Dynamics of galaxy centers

1000" = 3600 pc = 3.6 kpc

Wednesday, November 9, 2011

1

Dynamics of galaxy centers

1" = 3.6 pc

based in part on work with: Bence Kocsis (CfA) Hiranya Peiris (UC London) Qingjuan Yu (KIAA, Beijing)

Wednesday, November 9, 2011

- these are the densest known stellar systems at 0.1 pc from the center of our Galaxy the density of stars is 10⁸ times higher than around the Sun
- ⇒ all interesting dynamical processes occur faster

infrared astronomy group, MPE, Garching

- these are the densest known stellar systems at 0.1 pc from the center of our Galaxy the density of stars is 10⁸ times higher than around the Sun
- in contrast to laboratory gases, galaxies are collisionless, e.g.
 time for stars near the Sun to relax to a Maxwell-Boltzmann
 distribution is 10¹⁴ years = 10⁴ times the age of the Galaxy
 - however the relaxation time is shorter than 10¹⁰ yr at less than a few pc from Galactic center ⇒ statistical equilibrium of some kind

- these are the densest known stellar systems at 0.1 pc from the center of our Galaxy the density of stars is 10⁸ times higher than around the Sun
- in contrast to laboratory gases, galaxies are collisionless, e.g.
 time for stars near the Sun to relax to a Maxwell-Boltzmann
 distribution is 10¹⁴ years = 10⁴ times the age of the Galaxy
 - however the relaxation time is shorter than 10¹⁰ yr at less than a few pc from Galactic center ⇒ statistical equilibrium of some kind
- they're the bottom of the potential well of the galaxy
 - promising sites for archaeology

- these are the densest known stellar systems at 0.1 pc from the center of our Galaxy the density of stars is 10⁸ times higher than around the Sun
- in contrast to laboratory gases, galaxies are collisionless, e.g.
 time for stars near the Sun to relax to a Maxwell-Boltzmann
 distribution is 10¹⁴ years = 10⁴ times the age of the Galaxy
 - however the relaxation time is shorter than the age at less than a few pc from Galactic center ⇒ statistical equilibrium of some kind
- they're the bottom of the potential well in the galaxy
- the centers of most galaxies contain black holes
 - laboratories for testing general relativity and extreme physics
 - sources for gravitational radiation

- 1. Hypervelocity stars
- 2. The nucleus of M31
- 3. Statistical mechanics in galaxy centers
- 4. Star formation in the central parsec

• Hills (1988):

"A close...encounter between a tightly bound binary and a $10^6 M_{\odot}$ black hole causes one binary component to become bound to the black hole and the other to be ejected at up to 4,000 km/s. The discovery of even one such hyper-velocity star coming from the Galactic center would be nearly definitive evidence for a massive black hole"

ejection velocity scales as

 $v \sim v_{binary} (M_{bh}/M_{\star})^{1/6}$

where v_{binary} is the binary orbital speed, M_{bh} is the black-hole mass, and M_{\star} is the star mass.

• a second possible mechanism is ejection of single stars by a binary black hole (Yu & Tremaine 2003)

Two Micron Ali Sky Survey Image Mosaic: Infrared Processing and Analysis Center/Caltech & University of Massachusetts

look for stars that are:

- high above Galactic plane (less confusion)
- young (bright, so easy to find; also normal halo stars are all old)

not yet practical

- moving at high speed (either line-of-sight velocity or proper motion)
- \cdot if at distances \gg 8 kpc and on escape orbit, must be moving away from us

- NOT runaway stars (produced if a supernova goes off in a close binary or from binary-binary encounters) --- these have kick velocity < 200 km/s
- travel times from the Galactic center are < stellar lifetime (200 Myr) so formation in Galactic center is possible
- rate (~ 1/Myr) is roughly consistent with theoretical predictions
- velocities are positive, i.e., traveling outward
- \cdot N(< r) \sim r, as expected for uniform ejection rate

- NOT runaway stars (produced if a supernova goes off in a close binary or from binary-binary encounters) --- these have kick velocity < 200 km/s
- travel times from the Galactic center are < stellar lifetime (200 Myr) so formation in Galactic center is possible
- rate (~ 1/Myr) is roughly consistent with theoretical predictions
- velocities are positive, i.e., traveling outward
- \cdot N(< r) \sim r, as expected for uniform ejection rate

- NOT runaway stars (produced if a supernova goes off in a close binary or from binary-binary encounters) --- these have kick velocity < 200 km/s
- travel times from the Galactic center are < stellar lifetime (200 Myr) so formation in Galactic center is possible
- rate (~ 1/Myr) is roughly consistent with theoretical predictions
- velocities are positive, i.e., traveling outward
- \cdot N(< r) \sim r, as expected for uniform ejection rate

- NOT runaway stars (produced if a supernova goes off in a close binary or from binary-binary encounters) --- these have kick velocity < 200 km/s
- travel times from the Galactic center are < stellar lifetime (200 Myr) so formation in Galactic center is possible
- rate (~ 1/Myr) is roughly consistent with theoretical predictions
- velocities are positive, i.e., traveling outward
- \cdot N(< r) \sim r, as expected for uniform ejection rate

- NOT runaway stars (produced if a supernova goes off in a close binary or from binary-binary encounters) --- these have kick velocity < 200 km/s
- travel times from the Galactic center are < stellar lifetime (200 Myr) so formation in Galactic center is possible
- rate (~ 1/Myr) is roughly consistent with theoretical predictions
- velocities are positive, i.e., traveling outward
- \cdot N(< r) \sim r, as expected for uniform ejection rate

- NOT runaway stars (produced if a supernova goes off in a close binary or from binary-binary encounters) --- these have kick velocity < 200 km/s
- travel times from the Galactic center are < stellar lifetime (200 Myr) so formation in Galactic center is possible
- rate (~ 1/Myr) is roughly consistent with theoretical predictions
- velocities are positive, i.e., traveling outward
- \cdot N(< r) \sim r, as expected for uniform ejection rate

distance from Galactic center

Were these stars really ejected by the central black hole?

- NOT runaway stars (produced if a supernova goes off in a close binary or from binary-binary encounters) --- these have kick velocity < 200 km/s
- travel times from the Galactic center are < stellar lifetime (200 Myr) so formation in Galactic center is possible
- rate (~ 1/Myr) is roughly consistent with theoretical predictions
- velocities are positive, i.e., traveling outward
- N(< r) \sim r, as expected for uniform ejection rate
- some stars don't fit:
 - HD 271971: B2-B3, 7.4 kpc above the plane, heliocentric v = 442 km/s; solar abundance; proper motion indicates that it came from the outer disk, not the Galactic center (Heber et al. 2008)
 - HE 0437-5439: has a rest-frame velocity of 548 km/s but its mainsequence lifetime of 18 Myr is much shorter than travel time of 110 Myr.

X

- NOT runaway stars (produced if a supernova goes off in a close binary or from binary-binary encounters) --- these have kick velocity < 200 km/s
- travel times from the Galactic center are < stellar lifetime (200 Myr)
 so formation in Galactic center is possible
- rate (~ 1/Myr) is roughly consistent with theoretical predictions
- velocities are positive, i.e., traveling outward
- N(< r) \sim r, as expected for uniform ejection rate \checkmark
- some stars don't fit:
 - HD 271971: B2-B3, 7.4 kpc above the plane, heliocentric v = 442 km/s; solar abundance; proper motion indicates that it came from the outer disk, not the Galactic center (Heber et al. 2008)
 - HE 0437-5439: has a rest-frame velocity of 548 km/s but its mainsequence lifetime of 18 Myr is much shorter than travel time of 110 Myr.

Were these stars really ejected by the central black hole?

• if hypervelocity stars originate from any single catastrophic event near the Galactic center the travel times should all be the same

 possible example is tidal spray from a recently disrupted satellite galaxy (Abadi et al. 2009)

distance from Galactic center

Future observations:

- new photometric surveys will find more (e.g., Pan-STARRS, SkyMapper, LSST)
- chemical abundances should be characteristic of the Galactic center

 accurate proper motions of hypervelocity stars will constrain their origin – difference in proper motion between source at solar radius and source at Galactic center is ~0.5 mas/yr

larger surveys will constrain spatial distribution

 are there hypervelocity binaries? If so then ejection by binary black hole is favored

2. The center of the Andromeda galaxy

Why M31 is important:

 angular size of region in which black hole dominates the gravitational field is larger than in any other galaxy except Milky Way

 little or no gas, dust, recent star formation so stellar distribution is easy to interpret

Light, Danielson & Schwarzschild (1974)

"A puzzling aspect of the high-resolution images is the offset of the peak brightness with respect to the outer portions of the nucleus...if no significant dust is present, the observed asymmetry is an intrinsic property of the nucleus which will probably require a dynamical explanation."

Stratoscope

Hubble Space Telescope

further curiosities:

faint component
(P2) is at the galaxy
center, not the
bright component
P2 is cuspy, P1 is
not

 colors of P1 and P2 are the same

P2 has a compact
 blue component at its
 center (P3)

Lauer et al. (1998)

A binary stellar system?

- P1 and P2 have the same colors, except for the compact source P3
- \cdot orbital period only 50,000 yr and inspiral time due to dynamical friction from the surrounding galaxy is $\sim 10^8$ × (10⁶ M_ $_{\odot}/M)$ yr

Dust?

- colors of P1 and P2 are the same
- double structure is still present in nearinfrared; no evidence of color gradient

The eccentric-disk model

 nucleus consists of a single massive black hole at P3, surrounded by a disk of stars that is not far from edge-on

- stars in disk are on eccentric, nearly Keplerian orbits which are aligned so that apocenters point in the same direction
- P1 is the portion of the disc close to apocenter; stars move slowly near apocenter so most of them are found in this region at any given time
- P2 is the portion of the disk close to pericenter
- black hole dominates gravitational potential so orbits are approximately closed

Correctly explains why:

- P2 is almost at the center of the galaxy (the black hole has most of the mass)
- colors of P1 and P2 are the same, and different from the surrounding stars (they're the same stars)
- P2 is cuspy but P1 is smooth (stars are bound to P3 which is near the center of P2)
- P3 is blue and compact (small AGN or cluster of young stars near the black hole)

eccentric-disk model

data from Kormendy & Bender (1999)

HST spectra of P3

The best fit is obtained for a point mass, i.e. a black hole of mass
 M ~ 1.4 × 10⁸ M_☉

an extended mass of radius > 0.03" ~ 0.1 pc is 1-sigma off from the BH solution
consistent with, and independent of, analysis of P1-P2 kinematics on
10 X larger scale (M ~ 1* 10⁸M_o)

The blue nucleus is a cluster of stars with age ~ 200 Myr. Its mass is about 5000 M_{\odot} Its velocity dispersion within 0.1" = 0.3 pc is:

σ = 960 ± 106 km/s

compared to average M31 dispersion of 150 km/s (!)

Bender et al. (2005)

Jacobs & Sellwood (2001)

- simulated low-mass disks around a point mass
 N=100,000 grid-based simulations
- •"we were able to generate long-lived eccentric disks with quite remarkable ease"
- no spirality
- no sign of decay over ~700 orbits

eccentric disks could form through:

- \cdot disruption of cluster on eccentric orbit (but the disk mass is ~10^7 M_{\odot}, ~ 10X larger than any single globular cluster)
- secular evolution due to dynamical friction from the bulge (if pattern speed of disk > mean rotation of bulge)
- instabilities induced by counter-rotating stars (Touma 2002)
- fossil remnant of "feeding the monster" (Hopkins & Quataert 2010)

3. Statistical mechanics in galaxy centers

• near the centers of galaxies the relaxation time due to gravitational encounters can be less than the age \Rightarrow centers should be in some kind of thermodynamic equilibrium

for an isolated self-gravitating system the virial theorem states that kinetic energy
 K, potential energy W, and total energy E=K+W are related by

2K+W=0, E=-K, E=W/2.

In a gas K=3/2 NkT. Then E=-3/2 NkT and heat capacity is

C=dE/dT=-3/2 Nk.

Heat capacity is negative. Any system with negative heat capacity that is in contact with a heat bath is unstable.

 \cdot consider a spherical box of radius r_b containing a mass M of gas of energy E and temperature T, β =1/kT

- if the box is in contact with a heat
 bath it is unstable beyond point C
- if the box is insulating, imagine
 expanding it suddenly
- an insulating box is unstable beyond point D

 develops a core-envelope structure in which the envelope (positive heat capacity) and core (negative heat capacity) both grow steadily hotter (the "gravothermal catastrophe")

dimensionless temperature

 \cdot consider a spherical box of radius r_b containing a mass M of gas of energy E and temperature T, β =1/kT

- if the box is in contact with a heat
 bath it is unstable beyond point C
- if the box is insulating, imagine
 expanding it suddenly
- an insulating box is unstable beyond point D

 develops a core-envelope structure in which the envelope (positive heat capacity) and core (negative heat capacity) both grow steadily hotter (the "gravothermal catastrophe")

dimensionless temperature

 \cdot consider a spherical box of radius r_b containing a mass M of gas of energy E and temperature T, β =1/kT

- if the box is in contact with a heat
 bath it is unstable beyond point C
- if the box is insulating, imagine
 expanding it suddenly
- an insulating box is unstable beyond point D

 develops a core-envelope structure in which the envelope (positive heat capacity) and core (negative heat capacity) both grow steadily hotter (the "gravothermal catastrophe")

dimensionless temperature

- what happens if a black hole is present?
- thermodynamic equilibrium in potential Φ =-GM/r yields density

- this doesn't apply because stars at small radii are eaten by the black hole
- correct solution for a single stellar mass, including absorbing boundary condition, is (Bahcall & Wolf 1976)

 $n(r) \propto r^{-7/4}$

this is not easy to test in Milky Way because
(i) wide range of masses, distribution of masses not well known; (ii) recent star formation; (iii) possible dark remnants

•massive, young, blue stars have $n(r) \sim r^{-2.5}$; cannot be Bahcall-Wolf cusp because ages shorter than relaxation time

 \cdot old stars have a flat distribution at r < 0.5 pc; cannot be Bahcall-Wolf cusp because even multimass cusps are steeper than r^-1

- collisions could deplete old stars?
- not yet relaxed?
- inspiral of intermediate-mass black hole?

old stars

 inside ~0.5 pc gravitational field is dominated by the black hole ($M_{stars} < 10^5 M_{\odot}$, $M_{BH} \sim 4 \times 10^6 M_{\odot}$) and therefore is nearly spherical

 on timescales longer than the apsidal precession period each stellar orbit can be thought of as a disk or annulus

 each disk exerts a torque on all other disks, leading to precession or wobble

 mutual torgues can lead to relaxation of orbit normals or angular momenta

 energy (semi-major axis) and scalar angular momentum (or eccentricity) of each orbit is conserved, but vector angular momentum or orbit mass of the black hole normal is not

> number of stars inside radius r

orbital period

mass of a star

Rauch & Tremaine (1996)

 simplify this drastically by assuming equal masses, equal semi-major axes, circular orbits, and neglecting all harmonics other than quadrupole
 Resulting interaction energy between two stars i and j is just

- $C \cos^2 \mu_{ij}$

where μ_{ij} is the angle between the two orbit normals n_i and n_j

$$\frac{d\mathbf{n}_i}{dt} = -\frac{2C}{\sqrt{GMa}} \sum_{j \neq i} (\mathbf{n}_i \cdot \mathbf{n}_j) \mathbf{n}_i \times \mathbf{n}_j$$

Interaction energy between two stars is

 $H = -C \cos^2 \mu$

where $\boldsymbol{\mu}$ is the angle between the two orbit normals

• 800 stars

each point represents
 tip of orbit normal

• orbit normals initially in northern hemisphere are yellow, south is red

$$\frac{d\mathbf{n}_i}{dt} = -\frac{2C}{\sqrt{GMa}} \sum_{j \neq i} (\mathbf{n}_i \cdot \mathbf{n}_j) \mathbf{n}_i \times \mathbf{n}_j$$

animation by B. Kocsis

~ 100 massive young stars found in the central parsec (at larger radii than the S stars); estimated total mass $5-10 \times 10^3 M_{\odot}$

· disks are embedded in a spherical cluster of old, fainter stars with M(0.2 pc) ~ $2 \times 10^5 M_{\odot}$

• age 6×10⁶ yr

 line-of-sight velocities measured by Doppler shift and angular velocities measured by astrometry \rightarrow five of six phase-space coordinates

 many of velocity vectors lie close to a plane, implying that many of the stars are in a disk or perhaps 2 disks (Levin & Beloborodov 2003)

blue = clockwise orbits

red = counter-clockwise orbits

 $\cdot~$ ~ 100 massive young stars found in the central parsec (at larger radii than the S stars); estimated total mass 5-10×10³ M_{\odot}

 \cdot disks are embedded in a spherical cluster of old, fainter stars with M(0.2 pc) ~ 2×10^5 M_{\odot}

• age 6×10⁶ yr

 line-of-sight velocities measured by Doppler shift and angular velocities measured by astrometry → five of six phase-space coordinates

 many of velocity vectors lie close to a plane, implying that many of the stars are in a disk or perhaps 2 disks (Levin & Beloborodov 2003)

blue = clockwise orbits

red = counter-clockwise orbits

x [arcsec]

Resonant relaxation in dense stellar systems

plot shows relaxation time for solar-mass stars but actual relaxation rate varies as $M\langle m^2 \rangle$ where M is disk-star mass and $\langle m^2 \rangle$ is mean-square mass in surrounding cluster

- visible disk stars are M > 20 M_{\odot}

 take initially thin, flat disk with the same surface density and stellar mass distribution as the observed disks

 embed in a spherical cluster of old stars with the same properties as the nuclear stars in the Milky Way

evolve for 6 Myr under resonant relaxation

• principal uncertainty: relaxation rate scales as $\langle m^2 \rangle / \langle m \rangle$ which depends on IMF, fate of massive remnants, globular clusters, molecular clouds, etc.

- method 1: semi-analytic perturbation theory
- method 2: N-body integrations ("bodies" = orbit-averaged disks)

 $\langle m^2 \rangle / \langle m \rangle$ =10 M_{\odot}

 shows two orthogonal edge-on cuts through the disk after 6 Myr

•the surrounding cluster warps the disk but doesn't thicken it

• ordinary two-body relaxation thickens the disk but it remains flat; resonant relaxation warps the disk but it remains thin, because:

> • orbit-averaged perturbers have less small-scale power than point masses

• because of the disk selfgravity, small-scale normal modes have high frequency so are adiabatically invariant

 $\langle m^2 \rangle / \langle m \rangle$ =10 M $_{\odot}$

 shows two orthogonal edge-on cuts through the disk after 6 Myr

•the surrounding cluster warps the disk but doesn't thicken it

• ordinary two-body relaxation thickens the disk but it remains flat; resonant relaxation warps the disk but it remains thin, because:

> • orbit-averaged perturbers have less small-scale power than point masses

 because of the disk selfgravity, small-scale normal modes have high frequency so are adiabatically invariant

 $\langle m^2 \rangle / \langle m \rangle$ =10 M $_{\odot}$

 shows two orthogonal edge-on cuts through the disk after 6 Myr

•the surrounding cluster warps the disk but doesn't thicken it

• ordinary two-body relaxation thickens the disk but it remains flat; resonant relaxation warps the disk but it remains thin, because:

> • orbit-averaged perturbers have less small-scale power than point masses

 because of the disk selfgravity, small-scale normal modes have high frequency so are adiabatically invariant

disk warps arise naturally and inevitably from resonant relaxation

• interaction energy between stars i and j is $m_i m_j f(a_i, a_j, e_i, e_j, \cos \mu_{ij})$ where μ_{ij} is the angle between the orbit normals

integrate orbit-averaged
 equations of motion for 6 Myr

• yellow = disk stars, red = stars in spherical cluster

• direction and radius of each point represents direction of angularmomentum vector and semi-major axis of star

animation by B. Kocsis

Star formation in the central parsec

 there are many young (< 10 Myr) stars in the central pc of the Milky Way (blue supergiants, main-sequence O and B stars, Wolf-Rayet stars, etc.)

- clockwise and counter-clockwise disks at 0.1-0.5 pc
- the S-star cluster at < 0.03 pc
- how did they get there?

Star formation in the central parsec

 there are many young (< 10 Myr) stars in the central pc of the Milky Way (blue supergiants, main-sequence O and B stars, Wolf-Rayet stars, etc.)

- clockwise and counter-clockwise disks at 0.1-0.5 pc
- the S-star cluster at < 0.03 pc

how did they get there?

Star formation in the central parsec

• there are many young (< 10 Myr) stars in the central pc of the Milky Way (blue supergiants, main-sequence O and B stars, Wolf-Rayet stars, etc.)

- how did they get there?
- \bullet strong tidal shear makes gravitational collapse difficult (required density ${\sim}10^4$ X larger than in surrounding gas clouds
- possible solutions:
 - star formation in cooling shocks in an infalling molecular cloud
 - inspiral of a dense star cluster (but needs densities larger than in any known cluster)
 - inspiral of an $10^4 M_{\odot}$ black hole surrounded by stars
 - migration in a gas disk
 - Hills mechanism (sisters of the hypervelocity stars)

distribution of old stars in the central pc of the Galaxy

resonant relaxation

distribution of old stars in the central pc of the Galaxy

resonant relaxation

double nucleus of M31

young disks in the Galactic center

