Did Galaxies Reionize the Universe? Progress and Challenges

Richard Ellis, Caltech

October 3rd 2011

1) Recombination

2) "Cosmic Dawn"

3) Reionization

4) Modern Cosmological History

Outline

Indirect constraints on when reionization occurred:

- Optical depth to reionization, τ , from the WMAP satellite
- Downturn in ionized carbon abundance at z > 5
- Stellar mass density of 4<z<6 galaxies: a gauge of earlier star formation

Early Galaxies & Reionization

- Lyman alpha emitters vs Lyman break galaxies
- The HST WFC3 revolution: new galaxy candidates beyond z~7
- Lyman α emission as a probe of reionization
- The biggest unknown: escape fraction of ionizing photons

Challenges and prospects for the future

WMAP Polarization

Planck may give more information on reionization history CMB does <u>not</u> pinpoint the responsible cosmic sources

Ionized Carbon Absorbers in High z QSOs

Use QSOs as background beacons to highlight absorbing clouds in the high z intergalactic medium

Ryan-Weber et al (2009)

Rapid Drop in Carbon Abundance beyond z~5?

early enrichment of galaxy halos or ionization changes?

High Redshift Star Forming Galaxies

Lyman break galaxies (LBGs):

Rest-frame UV continuum discontinuity

Lyman alpha emitters (LAEs):

Located via narrow band imaging

Star formation density of LBGs

Monotonically declining population to $z \sim 6$ and beyond Drop of $\times 8$ in UV luminosity density 2 < z < 6Appealing indicator: but `observed SF' may be misleading guide

Reddy & Steidel (2009); Bouwens et al (2009, 2011)

Spitzer Revolution: Stellar Masses & Ages

A modest 85cm cooled telescope can see the most distant known objects and provide crucial data on their **assembled stellar masses and ages**

SMB03-1: z_{spec} =5.83 IRAC(3.6µm)=24.2 (AB) stellar mass = 3.4 10¹⁰ M_☉ age > 100 Myr

Eyles et al (2005): to produce this mass since $z\sim10$ required 5-30 M_{\odot} yr⁻¹ comparable to the ongoing SFR (6-20 M_{\odot} yr⁻¹) so should see earlier examples if unobscured

Balmer Break as Age Indicator

Age is degenerate with star formation history but can infer time-averaged star formation rate and compare this with actual on-going star formation rate

Key concern: do nebular emission lines contaminate the IRAC bands?

Stellar Mass Functions 4 < z < 6

- 2443 B-drops, 506 V-drops, 137 i-drops in ACS GOODS N/S
- 35% sufficiently isolated with Spitzer/IRAC for robust photometry
- Deep K imaging from VLT (Cesarsky), Subaru (Bundy)
- Low z contaminants identified (morphology, MIPS)
- Masses and ages using CB07, testing effect of TP-AGB stars
- Individual measures to $M \sim 10^{9.5} M_{\odot}$; stacked properties for fainter sources

Stark et al (2009) Ap J 697, 1493

Examples across the full range of data

Stark et al Ap J 697, 1493 (2009)

9

Stark et al 2007,2009; Labbé et al 2009ab, Gonzalez et al 2010

Contamination from Nebular Emission?

- Broad-band HST/Spitzer photometry permits stellar-only & stellar+nebular solutions
- Inclusion of nebular emission can significantly reduce stellar masses, esp. @ z~6
- Spectroscopy of z < 5.7 LBGs is currently the only route to testing this possibility

Shim et al (2011), Atek et al (2011), Stark et al (2011)

Wide Field Imaging of Lyα Emitters from Subaru

Panoramic imaging with Subaru using narrow-band filters has been used to locate high redshift Ly α emitters (LAEs)

As much as 7% of the total output of a young galaxy can be in this single emission line (so v. efficient for survey work)

A galaxy at a redshift z = 6.96

Masanori lye^{1,2,3}, Kazuaki Ota², Nobunari Kashikawa¹, Hisanori Furusawa⁴, Tetsuya Hashimoto², Takashi Hattori⁴, Yuichi Matsuda⁵, Tomoki Morokuma⁶, Masami Ouchi⁷ & Kazuhiro Shimasaku²

lye et al Nature 443, 186 (2006)

Effect of Outflows on Visibility of Lyα

- Lyα is quenched unless ionized bubble is large enough to allow it to redshift out of resonance
- Can model line shape using spherical shells of outflowing HI gas with column density $N_{\rm HI}$ and velocity $v_{\rm shell}$

Dijkstra et al (2007) Verhamme et al (2008)

A Rapid Drop in Lyα Emitters from 5.7<z<6.6?

- 1 deg² SXDS field with 608 photometric and 121 spectroscopic Lyα emitters
- Tantalizing fading (0.^m3) seen in the LF of Ly α emitters over a small redshift interval 5.7< z< 6.6 (150 Myr)
- Does this mark the end of reionization corresponding to an increase in x_{HI} (e.g. x_{HI} ~0.6 at z~7)?

Ouchi et al (2010) Ap J 723, 869

High Redshift Star Forming Galaxies

Lyman break galaxies (LBGs):

Rest-frame UV continuum discontinuity

Lyman alpha emitters (LAEs):

Located via narrow band imaging

Keck Spectroscopic Survey of 4 < z < 7 LBGs

- B, V, i', z drops in GOODS from Stark et al (2009) ACS/IRAC catalog
- 8-16 hr exposures with DEIMOS to $m_{AB}=26.5$ (emission lines to $m_{AB}\sim27.5$)
- Keck/DEIMOS: 361 B + 141 V + 45 I + 17 z-drops = 564 spectra
- VLT/FORS2 retro-selected + same criteria: 195 spectra (Vanzella et al)

Sample Keck Spectra (R~2500)

Stark et al (2010) MN 408, 1628

Lyman α Visibility' versus Redshift

- \bullet We see a rising visibility with redshift to z~6
- Suggests should be straightforward to detect emission in z > 7 sources

Stark, Ellis & Ouchi (2011) Ap J 728, L2

Hubble Ultradeep Field

z >7 candidates from WFC3 UDF campaign

3 IR filters c.f. 2 leads to more secure photometric redshifts and reliable UV continuum slopes

McLure et al (2009, 2010)

The Space Advantage

We now have over 100 z>7 candidates from the various Hubble campaigns using WFC3/IR!

Spectra of 26 WFC3 selected LBGs 6.3<z_{photo}<8

Keck NIRSPEC/LRIS-R spectra of 19 z>6.3 WFC3-IR LBGs from UDF, ERS, lensing clusters

Plus 7 Hawk-I/WFC3-IR FORS-2 spectra from Fontana et al (2010)

Luminosity distribution c.f. 5<z<6 sample

z~6 emitters

New z > 6.3 emitters

Schenker et al (2011) astro-ph/1107.1261

Sudden Decline in Lyα Fraction in LBGs

Schenker et al (astro-ph/1107.1261)

also Pentericci et al (astro-ph/1107.1376), Ono et al (astro-ph/1107.3159)

Monte Carlo Simulations

Since we cannot conduct a perfectly uniform search for line emission in the near-IR, we take the expected EW distribution of Ly α at z~7 and predict, given the observations and photometric p(z) of our targets how many lines we should have seen.

Observe 2(4) and expect 8-9 detections.

Schenker et al (astro-ph/1107.1261)

z~7 QSOs!

Venemans et al (in prep)

Further Evidence: Damping Wing in z=7.085 QSO?

Fit both near-zone radius & damping wing to red side of Ly α Suggests x_{HI} > 0.1 at z~7 A proximate DLA is an alternative explanation but unlikely

Bolton et al (2011)

lliev, et al 2011 arXiv:1107.4772

How Does Cosmic **Reionizaton Occur?**

15

Requirements for Reionization by Galaxies

3 basic requirements to test hypothesis:

- A sustained output from star-forming galaxies over 7<z<10 (continuity in SF trends over Δt~300 Myr)
- A steep faint end slope ensuring high fraction of UV photons arises from abundant sub-luminous sources (α < -1.8), i.e. p_{SFR}
- A good understanding of the stellar populations, for example: is there a increased number of massive stars at high z such as might be expected in very metal poor young systems? i.e. ζ_Q
- A high escape fraction of ionizing photons fesc

Prospects for resolving ambiguities in next 2-3 years is promising via

- first UDF campaign (Cy 18, Illingworth 105W, 125W, 160W)
- shallower CANDELS MCT campaign (Faber/Ferguson)
- deeper targeted UDF campaign (Cy 19, Ellis, 105W, 140W, 160W)

66 z~7 and 47 z~8 candidates in deep HUDF + parallel fields (AB~29, 4 arcmin²) & shallower ERS area (AB~27.5, 40 arcmin²)

Bouwens et al astro-ph/1006.4360

An aside: z~10? Bouwens et al vs Yan et al

Bouwens et al 0912.4263

Yan et al 0910.0027

Bunker et al: no convincing J-drop candidates to H~28.5 Yan et al: 20 J-drops to H~29 Bouwens et al: 3 J-drops to H~29 **One band detections and not a single candidate in common!**

Steep Luminosity Functions @ z~7

Steep faint end slope: low star formers <1 M_{\odot} yr⁻¹ dominant

Ouchi et al 2009 Ap J 706, 1136; Bouwens et al astro-ph/1006.4360 plus many earlier papers (Oesch, Bunker, McLure...)

Did Galaxies Reionize the Universe?

Robertson et al (2010) : some tensions even assuming f_{esc} =0.2, C_{HII} = 2

Escape fractions in z~3 LBG spectra

11/110 LBG spectra show positive Ly continuum flux For that small subset, intringuingly, f_{esc} correlates as L⁻¹

Bogosavljevic (2009, Ph.D. Thesis)

Covering Fraction of Low Ionization Absorption Lines

- Low ionization absorption lines of Si II, Cll Fe II should be saturated
- Their depth measures covering fraction of neutral gas & outflow velocity
- Covering fraction of neutral gas is a direct proxy for the escape fraction

Jones et al (2011)

Reduced Low Ionization Absorption Lines vs Redshift

- Equivalent width of low ionization absorption lines W_{LIS} decreases with increasing redshift over 3<z<6
- Can see effect directly in stacked absorption line profiles
- Could be due to reduced HI covering fraction or less outflow velocity
- Higher dispersion DEIMOS spectra needed to resolve this ambiguity

Jones et al (2011)

Supposing there is a photon shortfall..?

Possible solutions:

- Some component of WMAP τ (~0.02?) may come from first generation of massive stars; not all has to arise in 7<z<10 galaxies
- Steeper than expected faint end slope of LF? Deeper HST survey in Cycle 19 will help
- Exotic stellar populations (e.g. top heavy IMF)? Interest in UV continuum slope
- Very high escape fraction of ionizing photons?

Otherwise we must consider another source of reionizing photons

Projected LFs @ z~7-8 with New HST campaign

- Very steep LFs ($\alpha \sim -2$) necessary to close reionization budget
- Statement is highly dependent on assumed f_{esc}
- Current uncertainty in faint end slope $\Delta \alpha \sim 0.2$ -0.3 (Bouwens, McLure)
- New UDF program (128 orbits) will provide improved faint end constraints

Steep UV Continua?

WFC3 data measure slope β of the stellar continuum:

 $f(\lambda) \propto \lambda^{\beta} \colon \beta \to -3 !$

Could imply very young, metal poor or even Pop III contributions

Early claim by Stanway et al (2004); see also Wilkins et al (2011)

Higher z and low L galaxies are slightly bluer (less dusty) But evidence for uncomfortably steep slopes limited to faint z~7 LBGs

Validity of UV slopes in Faintest Data?

 β estimated from (J-H) using noisy photometric data

- Boosting in J due to noise biases β to bluer, more extreme values
- Boosting in H affects photo-z solution, placing object at z~2
- Deeper HST data with additional J140W filter will clarify

Dunlop et al astro-ph/1102.5005

Early Contribution from AGN?

Unlikely unless LF steepens dramatically beyond z~4 Stacked X-ray images of z~6 UDF LBGs provides additional limits Soft X-ray background provides further limits on early BH accretion

Fan (2007) NewAR 50, 665

Glikman et al astro-ph/1101.0537

Obscured AGN in z~6-7 LBGs

- Stacked 197 z~6 dropouts in CDF-S (4Msec) and CDF-N(2Msec)
- Hard/soft detection ratio implies high column density N_{HI} > 10²⁴ cm⁻²
- Implies self-regulated formation tied to host galaxy assembly and little contribution of AGN to reionization photon budget

Triester et al (2011)

High Redshift GRBs: a puzzle

Robertson & Ellis (astro-ph/1109.0990)

- Great potential for probing neutrality of IGM (fast response, high dispersion)
- Puzzling inconsistency between high z GRB rate and SF seen in deep HST surveys

Future Prospects

• HST + WFC3:

Deeper UDF campaign will probe fainter sources and clarify faint end of z~7-8 luminosity function and test UV slope

- Continued improvement in 4<z<7 spectroscopic surveys: much to learn about demographics of LBGs/LAEs including spatial mapping of populations (Subaru/Keck)
- Multi-slit IR spectrographs for following existing and other z>7 candidates
 - MOSFIRE on Keck (2012A)
 - KMOS on VLT (2012B)
- JWST (2018?) and..not too far off..(2020)..TMT

LOTS TO LOOK FORWARD TO!

MOSFIRE (Keck I) – Jan 2012

Cryogenic Multi-slit IR spectrograph 6.1 x 3.1 arcmin spectroscopic field $\lambda\lambda 0.97 - 2.45$ microns R ~3300 for 0.7 arcsec slit 45 slits via configurable slit unit (<5mins)

James Webb Space Telescope

Assembled Flight Instrument

Simulated NIRSPEC spectra

Wavelength (μm)

Conclusions & Future Prospects

- Exciting time in the study of z>7 galaxies with HST, Spitzer and large telescopes still in the vanguard
- Dramatic progress with deep IRAC observations: from a couple of z~6 detections in 2005 now to comprehensive measures of the stellar mass density over 4<z<7
- WFC3 has led to rapid progress:
 - continuity of SF trends over 300 Myr
 - dominant fraction of sub-luminous galaxies
- Rapid decline in visibility of Lyman α over 6.5<z<8 suggests neutral era begins in this redshift range
- Many uncertainties but good prospects for improved data which will address possible deficiency of galaxies as source of reionizing photons
- Key role of future large telescopes in exploiting adaptive optics and efficient multi-object spectrographs in concert with JWST and large samples of 7<z<10 which can still be delivered by HST

Lyα fraction vs UV luminosity and extinction

Strong correlation between extinction- inferred from UV slope β (flux ~ λ^{β}) and presence/absence of Ly α Strongly suggests low luminosity galaxies are relatively dust-free So their Ly α fraction might be valuable probe of reionization

Stark et al (2010) MN 408, 1628

Beware..uncertain photo-z's still an issue..

1678: $z_{\text{est}} = 7.05 (6.60 - 7.40)$

¹¹⁰⁷: $z_{\text{est}} = 7.60 (7.30 - 7.90)$

Convincing z > 7 Galaxy Spectra

 $s^{-1}cm^{-2}\dot{A}^{-1}$

Schenker et al 2011, NIRSPEC)

Query on z=8.55 LBG?

UDFy-38135539 = HUDF-YD3

Lehnert et al (2010) VLT SINFONI 14.8 hours R~2000 Signification (2010) VLT X-Shooter 5 hours R~5100 Expected 3.5-4.5σ detection

Escape fractions in z~3 LBG spectra

11/110 LBG spectra show positive Ly continuum flux For that small subset, intringuingly, f_{esc} correlates as L⁻¹ Not practical to consider this test at z~7

Steidel et al (2011)

Does f_{esc} increase with z?

Stack of ~120 z~4 Keck DEIMOS spectra shows weaker low ionization lines which may imply increased f_{esc} (although other interpretations are possible).

Further DEIMOS spectra over 4<z<6 will clarify

Improved Measures of UV slope β Increased depth and additional filter

Improved Identification of z~10 Sources

Ultra-deep F105W and additional F140W

Important by-products of Population III

Low or zero metallicity stars leads to top-heavy IMF Leads to large increase in SN IIp and GRBs Beyond ~140 M_{\odot} considerable increase in pair instability SNe (PISN) Beyond 260 M_{\odot} PISN leave massive BHs as remnants Expect these BHs to seed AGN activity over 7<z<15

Heger et al

Boosting the signal with gravitational lenses

Kneib & Ellis with Caltech Digital Media Center

Gravitationally Lensed Galaxies: Record Breakers (1991-2008)

- Cl2244-02 (z=2.237); Mellier et al 1991
- A2218 #384 (z=2.515); Ebbels et al 1996
- MS1512 cB58 (z=2.72); *Yee et al 1996*, Seitz et al 1998
- A2390 (z=4.05); Frye et al 1998, Pellò et al 1999

- A2218 (z=5.7); Ellis et al 2001
- A370 (z=6.56); Hu et al 2002
- A2218 (z~6.8); Kneib et al 2005
- A1689 (z~7.6); Bradley et al 2008

Critical line discoveries in Abell 2218

RSE et al 2001, Kneib et al 2004

Deciphering past history of z~6.8 lensed LBG Hubble **Spitzer Spitzer** Hubble Rest Wavelength (Å) 4000 6000 0 (a) 1.1 µm (b) 3.6 µm (c) 4.5 µm a 1.5 Old (a) Min χ^2 stars SMM-A Young stars 1.0(d) 1.6 µm (f) 4.5 µm (e) 3.6 µm Instantaneous 0.5 e-decay ($\tau = 10$ Myr) e-decay ($\tau = 50$ Myr) e-decay ($\tau = 100$ Myr) 1 Gyr 0.05 0 Observed Wavelength (µm)

Multiply-imaged z=6.8 galaxy in cluster Abell 2218; magnification ×25 Star formation rate = 2.6 $M_{\odot}yr^{-1}$ Stellar mass ~ 5-10 $10^8 M_{\odot}$ Balmer break gives age = 100 – 450 million yrs, so formed at 9 < z_F < 12 This is already a well-established system 800 Myrs after Big Bang

Egami et al (2005)

Low Luminosity $z \sim 8-10 Ly\alpha$ CandidatesCluster critical line for $z_s > 7$ Wavelength sensitivity (1.5hr)

NIRSPEC slit positions

- 9 clusters with well-defined mass models & deep ACS imaging
- Obs. sensitivity ~ $3-9.10^{-18}$ cgs; magn. > $\times 15-20$ throughout
- Sky area observed: 0.3 arcmin²; V(comoving)~50 Mpc³
- <u>6 promising lensed emitter candidates</u>
- 8.6 < z < 10.1; L ~ 2 10. 10^{41} cgs; SFR ~ 0.2 -1 $M_{\odot}~yr^{\text{-1}}$

Stark et al 2007

Revisited 4/6 Candidates with MOIRCS (PI: Egami)

4hrs with VPH grism (1.14 -1.34 micron), R~1900; seeing ~0.3-0.4"

VLT SINFONI critical line mapping (PI: Kneib)

- Sensitive 5"×6.5"
 IFU spectrograph with R~1400
- 21 distributed pointings totalling 680 sq.arcsec in image plane
- Equivalent to ~50 arcsec² in the source plane, or a covolume of ~50 Mpc³
- Probe to $L(\alpha) \sim 10^{41}$

Line Sensitivity Comparison (preliminary)

SINFONI (prelim): ~5hr

Keck/NIRSPEC: 1.5hr

(Stark et al 2007) Subaru/MOIRCS (uncertain): 4hr

Upshot so far:

- A1689 c2, c3 candidates likely not confirmed with Sinfoni (TBC)
- A 2219 c1, c2 maybe not confirmed with MOIRCS?
- A1689 c1 too faint for SINFONI, not in $\lambda\lambda$ range for MOIRCS.
- 2 candidates remain untested (including A68 c1, the most promising example)

