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Main goal is to study how the
spin of a photon affects its
motion in the gravitational field



Spin dependence of the kick
effect for BH-BH coalescence



Hawking effect is a well known example
of gravitational spin-spin interaction

Hawking radiation of a rotating BH:
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Anisotropy of emission of particles with spin







Gravito-electromagnetism

Weak field limit:

ds? = —c2(1—2§—;)dt2 —%(A-d)‘(’)dt+(1+ 2?—;)d>‘<’2,

CI)OCGM, AOCG\J);X,
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Transverse gauge condition: }%‘f +V( A) =0
C



Define: E = VCD+EQ(%A), B =

Then one has:
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VxE——Ea(—B), V-($B)=0,
V-E=-41Gp, Vx(3B)=-<
0
V-j+—p=0
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For a particle motion:

dp _
dt

—

F,

H

F=uE+2u

=B

9

Ol

vell




GRAVITY Electromagnetism

Particle with spin Particle with magnetic
dipole moment

Maxwell equations Dirac (Pauli) equation

Geometric optics (WKB) approximation



Stern-Gerlach Experiment

Classical
rediction
P What was Silver atoms
actually observed
g
/A -
\ \ Furnace

Inhomogeneous
magnetic field



| IM FEBRUAR 1922 WURDE IN DIESEM GEBAUDE DES
PHYSIKALISCHEN VEREINS, FRANKFURT AM MAIN,

VON OTTO STERN UND WALTHER GERLACH DIE ,
FUNDAMENTALE ENTDECKUNG DER RAUMQUANTISIERUNG
DER MAGNETISCHEN MOMENTE IN ATOMEN GEMACHT.

" AUF DEM STERN-GERLACH-EXPERIMENT BERUHEN WICHTIGE
PHYSIKALISCH-TECH JE: ENTWICKLUNGEN'D{ES 20 ,JHDT



Hsu, Berrondo, Van Huele “Stern-Gerlach dynamics of quantum propagators”
Phys. Rev. A 83,012109 (2011)
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H = px;mpz - 1Bzo,

K(X, Xy, t)=K(X, X,; t)K(z,2,; t)
K(X, X,; t) = Lexp(— m(X_XO)ZJ

2riht it
K(Z Z.. 1 ) = Lexp _rn(Z_ZO)2 _IUBle(Z_I_Zo)t +,U2812t3
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H=—--1z, A= B,o,,
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Z=p,Im, p,=A4,

S = dz — Hdt) =
Zjo(pz ) > ;

K(z,z,;t) cexp(iS/#)

Magnetic moment of the electron: u = % U,

en
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would get
m(z-z,)°

/By applying formal WKB to the Pauli equation with this 2, one

K(z,z,;t) cexp(iS,/7), S, = 5

J




Lessons

(i) In the exact solution for a wave packet there
exists correlation between orientation of spin
and spatial trajectory of electron;

(ii) At late time the up and down spin wave
packets are moving along classical trajectories;

(iii) Formal WKB solution represents the motion of
the center of mass’ of two packets



4B t°

m 2
Condition when terms with  become important
can be written as

L=2-2,=Vl;, AX=

AX ~ L =2m(z-1z,) ~ uBt?
or, equivalently, L ~mV?/(uB,)
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To obtain a correct long time asymptotic behavior
of the wave packet one needs:

(i) to diagonalize’ the field equations;

(i) to 'enhance’ spin-dependent term
\_ (i) include it in the eikonal function Y

~




Dirac Two component
. = . =
equation positive freq. egn.

WKDB approxi- Particle with
_ = _ R
mation classical spin

Enhanced
phase space



Geometric optics (WKB) - "big picture’

(i) Field equation: Dy =0, D=D(x,—igd,)

(i) WKB ansatz: w(x) = A(x)exp(iS(x)/ &)

(ili) The "leading order' term gives: D(x,k) =0,k =0,S

(iv) To solve the first order PDE for S(x) one uses the method of integrating
along the characteristics

(v) Lagrangian manifold is N dimensional surface in 2N dimensional phase space
upon which the canonical symplectic 2-form dk A dx vanishes

(vi) One has on this surface 0,k; =0 k;

(vii) Action function S(x) = j k(x)dx (independent of path)

(viii) If the Lagrangian manifold is a subset of the (2N —1) dimensional surface
D(x,k) =0, then S(x) satisfies the Hamilton-Jacobi equation

(ix) The transport equation for the amplitude is 0. (A28ki D(x,k))=0



Phase Space

Phase space: {P*",Q, H}

Symplectic form Q is a closed non-degenerate 2-form
dQ=0 (Q=d )

Hamiltonian H Is a scalar function on the symplectic
manifold P*"

z” are coordinates on P



Poisson bracket {F,G}=Q"F,G,

n” =H Q" is a generator of the Hamiltonian flow

Equation of motionis  2*= "

One has F ={H,F}



Darboux theorem:
In the vicinity of any point it is always possible
to choose canonical coordinates

2% =(Py,-- s Py Ghre--, Oy ) iN Which Q=" dp; Adg
=1



Lagrangian manifold M" < P*":

Fi(p’q): fi = P = pi(f’Q)

Q=) dp; Adg, =D (dp;/6q,) dg, Adg; =0
i i ]

OnM" onehas: Q=da, a=) pdq,

S(@) = | >, pi(f.a)dg



[llustration: Solving eqn.
L(vsy=1 (%
(0. 8,) €Q% (Pysees Po) € P
Initial position of the wave front:
S(@)=0=§"el" Q" F(6)S(@@)=0;
Condition (*) is satisfied on I'"™* for a special choice
S°=S /(VSVS)"?;= p? =V.S°
For (g, p’) solve dynamical eqn. with Hamiltonian H=p*/ 2.
This gives (n—1) —parameter family of curves, i.e. n—dim

Lagrangian surface and S(q) =j P dq 1s a required solution of (*).
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Spinoptics in gravitational field

(i) Spin induced effects
(i) Many-component field
(iii) Helicity states

(iv) Massless field

(v) Gauge invariance



Maxwell equations in a Stationary ST

ds® =g, dx"dx” =—h(dt—g; dx')* + hy; dx' dx’
t_)f:t"'q(xi)» 9 —>0;=0+0,
Yo _
h b
9 N Yoi%; _ Y
O 9o N

h=-0y,0 = g=hy

Vii =~ +0;9;



3+1 form of Maxwell equations
E =F, B;=F, D=h’F", H'=h’F".
D =E-H,g', B'=H"-E'g'+E’g".
B, =, B, H"=e"H,.

C=[AxB],C'=e"AB, = D=E-[gxH],B=H+[gxE].

[divézo,curléz—é, divD =0, curlH = 6.]

=_—[(E,D)+(B,H)], V=—[ExH], E+diw =0



Master equation for c-polarized light

E=e''&+e"'&, H=e""F+e""

D=e""'2+e“'2* B=e"'B+e"'B*,
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Summary of Step 1
Monochromatic waves of frequency w
Two helicity states o=+
For a single photon its helicity Is a conserved quantity
For a classical em beam of light its circular polarization
Is conserved If an external field does not create photons
Right (left) circularly polarized modes for — (+)
Master equation covers states with given circular polarization

Complex vector functions *(x') of 3 variables describe
monochromatic em modes with given helicity



“Standard” geometric optics

Small parameter: e=(w/)™
¢ 1s characteristic length scale of the problem

O res 'a)S
GOansatz “£°=f €

Lf = f —iofAix f],
n=p-g, p=Vs,
[ Exact equation: Lf =ow 'curl f 1




+of +..

GO expansion: f=f +o™ ¥, :

Lf,
+o [Lf, —ocurlf ]+...

+o°[Lf,—ocurl f J+...=0




Properties of the operator L

detL=0 = (n,n)=1
det(L-11)=0 =
(1-D[A-24)*—(n,n)]=0;
Eigenvectorsof L: 4 =(0,1,2)
Eigenvectors (€,Nn,€,) are orthonormal



mz%(§1+|0§2),m*5%(§1 Tox-2y)
1 00
In the basis (i,m,m*) onehas L=|0 0O O
0 0 2

Since Lf,=0= f, = Am,

A is a complex function of x’

(ﬁ,F):O,

curlf = (A, curlf) —iofAxcurlf]



Ray trajectories

Eikonal equation: (VS —g)* =1
Effective Hamiltonian: H(x', p,) = %(p_ §)° = %7” (pi—9)(P;—9,),

3 A
Canonical symplectic form: Q=Y dp, Adx

D*X | dX _ dxX
7 :[dfxcurlg} S(x) = J‘ (P, dX) = J‘ {1+(g,d ﬂdé



Transport equation

We determine vectors of the basis (n, m, m*) along rays by
requiring that they are Fermi transported;
F a=Vva-(naw+((wa)n w=Vn

oAl®S (X)

F° =ty me :
- X[, (= dx)
S(X) = 1+| §,— | |dZ,
(%)= (g Mj




Faraday rotation

Linearly polarized light: #=4¢"+4",

2 f k,e®
kKo=€C0Sp—€,8INp, (Kpko) =1
do 1((:urlg n)

The vector of polarization k, rotates with respect to
the Fermi propagated frame with the angular velocity

Qzé(curl g,n)



Characteristic scale L. :A¢g=L_|VJ |2z
L. ocdr/|VQ]

4 - D point of view :
(1) Lightray is a 4D null geodesic
(11) Vector of linear polarization is 4D
parallel transported



Modified geometric optics

S, §=g+—curlg,
20

=
|l
ge!
|
o]
ge!
|l
<

[f=Zcurl f+—[curlgx f]
) 20



[~FO:O, I:szacurlf’ij

detL=0 = (A,A)=1 = (VS—-§)=1

- : 1 . = 1 i ~ -
H(x,pi)=5(p—g)2557‘(pi—gi)(pj—gj),

1 0

In the basis (A,m,m*) onehas L=[0 O

0 O

~/

(A,n) =1, (A, M) = (A, M) =0, (M, M*) =1

N © O




We denote a Fermi transported frame along a modified

ray as (ﬁ rﬁ rﬁ*) After solving the transport equation we obtain:

- 7( = dx N
S(%) :jf( {1+(g’,g—zﬂdf, g = g+%curl 0]

—»

D°X | dX | o |dX _
—=|—xcurlg |+ xcurlcurl g |,
d/ d/ 20| d/

S(X)=|_ d€+(g dx)+—(cur|g dx)}



Application to Kerr metric

h=(A-a’sin®6)/z, gi:—zaMrsinzﬁé}¢,
>h
-2
407 = 7 dxidx) = 2 dr? 1+ 2de? + 23N 0 g 42
| Ab T h

Y=r“4+a°cos’d, A=r°-2Mr+a°

Black hole horizon: A=0 = r:ri:M+\/M2—a2

Black hole ergosurface: h=0 = r=r =M + M2 —a%cos? @



(curl g) :_4a¥rA cos 05" — 2aM (r° ;Sa cos” 6’)

Sin 65",

4aM *
>3

(curlcurl g)' = 5.




Rainbow effect for BH shadow

(1) Frequency dependence of the shadow position for circular polarized light;

(2) For given frequency shadow position depends on the polarization



SUMMARY

(1) Standard GO picture: In the Kerr ST a linearly polarized
photon moves a null geodesic and its polarization
vector is parallel propagated.

(2) Modified GO picture: Linear polarized photon beam
splits into two circular polarized beams.

(3) Right and left polarized photons have different
trajectories.

(4) In a stationary ST their motion can be obtained by
introducing frequency dependent effective metric.



