LECTURES ON CORRELATION FUNCTIONS
IN INTGRABLE MODELS OF QUANTUM FIELD THEORY.

Fedor Smirnov
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1. Lehman-Symanzik-Zimmermann axiomatics for QFT.

Xo

_ 2 _ .2 2 2 92
r = (xg,x1,%2,T3), T°=1x§f—x]—x5— 5.

Poincaré group: R*3 x O(1, 3).
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1. The space of states.
The space of states is the Fock space of particles. Every particle carries

the momentum p = (pg, p1, p2, p3) Ssatisfying

p* =ps —p? —p3 —p3 =m>.

It may have external degrees of freedom counted by e =1,--- , N. They
are Lorenz and isotopic. For simplicity | consider only Lorenz scalars.
There is unique state called vacuum: |vac) . The creation-annihilation

operators o, (k), af, (k), k = (p1, p2, p3) Satisfy

in,e

[aien(k)7 a’;kn,e’ (k/>] — 5:’5(3)(k o k/) .
Annihilation operators kill the vacuum
ag, (k)|vac) =0,

creation operators create n-particle states.

.—p.3/65



There is another set of operators a; , .(k), a (k). The two sets are

out,e out

related by unitary operators called S-matrix:
a. .. (k)= Sai, (k)S™, S |vac) = |vac) .

out,e in,e

More precisely

S=I+ZZ/d%l---/dBkm/dSk;.../dBk;

m=2n=2
SO k= Y KG) Sk kR k)G

e, (k1) o, (Rn)ag, (KY) - - ag (k)

in,eq in, €.,
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Every matrix element corresponds to scattering process

[ t
plm / i}
p out
2
p2in \ /
in
p3 /

out

S

out

Py
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2. Locality. There are local operators O(x). Locality means
01(2),02(0)] =0, 2% <0.

Among these operators there is the energy-momentum tensor 7, ,, (z)
such that

Tpv(z) =T u(x), OuTuu(z) =0, P,= /ETM,O(ZU),

and
[Py s @' (F)] = pu a’ia (), Pylvac) = 0.

out out

Self-consistency:
O(x) = eProeO(0)e ™ Frnon |
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Interpolating field o (x):

w—lim @(z)=¢pun (z)

To—F 00 out

1P LTy % — 1P Ty € d3k
= [ (emmat, (6) +eernat, (1) RN

Comments.

1. The theory is called free if S = I. The goal is to find a theory with
non-trivial S-matrix.

2. Analyticity. The locality implies rather rich and complicated analytical
properties of the S-matrix.

3. Mathematically the difference between the scattering theory in
Quantum Mechanics and Quantum Field Theory is due to the difference
between strong and weak limits. Hence the problem with the perturbation
theory in QFT.
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2. Integrable models in two dimensions.

Consider the two-dimensional space-time:

Parametrization of the energy-momentum of particles:

pe —pi =m>, po=mecoshB, p; =msinhf.
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Integrability. We had the conservation law 9,7, ,(xz) = 0. The light-cone
components of the energy momentum tensor Py = P, + P; have the
eigenvalues on the asymptotical states:

1n ,E€1 (61) 1n €n (Bn)|vac mz iﬁj a’ln N (61) 1n €n (Bn)|vac> :

Integrability implies existence of local operators T(S) 1 (x) satisfying the

conservation law @LTL(fj)E(x) = 0. Such that

1 1 =0, 1= / T (), 19 =P,
>

Further

(8) ;kn €1 (61) 1n €n (ﬁn)‘vac (S) Z o CLm y€1 (61) 1n €n (Bn)|vac>
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Implications for scattering. S-matrix commutes with all Iis). Itis
Impossible to satisfy infinite number of equations

n

m
Z eisﬁj — E 6:*:86;- :
=1 J

—1

except the trivial solution m = n, {8;} = {5}.
Hence the first conclusion. The scattering is purely elastic:

S_1+3 i/ﬁl”'/dﬁm S(Bry--- s Bu)et

m=2 n=2

) a’;kn,el (51> T a;kn,em (5’m>a’1€r/11 (61) T alerlrln (5m>

.- p.10/65



We start with the two-particle S-matrix. Graphically it is represented as

Pr. €, b€,
— €165
Selaz(ﬁl B Bz)
p2’ 82 pl’ 81

1. Analyticity. S () is meromorphic function of 3 regular at
0 <Im(B) <.
2. Unitarity.Unitarity implies two relations

17 /7

Setie3(B) = St (—B), BER; S 2 (B)S7 L (—B) = 0407 .

1/ !/
€1,€9 €556 €1 €9

.—p.11/65



3.Crossing symmetry.

P, €, p2’ £,
p2, £, pl, £

This is written as

/ /
S6622:€€11 (7”’ - 6) = Ceqy,el) S

2

/ 124
€1,€2
117
€1,€5

pl’ 81

177/

(B) = =2

P, €

1
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4. Factorizability of scattering. The most important restriction on the
two-particle S-matrix comes from consideration of multi-particle scattering.

Multi-particle scattering reduces to sequence of two-particle ones.

l. Ya. Aref’eva, V.E.Korepin. S-matrix for Sin-Gordon theoryisma JETF, 20
(1974)

D. lagolnitzer, Factorization of the multiparticle S matrix in two-dimeosal
space-time model$hys. Rev. D 18 (1978)

A.B. Zamolodchikov, Al.B Zamolodchikov factorized scattering in two
dimensions of certain relativistic quantum field theory eledAnnals of
Physics, 120 (1979)

Consistency relation (Yang-Baxter equation).

17 1717
Seren(B1 — 52)5211,’:5 (B1 — 53)5665,’623 (B2 — Bs)
17 1717
= S5 (B2 — B3) S (B — B3) Sy 7 (B — Ba) -
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Graphical illustration to Yang-Baxter equation.

PLE Pe, R0 € Pss €3

3'"73 2' 72
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3. Form factor bootstrap.

Consider a local operator O(x). It is completely defined by its matrix
elements

(vac|af} (B1) - ai? (Bm) O(@) aiy g (B1) -y oy (54 vac)
= e (Em I 00) (vaclaf] (1) - ai (Bm) O(x) i o (81) -+~ (B vac)

It is sufficient to find the form factors

f(Buy--o Bp) 7 = (vac] ag, (B1) -+ - 4 (Bn) O(0) |vac) .

We set 5, < --- < 3, and then continue analytically. The result is assumed
to be meromorphic. General matrix elements are obtained by analytical
continuation 5; — 3; + m for last £ rapidities (n = m + k), and by lowering

.—p.15/65
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Form factor axioms.

F.A. Smirnov
Form factors in completely integrable models of quantundal file€ory.

World Scientific (1992) 208 p.

0. Analyticity. f(B1,---, Bn) " is meromorphic function of all its
arguments. As function of 3,, is has in the strip 0 < Im(5,) < 27 only
simple polesat 5, = 3; +mt,j=1,--- ,n— 1.

1. Symmetry.

. . LS /. / Y
SSZ’?*‘l (/BJ o Bj—Fl)f(@l? T 7/6j75j—|—17 T 7571)617 €041

J’g+1

— f(ﬁla T 76j—|—17 63'7 T 767%)61,"‘ 19€j+1+€5,° " ,€n

2. Riemann-Hilbert problem.

F(B1, -+, B, B+ 2mi) 1 = F(B By, yg) LT
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3. Annihilation pole.

2m1 reS/Bn:,Bn—l—Fﬂ'if(/Bla e 7/671—27 /Bn—la /Bn)q,m Cn=2En—lytn
p— Jt(/B]-7 . e e 7/8,'/11_2)617”' 7€n—266n—17€n
/ /

/
B Szz:izlll (Br—1 = B1) - STV 2Bt — Br—2) [ (B, -+, Bna) 1 2 n—2fn—1on

n—1"""n—2

This is the origin of simple poles for general matrix elements. The way of
understanding these poles can be explained.

Theorems.

1. Local commutativity theorem. Suppose the form factors of two operators
O, 2(x) obey the axioms. Then the operators are local

[01(16) , 02(0)] — 0 for ZCi < 0.
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2. Asymptotical theorem. Suppose the operatqr, (x) satisfies the axioms and
has non-vanishing one-particle form fact6(3). # 0.Then

w—lim () =@ n -

To—F 00 out

3. Energy-momentum theorem. Suppose we have the operatdis, (z) such
that their form factorsf,, ,, are of the form

fﬂ 1/(517 L. ’Bn)el,...7€n
=m? ) (e — (=)'e™) Y (e — (=) e M)g(Br, - Ba)

andg(S1, - - - , Bn) Satisfy all the axioms except for additional simple pole at
two-particle form factor

2TIres g, =g, +mi 9(51, 52)61’62 = 12

ThenT), , (x) can be taken for the energy-momentum tensor.

.—p.18/65



Correlation functions.

Let 2? = —r? < 0, then considering for simplicity Lorenz scalar operators
we have

G(r) = (vac|O1(x)O2(0)|vac)

N ! -+ JE1 .—MT »  COS ;
— Z ﬁ /dﬁl s dﬁnfl(ﬁna T 761)61,---,enf2(51,’ .. ,Bn)en’ “leo > h 3; .
n=0

We begin with e?™(%o 2 cosh ;=13 _sinh 3;) "then we make the Lorenz
transformation 8; — 3; — arcsinh(z1 /r) arriving at e~ 2. sinh 55 then we
shift 3; — B; — mi/2. The latter is possible since

—imr sinh(8—1i60) —imr sinh 8 cos 0 —mr cosh B sin 6

€ — €

Two-point space-like correlation function is the same as two-point
Euclidean correlation function.

The difficulty with describing the short-distance behaviour is obvious. -~ p.10/65



Sine-Gordon model.

45 = [[1o-Oupla))? + T cos(Bep())| da

167 sin 732

| shall use the parameter
v=1- 452, 1>v>0.

Semi-classical domain v — 1.
The spectrum of the model consists of soliton-antisoliton with mass M

and for 1/2 < v < 1 of {ﬁ} — 1 bound states (breathers) with masses

2M sin (Wl—j) 7 =1,- [ﬁ} — 1.

1

Free fermion point v = 3.

.- p.20/65



Two soliton S-matrix.
| use the notations

Si i(Bi — Bj) = So(Bi — B;)Si;(0i/b;),

B [ sin(2kvB) sinh((2v — 1)7k)
So(f) = exp —20/ k cosh(mvk) sinh(m(1 — v)k)

dk | |

and
- b, — b,
Si,j(bi/bj):%(Ii®fj—|—0§®0§?)—l—b.q_l ‘;q.%(IZ'@Ij—J?@U?)
=0y
+ ./b; — -(aj@aj_—l—az-_@)aj).

b CI_ — bjq

.—p.21/65



Local fields.

We shall consider the "primary fields" &, (z) = ¢* =i ?*) and their
relatives ("descendants"). The form factor axioms are in this case:
Symmetry axiom.

Sj,j—l—l(ﬁj o /6j+]-)foa (517 e 763'7 Bj—i—lv tT 752%) — f@a (617 T 7Bj—i—17 6]7 T 762?7,) )
Riemann-Hilbert problem axiom.

LV

. — aos
f@a(ﬁla'“ 7/62?7,—176271_'_27”') =€ 1=V QRan(/B%wﬁlf” y "t 7/82?7,—1)-

Residue axiom.

271 T€88,, =By _1+7i SO (B1s s Ban—2, Ban—1, Pon) =
_ miv 0_3
(1 — e 1-v© 2”5271—1,1(5277,—1 — 61) T S2n—1,2n—2(52n—1 — 6271—2)>

X foa (51, T 752n—2) &) S2n—1,2n

where Sij — 62_ 039 Gj_ + 61-_ 039 6;_- .~ p.22/65



2. Example: free fermions and Painleve.

For v = 1/2 the S-matrix trivialises:
S12(0) =—-1,
there are now breathers, and the form factors for solitons are simple:

fa(ela U 79n79n+17 te (9277,)

N|—=

1 ...1 1
277727 2
2n .
n ][ sinh 5(6; —6)
J:
€ n 2n

H H smh(@z — 9@)

1=1j7=n+1

s

.—p.23/65



The form factor series turn into the Fredholm determinant which is the
tau-functioon for Painleve lIll. To cut the long story short

(Pay (%) Py (0 _ (@, (0))C (@4, (0))°¢

1 2 <
(®a(0))¢ (Pa(0))>C

T(($Mr)?), recall —x*=r2.

We denote o« = a1 + an , 8 = a1 — ao. One-point function is

oo

O‘— Smh2 042 dt
o (0))°¢ = ' / —2’5)—) .
(@.(0) oxp( [ (TRtE) a2
0
Set d
C(t) = ta log 7(t) .

we have

d>¢\°  d¢ (d¢ dc\ 0% [dC\°
(’W) ~ (dt 1) (C "fa)ﬁ(%) |



Asymptotics for 0 < o < 2:

(Do, (X)Pa, (0))°°

(a(0))¢

aq o M2 4Ma 4M—Oﬂ
. (1 10 [ 2 24+a —1 2—04} )

r + 12 r (2+a)2sr (2—04)28 r + ,
where
2ar(l— PPr(1+9)Ir(1+ <
S —

.~ p.25/65



Euclidean case.

In Euclidean case we take seriously the functional integral. For example
the two-pont function is

fe—%A[cp]Ol(z,Z)Oz(O) Hw,u? Do(w, w) .

O1(z,2)0O9 = 1
e P S

| shall talk more on this later.

.~ p.26/65



Conformal field theory.

Energy-momentum tensor describe variations with respect to external
metric

J

7
69+°(z, 2)

= / Tap(z,2)e” nAL T | Do (w, w) .

g®:b Euclidean

There are three components of T' for which we use the complex notations:

T(2,2) =T, .(2,2), T(2,2) =T::(2,2), 0(2,2) =T, :(2,2).
They satisfy the conservation

0:T(2,2) =0O(2,2), 0,1(z,2) =0(z,2).

By definition for CFT ©(z,z) = 0. Hence T'(z,z2) = T'(2), T(z, 2) = T(2).

.—p.27/65



Operator product expansion. Every observable O is characterized by
scaling dimensions A, A, in particular

O(az,az) = a " >720(z, 7).

Suppose we have complete set of local observables, then we must have
OPE

k

The set of constants C{f ; completely characterizes the CFT.
We have action of Virasoro algebra

dz
271

1,0(0) = / FHT(5)0(0)

primary fields and their descendants.
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Perturbed CFT.

Al. B. Zamolodchikov, Two-point correlation function in scaling Lee-Yang
model (1991)

wdz N\ dz
2 Y

APCFT _ ACFT + g/Qb(Z, 2)d2z7 d2Z _
where ¢(z, z) has scaling dimension (A, A), being relevant A < 1.
g = [Length]?~ 2.

Naive attempt of computing the short distance asymptotics of the
two-point function for PCFT:

/01 (Z 2)02 1APCFT H D¢

— Z % /d221 " '/d2zn<01(za 2)02(0)¢(21,21) - - - #(2n, Zn))CFT - .~ p.29/65
n=0



This is wrong because the integrals are IR divergent (they are UV
convergent for A < 1/2). But this is rather good than bad because this
series contradict even to

<(I)041 (X)(I)ozz (O)>SG
(@4 (0))%C
oo M? 4M“ AM™*
- 102 (1 109 [ 2 24+a —1 2—04} ) )
r + 12 r (2+a)23r (2—&)28 r + ;

in this case g = M /2.

The main conclusion is that the perturbation theory must be used rather

for OPE than for the correlation functions. For irrational dimensions local
operators can be identified, and we have

Oi(2,2)0;(0) = 3 | 2~ M7 8T8 zm 2m M TR0 (9(22)' 7 2) O4(0),
k

where CZ? (ZIZ) = Czk’j + Cf”j(l)ﬂj + 053(2)332 + .-, .~ p.30/65



The structural functions can be computed from PCFT, but the one-point
functions

A +A
(OR(0))PHT = g~ 22 G,

can not being non-analytical in g.

Generalization. We can impose some geometric environment, them OPE

remain the same, and only G, depend on the geometry. For example, for
the cylinder of radius R we have

Ap+Ag

(OR(0))2CFT = g~ 225 Gy, (gR? 22 .

.—p.31/65



Returning to sine-Gordon model.

Writing the action as

2
ASC = / { [iazso(z, 2)0zp(2,Z) — H—e_il8¢(z,5):|

A sin 732
_ p etBe(2:2) 1z A dZ
sin 732 2 '

we consider sG model as perturbation of the complex Liouville model with

the central charge

V2

c=1—-6

Y

1 —v

by the primary field

B (2,2)

.—p.32/65



OPE:

o, (2, 7) S‘ S‘ 2 2y |m| Cg’)i](\XgN <M4T4y>
m=—00 N,N
2
< iz Z=aras+2m?* (1—v)+2amy |N| |N|l Nl N(I) V”(O)v

where o = a1 + .
Coefficients of functions

CmNN() CmNN(O)—|-CmNN(1)33+CmNN(2)ZCQ—|—

1,02 1,02 1,2 1,02

are given by Coulomb gas type integrals.
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We generalise the problem considering the correlation functions on a
cylinder

So, our goal is to compute

<1—N1—N(I)oz—|—2m 1—v (O)>§%G

v

(Do (0))5

This is the ratio of two functional integrals on

.—p.34/65



Fermionic description of the space of local fields.

Local integrals of motion I5;_1, I_Qj_l act on the local operators by
commutators. Corresponding action is denoted by is;_1, igj_l and should

be factored out.
We claim that the gquotient space of

00
® Voz—I—Zml_TV ® Va+2m1_7” )

m=—oo

by action of iy;_1, igj_l can be described by action on ¢,(0) of four sets
of fermionic creation operators:

* * * — %
/62]'—17 V251 /329'—17 Y25—-1-

What do we know about descendants of these fermions to Virasoro de-

scendants? . p.35/65



Introduce the notations

I+:{2Z;—_17 72i+_1}7 /8?4- :/6;;;'_1”'/8;%';'_17 etc.

Thenif #(17) = #(17),

B1+71-%a(0) = || Dej-i(e) ]| Dej1(2-a)

2j—1€l+ 2j—1€l—

< [P (1o} A ©) + da PR (oo} Ao, )] @0 (0).

Daj-1la) ==/ L) (1—v) > 1)

do = /(25— ¢)(24An +1—¢).

) 251 25 —1 I (
|

Similarly for other chirality changing o — 2 — «.

.~ p.36/65



For 5%6%71’;_ v5-®,(0) the only real requirement is
H(IT) +#(IT) =#(I7) + #(I7). We have

/B?F B;—‘Fﬁ/?—— 77— (I)oz—l—le_T” (O)

= Cm (OZ)IB?F —|—2m/Bi;+ —2m’77_— —i—2m7?_ —2m/3i;odd(m)’7?odd (m) (I)Ot (O) )

where I,qq(m) ={1,3,---2m — 1},

Nt = %cot = (va+ a)8,, B, = %cot 7o (Vo +a)y,
m—1
Cn(e) = p?m ™ T] Ula +25554).
j=0
(-2 I I'(— 1/2
U(a) = —vT(v)* (—2ve) (z) et/ )z'coth,az:%+12__yy°

I'2vx) T(x+1/2) I'(—x)

.—p.37/65



Our main theorem.

Consider

27 25—1

e ZB;j—l(C/N) Y etc.
j=1

B (() = Zﬁzj_l(c )

Then

* L AF * e ¥ sG
(B ()-8 (Cmga((%%)%g v (£1)Pa(0)% — det 3 (G, €5 ]) |

and the function w$% (¢, £]a) can be described through the TBA data.

.—p.38/65



Desrti-DeVega equations.

Free energy on the cylinder is defined by the maximal eigenvalue of
Matrubara transfer-matrix. DDV equation

1

1/v —1/v i 420 d€2
Hloga(Q) = wMR(CY” — (M) — 2m / R(C/€)log(1 + a(¢et™))
0

&

where R({) = R((,0),

[ oo, dk s sinha((2v — 1)k — ia/2)
R(G, @) = / CRR (k) Bk @) = b (1 — )k + ice/2) cosh(mvk)

Mass of soliton is related to u by

(T (V) =M

Zr(ﬁ) . .~ p.39/65



Function w55 (¢, €)

It is convenient to use the Mellin transform

vl —7vm,
i (:€le) = / / jjr CZ: e 2mc0§h(7wl)@SRG(l’m‘a)co:h(wum)

+ wo(C/€, ).

where

wo (¢, @)

oo

(S

v

v~ cot —(z/oz +(25—1)) — Z§2ju_1 cot, 2_1/(Va — (27 — 1)),
j=1

. — p.40/65



The function ©5% (1, m|«) is defined from the equation

r _ dk
O3 (I, m|a) + G(1 +m) + / G(l — k)R(k,a)05% (k, m\a)2_ —0,
A

where

GlE) — /Ooo (2R dm(¢), dm(¢) = 2Re (1 n a(lg“e_io)> dCCQ :

.~ p.41/65



QFT and second order phase transitions.

We considered

[ e 5410, (2,2)02(0) [T, » Dé(w, @)
f e_%A[SO] Hw@ ng(w’ w) '

(01(2,2)02(0)) =

There is an important analogy between D-dimensional Euclidean QFT
and D-dimensional classical statistical mechanics. Partition function:

Z = Z (6_%?{).

configurations

The rule is A < H . If we try the lattice regularization. Typically

oo =5 3 (o)) s T

configurations

Scaling limit at 7. where &£(T') ~ (T — T.)~" (another v).

.~ p.42/65



Lattice model near the point of the second order phase transition.

Non-critical lattice mode
L - - - = N ~
. .
_ _ | VIassSsIve
7 _I= =1 T F
P ] '\.
/ P ~ \F -l- N
/ -/./ .\‘ \
/ N N
/ 7 N \\
\.
/ // N
/ \ \
+ \ ¥
7 -
! / \ \
; T
J ]
1 ; A~ Ll \ \
1 T Criacal 1Iattice \ \
! I | N
t
| I
T T
| | mode !
| \ 1 I
\ |‘ " Il
\ /'
' \ 7 T
\ \ ; /
\ : - i
\ /
\‘ ./
N \ /'/ y
\ N a /
\ N s /
N, e
AN 7/
< < —F 7
AN ~| < 1.-r ,
N = = rd
~ 7
~ z
< =
~ -
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Example.

Eight-vertex model

(DI RPN DRSS SUNEPNRS INNUE SN

i + i P #

We consider homogeneous case when the Boltzmann weights are
parametrized by two parameters: v and k£ (which parametrizes the
temperature).

a:b:c:d=sn(v/2):sn(v/2):sn(v) : k(sn(r/2))*sn(v).
Critical temperature k£ = 0. In this case d = 0,

a:b:c=sin(r/2) :sin(r/2) : sin(v).

This iIs homogeneous six-vertex model. Scaling theory is Euclidean sG:

wdz N\ dz

1 p 2cos<ﬁso<z,z>>} /

AsCG =/{E(9zso(zai)5z¢(zvz> -

sin 732

. .—p.44/65



Expectation values for six vertex model.

Consider the partition function with defect:

Space

VAV A R A
R R \

[
[
[
[

%%

o

o

o

]

]
\+/
\+/

X

v-oocc el

P | ] /
ST

V

=L, =g b =qte’ fig. 1



Exact definition. R-matrix
Ri(C) = ¢34 0¢ — g 3@ty (g — g7V (of 05 + 07 0F).
This R-matrix satisfies: Yang-Baxter equations:

R12(C1/G2) R1,3(C1/C3) Ra,3(C2/C3) = R2,3(C2/¢3) R1,3(¢1/¢3) R1,2(C1/C2) -

One more important property

Ria(1)=(q—q¢ ")Pia.

we shall formally use the space s = & C?. Let us consider also the

j=—o0

space Hn = X C?, where M stands for Matsubara.
j=1

. — p.46/65



Introduce

and

Further,

Tim(C) = Rjn(Cg?) - Ri1(Ca™?),
Tiv =Tj5m(1).

Ism = A}im T _Nyim- I

— 00

.~ p.47/65



Our main object, the partition function with defect can be presented as

Tre Tryg (TS,Mq2f<cS+2ozS(O) O)

Zg{qzaS(O)O} _
TrgTrp (TS,MC]%SJF%‘S(O))

Notice the importance of maximal eigenvalues. Non-degeneracy condition
(k + alk) # 0.

Our results.
Consider the space

On this space we defined the creation operators t*(¢), b*(¢), ¢*(¢) and

annihilation operators b(¢), c(¢). — P ABIES



These are one-parameter families of operators of the form

t*(¢) = Z(C2 - 1)y,

The operator t*(¢) is in the center of our algebra of creation-annihilation
operators,

€°(C1), £7(G2)] = [67(1), € (Ga)] = [£7(G1), b7 (G2)] =
[£°(C1), e(G2)] = [£°(C1), b(Ca)] = 0
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The rest of the operators b, c, b*, ¢* are fermionic. The only
non-vanishing anti-commutators are

[b(¢1), b"(C2)]+ = —(C2/C1,a),  [e(Cr), e (C)]+ = ¥(C1/Ce, ),

where &

Each Fourier mode has the block structure

t; . Wa—s’s — Wa—S,S

*

* ) .
bpacp . Wa—s+1,s—1 — Wa—s,s; prbp . Wa—s—l,s+1 — Wa—s,s-

Further
x,(X) =0, p>length(X), x =Db,c,

length<xz (X)) < length(X) +p, x =b,c,t.
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Among them, = = t7 /2 plays a special role. It is the right shift by one site
along the chain. Consider the set of operators

D1 P; q1 dr " T1 Tk

Y Lt b* ...bf ef ...c" (QQQS(O))’
where m € Z, j,k € Z>p,p1 > - >p; > 2,1 > --- > qr > 1 and

ry > --- > 1 > 1. constitutes a basis of W, ¢.
Main theorem relating Space and Matsubara

Z" {7 (O)(X) } =2p(C) Z"{X},

Z b (¢)(X)} = % ]{w(c,f)Z’“{c(f)(X)}%a
) 1 de*
2 (X)) = =55 (& OZ{BEOX)} 5 s

r

the functions p and w are defined by Matsubara. - p.51/65



Since
(@) =0, b() (@) =0,

we obtain

Z{67(C) - (DB (CE) -+ b (GT)e () -+ e (D) (¢5) |

7’7.7:]-7 7l ’

k
=TT 20(¢9) x det (w(¢,¢7))

Taking the Taylor coefficients in (¢f)? — 1 in both sides, one obtains the
value of Z* on an arbitrary element of the fermionic basis.

The analogy with the CFT becomes transparent at this point.
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AN

Quantum loop algebra U (sls).

Quantum groups. Multiplication (with unit 1):
m: A A— A,

and comultiplication
A: A—-> AR A,

with the requirement that A is a homomorphism:
Alzy) = A(z)A(y) .

Antipode is an anti-homomorphism s : A — A, itis a deformation of
Inverse for Lie algebra. Counit is a homomorphisme: A — A

mo (s ®id) o Alx) =mo (id® s) o Al(x) = €(x) .
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Let o be the permutation of two copies of A in the tensor product:
c: ARA—-ARA, o(zQy) =yRx,

and
AN =coA.

The quasi-triangularity requires the existence of a universal R-matrix,
R € A® A which intertwines two comultiplications:

A'=RAR™'.
The universal R-matrix satisfies the Yang-Baxter equation:
R12R13R23 =R23R13R1,2,
another important property is

(id®s)R=R*.
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U, (;[2) IS generated by ¢;, f;, h; (i = 0,1). We consider the case of central

charge equal to zero: hy = —hg = h. Two Borel subalgebras U, (b™) and
U,(b™) are generated respectively by e;, h and f;, h. We have the

commutation relations:

t; —t; !
[ fg] - 5i,jq_—qz_1 ;

where t; = ¢". The deformed Serre relations are

e;e; + (¢° +q % +1)(efejei — eejef) —ejei =0,

F2f+ @+ a2+ V(2 fifi = LfifP) — fif2 =0

The comultiplication and antipode are given by

Ale;) =e; @1 +1; ®ey, A(fi):fi®ti_1+1®fia Alt;) =1t ®@t;,

8(62) = —ti_lez-, A(fz) = fitz’; S(ti) = tz-_l .
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The comultiplication looks quite simple, but the universal R-matrix
intertwining A and A’ is complicated. It can be written as follows:

X h

— h
R=Rq =2

Y

1

ﬁ:l—(q—q_1)26i®fj+°-° € Uy(b™) @ U,(b7),
i=0

where the - - - stands for terms of higher degree in generators.

Representations. Let E, ', H be generators of U,(slz). The evaluation
representation:

eve(eo) = CF, evc(er) =CE, evc(fo)=C'E, eve(f1)=('F,
eve(h) = H .

Choosing finite-dimensional representation of dimension 2s + 1 we obtain

7.‘.525). .—p.56/65



We have (eve, ® ”éi))(R) =71(Q)L([), ¢=0C/C,

(1= (g HCFY 082
L(C)_ (_(q_q—l)CE 1_C2q_H+1 tO )
This will be used for Finite-dimensional of dimension 2s + 1:

Fvj =wvj41, Hvj=(-2s4+27)v;, to= q_H,

Ev; = (qj _ q—j)(q2(s—2s—1) _ q—2(j—2s—1))vj_17 j=0,---,25.
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Important generalization.

Bazhanov, Lukyanov, Zamolodchikov (1996).

Recall that R € U,(b™) ® U,(b™). Suppose we are given two algebras A~
and homomorphisms U,(b") — A™, U,(b~) — A~ .l shall use the term
L-operator for the image of the universal R-matrix under these maps. The
g-oscillator algebra Osc is an associative algebra with generators

a,a*, ¢, and defining relations
P=q¢ta, ¢"a'qP=qa’,

aa*zl_qu—l—Q’ a*a:]._QQD

¢"aq”

Representations of Osc relevant to us are p* : Osc — End(W¥) defined
by

W = @i>0Clk), W™ = @roClk),

q¢"|k) = ¢"|k), alk) = (1 - ¢**)[k — 1), a*[k) = (1 = 1)k + 1) .

.~ p.58/65
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Trace

Tr(?*PXY) = Tr(P?P P4y X) (X,Y € Ose, P Xq P = ¢?X) X)),

(87 m 1
Tr(g**P¢™P) = T (m e Z).

There is a homomorphism of algebras o, : U,b™ — Osc given by

—a*, oc(te) =q ", oc(t1) =¢q

oc(eo) = —a, o¢ler)= 2D

q—dq q—d

We define representation oj : U,bT — End(W) by oj = ptoo.
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We define
(of @ me)R =0(C/E) - La;(C/€),

Then by self-consistency one finds:

1 — CQQQDA+2 _CaA C]_DA 0
LA,J(C) = ( * D )
—ca’ 1 ; 0 q ;

Notice the indices j, A, a!
R-matrices. Obvious:

Lap(C2/C1)Laj(C2) L j(C1) = L §(C1)La,j(C2) Lap(C2/C1)
Laa(C/C)Laj(C2)Laj(C1) = Laj(C1)La;(C2)Laa(C2/C)-
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Less obvious. R4 p((1/¢2) satisfying

RaB(C1/C2)Laj(C1)LB;(C2) = Lpj(C2)Laj(C1)RaB(C1/C2).

does exist. It is given by

R 5(¢) = Paph(C,uap)(PATPe,

where u g = a* ¢ 2P4ap, and h(¢,u) is the unique formal power series
In u satisfying

(1 + Cu)h(C,u) = (1 + ¢ u)h(C, ¢*u),
h(C,u) = (14 ¢ u) (1 + g *Cu)h(g?¢ u)

and h(¢,0) = 1.
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One more important property.

Lia,a},;(O)(Fa,a) " Laj(¢)La;(¢)Faa
_< ! 0) <<<2—1>LA,j<q<)q“?/2 0

where F, 4 =1 — a0 .
Construction of annihilation operators.

Consider the operator X[; ;) € End (C®(~*+1). Define

Ta,[k,l](g) — La,l(C) T La,k(C) 9

and the adjoint monodromy matrix

3 —
To (¢, ) (X)) = T e, ()™ Xpp T o,y (C) 7

0 (¢*¢* = 1)La (g7 C)g™

3

.) -
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Define further

S(Xk,)) =[St Xkt Spet) = 5 2 jefon O

Then

(Fa’A)_l (TCL(C? Oé)TA(C) a)(X[k,l])) Fa,A — (

AA(C) Oé) — TA(CQ) a)q—S’ ]D)A(Cv Oé) — TA(Cq_lv a)qS -

Define

(G, ) (Xpe) 1= Tra{ Ca (¢ a)¢™ (g 2500 Xpu)

k(¢, @)(Xjk. 1) has poles of hight order at ¢? = 1, ¢*2.
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Define the operation

Acf(Q) = f(Cq) — f(Ca™h).

Definition. Exact g-one form is an expression of the form A, f(¢) with f(()
having poles at (? = 1.

Using our algebra it can be shown.

k(Cla a)k(<=27 a + 1) + k(CQa a)k(Ch a + 1)
— ACl m(Cla 527 a) + Asz(C27 Cla a)a

In RHS we have exact ¢-two forms.
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Consider

(¢, ) (X)) = 5 ff¢<</§, @+ S)k(€, @) (X)) % |
C(Ca@)(X[k,Z]) = fff (

¢/€ a+8) {k(g€, @) + k(g€ )} (Xpe) %,

where I' goes around ¢? = 1.
Then

C(Ch Oé)C(C27 Q + 1) + C(C% a)C(C17 Q+ 1) =0
(Cl) a)E(C27 o+ 1) =+ E(CQ) Oé) (Cl) o+ 1) — 07
(C1, @)c(Co, 0 + 1) +¢(C2, )c(Cr, e +1) = 0.

al al

.~ p.65/65



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

