

Gravitational Lensing as the Source of Enhanced Strong MgII Absorption Towards GRBs

Sharon Rapoport

Chris Onken, Brian Schmidt, Stuart Wyithe, Brad Tucker, Andrew Levan Research School of Astronomy & Astrophysics The Australian National University

Today

- Gamma-ray bursts (GRBs)
- Quasi-stellar objects (QSOs)
- The MgII problem
- Failed Solutions
- Gravitational Lensing
 - Multi-band bias
 - Statistical Analysis
 - Individual source analysis
- Conclusions

GRBs

http://physicaplus.org.il/zope/home/en/1223030912/piran_en

GRBs

- First detected in Gamma-rays
- ~40% detected in optical
- > 3000

http://heasarc.gsfc.nasa.gov/docs/cgro/cgro/batse_src.html

GRBs - Observations

- 304 GRBs followed up in Radio between 01/1997-01/2011
- Total:
 - X-ray 163
 - Optical 133
 - Radio 51

Chandra & Frail 2011

QSOs

 Detected via UVexcess, multi-color selection, IR color, radio spectral slope...

QSOs

- >100s of thousands
- ~0.1% strongly lensed

QSO 2237+0305 sits directly behind *ZW* 2237+030

http://www.ast.cam.ac.uk/~regan/quasars.html

MgII absorbers

MgII systems, W, > 1.0 Å

MgII Problem

 GRB – QSO difference only seen in STRONG MgII systems (EW>1Å)

Galaxy Gas Cross Section

CIV Comparison

- No discrepancy found
- CIV probes higher redshifts, higher ionization states, lower densities than MgII

Sudilovsky et al. (2007)

Possible Solutions

- Beam size
- Proximate environment
- Dust obscuration
- Gravitational lensing

Beam Size Differences

Sharon Rapoport - RSAA

Beam Size Differences

- MgII absorber $\leq 10^{16} cm^2$
- The absorbing systems are likely to be much larger than either beam

- Porciani et al. 2007

Proximate Environment Differences

- Some of the MgII systems in GRB spectra could be associated with the GRB
- Would require cold gas with metals to be moving at 20% c
 - need to stay below 10⁴k

Dust Obscuration Bias

Sharon Rapoport - RSAA

Dust Obscuration Bias

- GRBs intrinsically brighter than QSOs
- If strong MgII systems are dusty, fewer such systems will be seen towards QSOs due to extinction
- Recent analysis of extinction in QSO spectra suggests dust to be more prevalent than assumed
 - Budzynski & Hewett (2011)
- Applied to the MgII problem, hard to explain full discrepancy

Budzynski & Hewett (2011)

Gravitational Lensing Bias – Lensing Basics (SIS)

Sharon Rapoport - RSAA

Single Band Magnification Bias

$$B_{1}(L_{1},z) = \frac{\int_{0}^{\infty} (d\mu/\mu)(dP/d\mu)\Phi_{1}(L_{1}/\mu,z)}{\Phi_{1}(L_{1},z)} = \int_{2}^{\infty} \frac{d\mu}{\mu} \frac{8}{\mu^{3}} \frac{1}{\mu^{\alpha_{1}}} = \frac{8}{3+\alpha_{1}} 2^{-(3+\alpha_{1})}$$

Isothermal Sphere For Multiple Images

$$dP / d\mu = 8 / \mu^3, \Phi_1 \propto L_1^{\alpha_1}$$
$$\mu \ge 2$$

Wyithe et al. 2003

Multi-band Magnification Bias – QSO Wyithe et al 2003

Sharon Rapoport - RSAA

Multi-band Magnification Bias – QSO Wyithe et al 2003

Sharon Rapoport - RSAA

Multi-band Magnification Bias – QSO Wyithe et al 2003

Multi-band Magnification Bias – GRBs Wyithe et al 2011

• Assumptions:

$$- > 1 \text{ Å EW for } R \le R_0 \left(\frac{\sigma}{200 \text{ km/s}}\right) (1+z)^{-1}$$

- SIS model
- Cumulative luminosity functions $\Psi_{\gamma}(L_{\gamma}) \propto (L_{\gamma})^{-\alpha_{\gamma}} \text{ set } \alpha_{\gamma} = 0.7$ $\Psi_{A}(L_{A}) \propto (L_{A})^{-\alpha_{A}} \Longrightarrow$ $\Psi_{\gamma,A}(L_{\gamma}, L_{A}) \propto (L_{\gamma})^{-\alpha_{\gamma}} (\frac{L_{A}}{L_{break}})^{-\alpha_{A}} \text{ where } L_{A} > L_{break}$

$$\Psi_{\gamma,A}(L_{\gamma},L_{A}) \propto (L_{\gamma})^{-\alpha_{\gamma}}$$

where $L_A < L_{break}$

Sharon Rapoport - RSAA

Multi-band Magnification Bias – GRBs Wyithe et al 2011

- R₀ ~ 165 kpc
 - consistent with QSO studies of MgII impact parameters
 - gives correct F_{MgII}(QSO)=0.25

Multi-band Magnification Bias – GRBs Results Wyithe et al 2011

Multi-band Magnification Bias – GRBs Prediction Wyithe et al 2011

20-60% of all GRBs with observed afterglow are multiply imaged

Our Analysis of the V09 Sample

- If 30% of GRBs are multiply imaged, chance of seeing 0 with Swift is 47%.
- Vergani et al. sample: 26 GRBs with spectra
- 15 with MgII (60%)
 - 11 have high resolution images that are needed (HST, Gemini, VLT)
- Identified sources near the GRB position
- Compared against random l.o.s.
 - generated from UDF

Statistical Analysis 1 – UDF Framework

- For each of the 4 UDF filters (BVIz), calculate the radius required to cover 60% of the sky → θ_{MgII}
- Will be a function of the limiting magnitude
 - deeper limit = smaller θ_{MgII}
- 10,000 trials to determine radial distribution of galaxies within θ_{MgII}
- Compare against actual GRB fields

θ_{MgII} Considerations

- Limiting mag too bright...
 - θ_{MgII} too large
 - Many random galaxies in trial area
 - Dilutes any lensing signal
- Limiting mag too faint...
 - θ_{MgII} too small
 - Only random galaxies fall in trial area
 - Also dilutes lensing signal

Statistical Analysis 1

- Found all galaxies within θ_{MgII} for each GRB
- Used a MC simulation to compare to a random line of sight

Statistical Analysis 1 – Results

- GRBs with MgII show a a possible excess of galaxies within θ_{MgII}
- K-S test of GRBs vs. random l.o.s. shows
 >90% chance of being drawn from different parent distributions

Statistical Analysis 2

- Choose 11 galaxies with the same brightness as the GRB host
- Use MC to find probability
- Multiply probabilities for each set of 11

Statistical Analysis 2 – Results

Sharon Rapoport - RSAA

Individual GRB Fields

- Analyse lensing likelihood of each of the 11 GRB fields
- Model the galaxies in the images as SIS
- z(GRB) known
- $z(gal) \equiv z(MgII)$
- Angular size distances
 from the redshifts

- SED fitting to constrain galaxy type
- Faber-Jackson or Tully-Fisher to estimate σ_v from magnitude
- UDF galaxy catalogue to estimate P(z|mag)
 – Coe et al. (2006)
- Complex systems
 modelled with GRAVLENS
 - Keeton (2001)

Individual GRB Fields

- GRB020405
- GRB030429
- GRB010222
- GRB021004
- GRB991216

GRB020405 (Gemini Proposal 2012A)

- z(GRB)=0.695
- z(MgII)=0.472
- First HST image (23 days post-GRB) found second transient 3" away
 - Masetti et al. (2003)
- Modelling as SIE with shear shows possible solution with observed GRB as the 2nd image
 - ~120 days later and less magnified
- Predicted host images not in conflict with observations
 - Rapoport et al., 2011 on astro-ph

Sharon Rapoport - RSAA

- z(GRB)=2.66
- z(MgII)=0.842
- Distance ratio makes lensing likely
- Galaxy at MgII redshift
- UDF-estimated probability of chance alignment: 0.4%
 - chance of one such system in 11 GRBs: <5%
- Lensing requires σ>200 km/s
 - Tully-Fisher implies 160±65 km/s
- Would be 1st image
 - ~4 month time delay
 - no observations that late

GRB021004/GRB010222

- Some possible lenses, but few galaxy redshifts
 - hard to confirm galaxy groups

Interpretation

- Wyithe et al. model predicted ~2-7 multiplyimaged GRBs from the 11 we studied
- We find 2 systems with a reasonable chance of lensing, 2 with lower likelihood, and little chance for the others

MgII systems, Wr > 1.0 Å

- Higher chance of finding a bright galaxy near a GRB showing MgII lines
- Results are entirely consistent with gravitational lensing as the main factor in the GRB-QSO difference
- Consistent with no difference in weak MgII and CIV
- Follow-up work is underway on the most promising case

Implications

- More than resolving MgII difference...
 - precision timing of multiply imaged GRBs would constrain mass models and/or cosmology
 - knowing GRB location would allow for early epoch multiwavelength observations not otherwise possible
 - giving better insight into GRB progenitors
 - X-ray follow-up may be especially helpful
 - since 2nd image lies closer to lens

Future Work

- Verify the model for GRB020405
- Study QSOs

Questions?