
Geometric methods for orbit 
integration 
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spacecraft 
trajectories 

Cassini-Huygens 
trajectory around 
Saturn, 2004-2008
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Planetary orbits 

lines = current orbits of the 
four inner planets 

dots = orbits of the inner 
planets over 50,000 years, 4.5 
Gyr in the future

Ito & Tanikawa (2002)
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Cosmological simulations

Springel et al. (2005)
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 orbits of stars near the 
Galactic center 

Eisenhauer et al. (2005)

Galactic dynamics
1000 AU

box and tube orbits in a 
galactic potential 
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Large Hadron Collider

6Wednesday, November 9, 2011



~100 orbits

~106 orbits

~109 orbits

~1010 orbits

~100-1000 orbits
~100-1000 orbits
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Consider following a particle in the force field of a point mass. 
Set G=M=1 for simplicity. Equations of motion read

Examine three integration methods with timestep h:   

1. Euler’s method
2. modified Euler’s
3. leapfrog

Euler methods are first-order; leapfrog is second-order; Runge-
Kutta is fourth order

Use equal number of force evaluations per orbit for each method 
(rather than equal timesteps)

4. Runge-Kutta method 

8Wednesday, November 9, 2011



eccentricity = 0.2

200 steps per 
orbit

plot shows 
fractional energy 
error |ΔE/E|
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A geometric integration algorithm is a numerical 
integration algorithm that exactly preserves some 
geometric property of the original set of 
differential equations 

Volume-conserving algorithms:
• conserve phase-space volume, i.e. satisfy Liouville’s 

theorem
• appropriate for Hamiltonian systems
• e.g. modified Euler, leapfrog but not Runge-Kutta
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The motivation for geometric integration algorithms 
is that preserving the phase-space geometry of 
the flow determined by the real dynamical 
system is more important than minimizing the 
one-step error
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~100 orbits

~106 orbits

~109 orbits

~1010 orbits

~100-1000 orbits
~100-1000 orbits

geometric integrators not really 
necessary

geometric integrators 
essential

geometric 
integrators 

helpful
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Energy-conserving algorithms:
• conserve energy, i.e. restrict the system to a surface of 

constant energy in phase space 
• appropriate for systems with time-independent 

Hamiltonians, e.g. motion in a fixed potential 
• does not include modified Euler, leapfrog, Runge-Kutta 

Time-reversible algorithms:
• integrate forward in time for N steps, reverse all velocities, 

integrate backward in time for N steps, reverse velocities, 
and the system is back where it started 

• appropriate for time-reversible systems, e.g. gravitational 
N-body problem 

• includes leapfrog but not modified Euler or Runge-Kutta
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Symplectic algorithms:
• if the  dynamical system is described by a Hamiltonian H(q,p) 

then

• if y(t)=[q(t),p(t)] then the flow from y(t0) to y(t1) is a 
symplectic or canonical map

• an integration method is symplectic if the formula for 
advancing by one timestep 

                                yn+1=yn+g(tn,yn,h)
     is also a symplectic map 
• for one-dimensional systems symplectic = volume-conserving 

(actually area-conserving)
• for systems of more than one dimension symplectic is more 

general 
• modified Euler and leapfrog are symplectic 

16Wednesday, November 9, 2011



17Wednesday, November 9, 2011



Symplectic algorithms for separable Hamiltonians

-
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An nth-order symplectic integration algorithm for a Hamiltonian H 
gives the exact trajectory for a nearby Hamiltonian H+Herror  where 
Herror is O(hn)

This result changes the study of numerical integration from numerical 
analysis (boring) to dynamics (interesting)

e.g., integrating pendulum Hamiltonian H=v2/2+C cos(x) with modified 
Euler method gives
                   x’ = x + hv  ,   v’ = v + Ch sin(x’)
set hv=y
                   x’ = x + y   ,    y’ = y + K sin(x’)    K=Ch2

This is the Chirikov-Taylor or standard or kicked pendulum map

Symplectic algorithms
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Symplectic algorithms

-

                   x’ = x + y   .  y’ = y + K sin(x’)    K=Ch2

This is the Chirikov-Taylor or standard or kicked pendulum map

K=0.971635 K=5K=0.5
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Geometric integrators for cosmology
The Lagrangian for a gravitational N-body system is

Drift and kick operators correspond to motion under HA and HB: 

Introduce comoving coordinates x by r = a(t)x

Hamiltonian is 
Momentum is
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Geometric integrators for planetary systems

To follow motion in the general potential Φ(r,t) we may use the 
Hamiltonian splitting

In this case a much better split is 

Then integrate using the leapfrog operator Ah/2BhAh/2.

Motion of a test particle in a planetary system is described by 
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The workhorse for long orbit integrations in planetary systems is 
the mixed-variable symplectic integrator (Wisdom & Holman 1991)

and the operator Ah/2BhAh/2.

• motion under HA is analytic (Keplerian motion) and motion under 
HB is also analytic (impulsive kicks from the planets)

• this is a geometric integrator (symplectic and time-reversible)

• errors smaller than leapfrog by of order mplanet/M* ∼ 10-4
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The workhorse for long orbit integrations in planetary systems is 
the mixed-variable symplectic integrator (Wisdom & Holman 1991)

and the operator Ah/2BhAh/2.

This integrator exactly follows the motion in a Hamiltonian H+Herror 
where Herror is O(h2) and oscillatory. Dominant errors can be 
reduced to O(mplanet/M*)2 by ensuring that the action associated 
with Herror is zero

This can be done by the “warmup” starting procedure (Saha & 
Tremaine 1992)
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The workhorse for long orbit integrations in planetary systems is 
the mixed-variable symplectic (MVS) integrator (Wisdom & Holman 
1991)

• what it does well: long (up to Gyr) integrations of planets on orbits that 
are not too far from circular and don’t come too close

• what it doesn’t do well: close encounters and highly eccentric orbits 

The most popular public software packages for solar-system and 
other planetary integrations are MERCURY (John Chambers)  and 
SWIFT (Hal Levison, Martin Duncan) 

• include several integrators: MVS, Bulirsch-Stoer, Forest-Ruth, etc. 
• can handle close encounters + test particles
• can include most important relativistic corrections

Following 9 planets for 106 yr takes about 30 minutes
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eccentricity of Mercury over 5 Gyr from 2,500 integrations 
differing by < 1 mm in semi-major axis of Mercury 

(Laskar & Gastineau 2009)
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Higher-order  symplectic integrators

“drift” and “kick” operators

• modified Euler method        KhDh  or DhKh (first-order integrator) 

• leapfrog                          Dh/2KhDh/2(z)  (second-order integrator)

• Forest method           DaKaDbKcDbKaDa    (fourth-order integrator)

       if a = 1.35120h, b = -0.3512h, c= -1.7024h 

•   automatically symplectic since Dh, Kh are symplectic 

• any symmetric formula is time-reversible

• only one set of phase-space coordinates has to be stored 

• can be generalized to arbitrarily high order (Yoshida 1993)
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Leapfrog with variable timestep (1)

• we want to allow a variable timestep that depends 
on phase-space position, h= τ(r,v)

• time-reversible integrators have almost all the 
good properties of symplectic integrators

• define a symmetric function s(h,h’), e.g. s(h,h’)=(h
+h’)/2

This is time-reversible but not symplectic 
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e=0.5

200 steps per orbit

|Δ
 E

/E
|
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Leapfrog with variable timestep (2)

Time transformation:
• we want to allow a variable timestep that depends on phase-

space position h= τ(q,p)
• introduce a new time variable t’ by  dt = τ(q,p) dt’ ; then unit 

timestep in t’ corresponds to desired timestep in t

• introduce extended phase space Q=(q0,q) with q0=t and P=
(p0,p) with p0=-H. Then set

                              H’(Q,P) = τ(q,p)[H(q,p)+p0]

If (q,p) satisfy Hamilton’s equations with Hamiltonian H and 
time t, then (Q,P) satisfy Hamilton’s equations with 
Hamiltonian H’ and time t’

• works very well on eccentric orbits but only for one particle 
(can’t synchronize timesteps of different particles)
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Leapfrog with variable timestep (3)
• we have a general differential equation dy/dt = f(t,y) that is 

known to be time-reversible

• we want an integration scheme that is time-symmetric with a 
variable timestep that depends on y, h= τ(y)

• define a symmetric function s(h,h’), e.g. s(h,h’)=(h+h’)/2

• pick your favorite one-step integrator, yn+1=yn+g(yn,h) (e.g. 
Runge-Kutta)

• introduce a dummy variable z and set zn=yn at step n

This is time-reversible (Mikkola & Merritt 2006) 
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Summary

When integrating ordinary differential equations

• short-term quantitative accuracy is not the same as---and is 
often less important than---long-term qualitative accuracy

• use geometric integrators, which preserve the qualitative 
features of the physical systems they are describing 
(symplecticity, time-reversibility, etc.)

• if the physical system is close to one that can be integrated 
exactly, choose the integration algorithm so that it is exact for 
the integrable system 

• implement variable timestep in a time-reversible algorithm

32Wednesday, November 9, 2011


