFT in d-dim. flat space and choose S92 with radius R
——> entanglement entropy: Sgz = —17 [pa log pa]

—> Dby conformal mapping relate to thermal entropy
on H =R x H ! with =~ 1/R? and T=1/21R

SEE — Sthe’r'mal

AdS/CFT correspondence:
e thermal bath in CFT = black hole in AdS

SEE — Sthefrmal — Shorizon

 only need to find appropriate black hole

—> topological BH with hyperbolic horizon

which intersects A on AdS boundary
(Aminneborg et al; Emparan; Mann; . . .




SEE — Sthermal — Shorizon

 desired “black hole” is a hyperbolic foliation of empty AdS space

L? dp? pP—L% 5 5 i 1
(p2—-L2)__ 72 dr* + p* dX; —

2 _
ds” = 2T R

« apply Wald’s formula (for any gravity theory) for horizon entropy:

2m ay q_
=3l (d/2) 2345 V (H) ﬁ

du?
2 _ P2 2 10d—2
ds” = K [1+u2+u = ]
universal contributions:
a__ *
S = ...+ (=)2"'4a} log(2R/5) + --- forevend
R (_)%Qﬁaz +o... for odd d

« discussion extends to case with background:R*¢=! — R x §94-1



Conjecture:

« entanglement entropy of ground state of CFT across sphere S92
of radius R has universal contribution:

i (—)%_1 4a}; log(2R/§) for even d

d—1

u (=)= 2may for odd d
(any gravitational action)

« in RG flows between fixed points (@ny CFET in even d withag = A)

Sunz'v —

==

(afi)UV > (QZ)IR
(“unitary” models)

——> behaviour discovered for holographic model but conjecture
that result applies generally (outside of holography)

—> gives framework to consider c-theorem for odd or even d



and Beyond:

e Susskind & Witten: density of degrees of freedom in N=4 SYM
connected to area of holographic screen at large R in AdS;

V- A(R ) -
3 ch N ( ) cut-off scale defined 1 R

— X
3 3 I " _— = —
) gP by regulator radius: 5= 72

e given higher curvature bulk action, natural extension is to
evaluate Wald entropy on holographic screen at large R

OLyulk
aRabcd

S = —zwj[dd—la; h %z,

o straightforward evaluate “entropy” for count of density of dof

for any covariant action: Lyuix = Louik (9°°, R cdy Ve R™ e, -



F-theorem: (Jafferis, Klebanov, Pufu & Safdi)

e examine partition function for broad classes of 3-dimensional
guantum field theories (SUSY and non-SUSY) on three-sphere

e in all examples, F= - log Z >0 and decreases along RG flows

e coincides with our conjectured c-theorem! (Casini, Huerta & RCM)

« consider S of d-dimensional CFT for sphere S92 of radius R

« conformal mapping: causal domain D — (static patch of) dSy
curvature ~ 1/R and thermal state: p = exp|—2rR H.|/Z
E SEE — Sthermal — /8<H’T> + IOgZ



F-theorem: (Jafferis, Klebanov, Pufu & Safdi)

e examine partition function for broad classes of 3-dimensional
guantum field theories (SUSY and non-SUSY) on three-sphere

e in all examples, F=—-log Z >0 and decreases along RG flows

e coincides with our conjectured c-theorem! (Casini, Huerta & RCM)

« consider S of d-dimensional CFT for sphere S92 of radius R

« conformal mapping: causal domain D — (static patch of) dSy

curvature ~ 1/R and thermal state: p = exp|—2nRH.|/Z

—_—> SEE — Sthermal — @ =+ log A

* stress-energy fixed by trace anomaly — vanishes for odd d!

 upon passing to Euclidean time with period 27 R :
Sepr =log Z|sa for any odd d



F-theorem:
* must focus on renormalized or universal contributions, eqg,
Fo = — log Z|f7;m'te = —Suniv =27 aj .
e generalizes to general odd d:
d—1 d—1 .
(=)= log Z|J,:,L.m75e = (=) "2 Suniv =2may.

 equivalence shown only for fixed points but good enough:

UV (Fo)rr = 27 (a3) 1R
IR

 evidence for F-theorem (SUSY, perturbed CFT’s & O(N) models)
supports present conjecture and our holographic analysis
provides additional support for F-theorem



(Komargodski & Schwimmer ; see also: Schwimmer & Theisen)
RG Flows and Dilaton Effective Action

o think of RG flow as “spontaneously broken conformal symmetry”
» couple theory to “dilaton” (conformal compensator) and organize

—2T

effective action in terms of g,., = e " gu.

diff X Weyl invariant:  gu, — €*°gu, T —T+0
2
e introduce UV kinetic term: ‘% / d*z\/GR = @ / d*ze 27 (01)?
* follow effective action to IR fixed point, eg,
Sanomaly = —da / d*z —g(rE,l + 4(R* — %g“”}?]ﬁjﬁé}”r —40r)’OT+ 2{(‘??}'1)
s
e with g — 7] ,this term is only contribution to 4pt scattering:
Sanomaly = 20a / d*z (0r)*

a = ayy — arpr:ensures UV & IR anomalies match

e causality or analyticity arguments demand: oa > 0  (Adams et al)



(Komargodski & Schwimmer ; see also: Schwimmer & Theisen)

RG Flows and Dilaton Effective Action
e causality or analyticity arguments demand:
da =apy —arrp > 0

e proof of a-theorem??:
—> assumes RG flow from UV fixed pt to IR fixed pt

(Fortin, Grinstein & Stergiou)

 recent work suggests there exist d=4 QFT’'s which are scale
iInvariant but not conformally invariant

o further suggests RG flows exhibit limit cycle behaviour

—> full structure of d=4 RG flows still to explore



Conclusions:

 AdS/CFT correspondence (gauge/gravity duality) has proven
an excellent tool to study strongly coupled gauge theories

e toy theories with higher-R interactions extend class of CFT’s
—> maintain calculational control with LL or quasi-top. gravity
e consistency (e.g., causality & unitarity) constrains couplings

e provide interesting insights into RG flows
 naturally support Cardy’s version of “A-theorem” with d even

 suggests extension of c-theorem to d odd

 a; seems to play a privileged role in holography

o further implications for holographic dualities??

e can entanglement entropy lead to proof of a-theorem?

LOtS tO explore' (Casini & Huerta)



