Astronomical Imaging
and Photometry:
Optics



This will serve as an introduction to optics as relevant to

issues arising in astronomical imaging. All of optics is subsumed
in Fermat's principle, which states, in its simplest form, that

light travels along a path between two points which takes the
least time; from this one can derive Snell's law, the reflection
laws, etc. The connection with waves is simply that the
propagation vector of light (a ray) is proportional to the gradient
of a wavefront which passes through a point. The optical path
along a ray of light at a given wavelength is

OP =S n(l) dl (ecm) or OP:Sn(I) dl/A (wavelengths)

if n(l) is the refractive index along the path. The propagation
vector is just grad OP



Optical systems can be almost arbitrarily complicated, consisting of
lenses, mirrors, fibers, index-gradient elements, gratings, holograms,
etc, etc. The aspects we are concerned with have to do with the
behavior near the focal surface, which determines the properties of

the image which falls on the detector and which we are to analyze.

It is sufficient here to concentrate on these aspects. We will specialize
to circularly symmetric optical systems for simplicity, and at first deal
with the geometric optics limit, in which we do not consider interference
effects, but just assume that light travels strictly along the optical path
and that the intensity is preserved along the path.

The light from a star at very great distances defines a parallel

bundle of rays (perpendicular to flat wavefronts) which eventually

reach the focal surface. Bundles from different points in the field

have central (principal) rays which all intersect to some approximation;
this intersection defines the location of the ENTRANCE PUPIL. Likewise,
bundles reaching the focal surface have central rays which intersect

to some approximation; this intersection defines the EXIT PUPIL. For
single simple thin lenses, they are essentially coincident, but are not

for any interesting real optical system.



Since the system is assumed circularly symmetric, we can choose
the plane containing the entering angle arbitrarily, and we choose
it to be the y,z plane, in which z is the optical axis and we erect
normal x, y axes in the pupil. The entering angle is a, and the
intersection of the ray with the pupil at point x,y completely
defines the situation. We show here a simple lens, but the
description is completely general.
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In first-order optical theory, the approximation is made for all
angles y which rays and the normals to surfaces make with the
optical axis that

siny =tany =vy.

In this case, it is easy to see that optical systems make
perfect images; all angle differences upon passing through
any surface are just proportional to the radius in the pupil,
so those rays will all converge at the same image point.

First-order optics, though not useful at all in examining the
quality of images, is useful in defining several global properties
of the system.

The height h in the image plane is linear with the field
angle o ; the constant of proportionality is the FOCAL LENGTH f:

h=af



The ratio of the focal length to the diameter D of the entrance pupil
is called the f-ratio F. In the first-order approximation, the angle
which a ray coming through the edge of the pupil makes with

the principal ray with the same field angle is the RADIUS

of the pupil divided by the focal length, 1/(2F). This is called

the NUMERICAL APERTURE (NA). Systems with small f-ratios

and large NA are called FAST; large f-ratios and small NAs SLOW.

There is now more than two hundred years of experience
analyzing optical systems to the next order, in which

siny=y-vy36, cosy=1-y2/2, tany=y+7y33

This analysis is called, of course, THIRD-ORDER OPTICS, and, as
might be expected, is enormously richer than first-order optics. It is
adequate for many systems, but fails for very fast or very wide-field
systems in which the angles become large enough that fifth and
higher-order terms become important. With the advent of fast

computing, higher-order optical analysis is essentially obsolete and
has been replaced by essentially exact ray-tracing. (ZEMAX, etc)



It is in third order that the imperfections in image formation,
called in general ABERRATIONS, first become apparent, and we
will here discuss only the classical third-order aberrations.

Let the principal ray have field angle «; it crosses the first-order
image plane with height h. In third order, rays entering the

pupil with the same field angle but not at the center will NOT,

in general, cross the image plane at the same point as the
principal ray, but will deviate from that point by the small
quantities d, and d, in the directions of the x and y axes.

These terms will be linear combinations of terms which are
third-order in o and in the angles which the rays make to

the principal ray coming to the focal plane; those are essentially

¢ = X/R and n= y/R, and we will do the expansion in x and y.
Because the angles are gradients of the OP and the obvious
symmetries of the geometry, the form of the third-order expansion
is not quite arbitrary, and looks like this:



OX = (c—a)a?x +2Caxy + Srx
oy =da? +(c+a)a?y + Ca(x? + 3y?) + sr?y
r = sqrt(x? + y?)

af



The terms have names: The first term is called DISTORTION

OX = (c—a)a’x + 2Ca xy + Srx
oy =da? +(c +a)a’y + Co (Xx? + 3y?) + sry

distortion causes NO image degradation, since it depends only
on the field angle and is always radial. It DOES cause astrometric
errors, since it clearly moves the centroids (indeed, bodily

the images) of objects. d>0 is called PINCUSHION DISTORTION;

d<0 BARREL DISTORTION.
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The second term has two parts.

OX = (c —a)a’x +2Ca xy + Srax
oy =da? + (c +a)a’y + Ca(x? + 3y?) + sry

The first (c) part clearly represents a curvature of the focal
surface. The deviation is proportional to the coordinate

in the pupil, i.e. to the angle the ray makes coming to the

focal surface, so they will come to a focus SOMEWHERE ELSE,
at a distance from the first-order focal surface which is
proportional to the square of the field angle a. This is

called FIELD CURVATURE and does not represent

image degradation if one can curve the detector.

The second (a) part clearly represent DIFFERENT field
curvatures for sets of rays for which x=0, ie which enter
in the y,z plane (tangential rays) , and sets of rays which enter

in the x,z plane (sagittal rays). If a is nonzero, the system
has ASTIGMATISM.



A system with nonzero astigmatism does not make perfect
images. At a focal position which is halfway between the
sagittal and tangential foci, the image is round but not a
point. At the tangential focus, the image is a horizontal
line, and at the sagittal focus, a vertical line; at other

foci, the image is an ellipse.
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As you go through focus, the images look like this:
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The next term, linear in the field angle and quadratic in the
pupil coordinates, is called COMA.

OX = (c —a)a’x + 2Coxy + Srax
oy =da? +(c +a)a?y +Ca (X2 + 3y?) + sriy

It can easily be shown that
this aberration maps circles
in the pupil into circles in the
image plane, with radii

and deviations in the central
position which are quadratic
in the radius in the pupil.
Thus the circles lie in a cone
on the focal plane:




The last term is circularly symmetric in the focal plane, and is
called SPHERICAL.

OX = (c—a)o’x + 2Ca xy + Srax
oy =da? +(c +a)a’y + Ca (x? + 3y?) + sriy

Since the deviation is in the direction of the pupil vector and is
just proportional to the cube of the distance of the ray from
the center, the rays from a given radius in the pupil fall on

a circle in the focal plane with the center at the first-order
focal position. The radius of the circle is proportional to the
cube of the radius in the pupil, but the aberration is uniform
over the focal plane; there is no o -dependence. Spherical
aberration is insidious (ask the Hubble folks). There is no
really good compromise focus, since most of the area of the
system is at large pupil radii, where the focus is changing
most rapidly.



aberration-free lens
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All glasses have refractive indices which decrease with wavelength,
so simple lenses have focal lengths which depend on wavelength:

“hromatic aberration

This can be fixed'’ by using two lenses with different indices and dn/dl
Such a lens is called an achromat'. Many glasses can be used in complex

systems. — -
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In the previous discussion, we have considered light as
propagating along rays with no wave interference effects.

In this limit, a star image in a system with no

aberrations is a point, or in any case, the real geometrical

size of geometrical image, a few microarcseconds for

stars at typical galactic distances. Consideration of the
wavefronts through a system lead one to the conclusion that

in a perfect optical system, the OP is the same for all rays

at the focus. Real optical systems with real light waves do not
make point images. If one considers rays entering at very small
angles to the geometric path to a star, the OP for such rays
differ by a small fraction of a wavelength from the rays following
the exact geometric path. These paths are thus essentially
equivalent, and it is only at angles such that the interference of
waves along the perturbed path interfere destructively with waves
along the geometric path is the intensity substantially reduced.



Consider an telescope with an entrance pupil diameter

(typically the primary mirror diameter in a reflecting telescope)

D, with a star image from a star at infinity, say, on the optical
axis. Consider a point in the focal plane a short distance away
from the geometric star image, corresponding geometrically

to an angle a away from the star on the sky. There are rays

from this point back to the pupil, but they are clearly not

quite the rays dictated by Fermat's principle; in particular, they
do not have zero optical path difference to the star, as rays at

the geometric focus do. The PHASE difference between one of
these rays and the rays which define the geometric center is

the angle o times the pupil height y (the physical path difference)
times 2n/A, d¢ = 2rnay/A, Thus it is plausible that the electric field
in the focal plane, which is just the superposition of the fields
propagating along possible rays, is

E(a) = Consit. Sexp(i 2ray/A) dxdy  over the pupil.

In general, ay becomes . )7, and the integral is just the Fourier
transform of the pupil, with argument k = 2rna/A



Note that the INTENSITY is proportional to the SQUARE of

the electric field, so the intensity is proportional to the

square of the Fourier transform of the entrance pupil.

What does this look like? If the angle a is A/D, then the OP
changes from one side of the aperture to the other by 2r, and
there is complete destructive interference in the focal plane.
If the pointing is changed by A/2D, the effect is roughly half as
big, so one expects the half width at half maximum to be at
roughly this angle, and the FWHM to be about A/D.

The expression for the intensity in the focal plane

for a perfect system with a uniform circular pupil is the
square of the Fourier
transform of a uniform disk
of diameter D, the AIRY
function:

Ry(a) =

7D [:z._rlf;wmm;,a] .
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This result holds for a perfect circular optical system with no
aberrations and no central obstruction. In general the diffraction
PSF is the square of the Fourier transform of the pupil, AND if there
are phase imperfections in the incoming beam, from the atmosphere
or impetrfect optics, those phase differences as functions of location
X in the pupil are simply incorporated into the transform, and the
result is correct. Amplitude modulation from coating imperfections
or on-purpose apodization across the pupil can likewise be
incorporated.

The diffraction resolution limit, A/D, is, numerically,

vq4= 0.21 A(u)/D(m) arcseconds

A 4-meter telescope in the visible has a diffraction limit of about

25 milliarcseconds, but seeing, which we will discuss in the next
lecture, limits resolution in even excellent conditions at excellent
sites to an order of magnitude worse than this, so for many if not
most, purposes we do not need to worry about diffraction very much
in seeing-limited observing from the ground, EXCEPT for one thing:



Big telescopes are all reflecting systems, and either have a secondary
mirror in the beam or have a focal surface structure (correctors,
detectors, etc) in the beam. This means that the pupil has a hole

in it, but this is generally not very significant, given the tiny scale

of the diffraction image compared to seeing. What IS nearly always
significant is that the central structure is supported by some kind

of spider made of thin rods or vanes. Since the scale of these
structures is very small in their thin dimension compared to the

size of the pupil, there is little interference between the energy

they diffract and the diffraction of the pupil. Under these circum-
stances, it is easy to see that since the Fourier transform of the

real pupil is that of the pupil without the spider MINUS the FT

of the spider, and the cross term in the square, which represents

the interference between them, is negligible, the fraction of the energy
*scattered” by the spider is the same as that blocked by the

spider (this is a manifestation of the same OPTICAL THEOREM

you have probably met in quantum mechanics). The angles involved
are then the diffraction limit associated with the WIDTH of the

spider vanes, which is typically of the order of one or a few
centimeters, in the direction perpendicular to the spider vane,



and a size similar to the diffraction limit of the telescope in the
direction along the vane. This small dimension is enlarged by
seeing, and the typical result is a pair of spikes emerging

from a star image for each supporting vane, perpendicular to

the long direction of the vane, with a width determined by the seeing
and a length of rougly the diffraction limit associated with the
centimeter or so width of the vane, i. e. of order ten arcseconds.

The intensity distribution along the diffraction spike is just the
square of the Fourier transform of a tophat the width w of the vane,

| = Const (A/2zxa) sin® (raw/A)

so has a core of width of order 2A/w, and falls like a2 outside this.

The wavelength dependence can be seen graphically on HST

color images, where one sees the rainbow along the spikes. Remember
that the total fraction of energy in the spikes is the fraction of the area
obscured by them.

These spikes are a real nuisance in image processing, and can give
rise to many spurious object detections close to bright stars if one
is not very, very careful.



Image of center of dust nebula around V838 Mon near maximum, showing
modulation of diffraction spikes.




A telescope takes light from very distant objects entering the entrance
pupil as parallel rays, and brings the light to a focus with some
well-defined focal length and f/ratio (NA).

The simplest telescope uses a lens (simple or achromatic) for the

*OBJECTIVE?™, ie the optic which is primarily responsible for creating
the image.

The basic achromatic refractor

Byepiece

air spaced doubliet




Lens system with very small f/ratios (fast) for imaging can be quite
complex. They are used in commercial photography (your SLR has
one) and large ones are used in astronomical spectrographs. They
often have many exotic glasses and aspheric surfaces. This example
is a fast Nikon lens for 35mm photography, with 10 elements.

B — m————

internal focus

Nippon Kogaku Nikkor 200mm f/2 ED IF, 1977




But all large telescopes these days are reflecting—that is, the objective
is a mirror, not a lens. A concave mirror can produce images just as

a convex lens does. Most mirrors are shaped (approximately) like
conic sections of revolution—paraboloids, ellipsoids, hyperboloids,
spheres. The properties of these surfaces are:

1. Paraboloid: All rays parallel to the axis of the paraboloid converge
exactly to one point, the focus, after reflection. (This is obviously
the prototypical objective (primary) mirror.

2. (prolate) Ellipsoid: All rays from one focus of the ellipsoid converge
exactly to the other focus after reflection.

3. Hyperboloid: (one sheet) All rays which would have converged
at the focus behind the sheet converge exactly to the focus
in front of the sheet, (whichever sheet you use) after reflection.

4. Sphere: Obviously, all rays from the center of curvature coverge back
to the center of curvature.



Define the CONIC CONSTANT
=-e2. Positive K corresponds

to OBLATE ellipsoids; the

foci define a ring, not points

on the axis.

K>0 are oblate ellipsoids

K=0 is a sphere

0>K>-1 are prolate ellipsoids
=-1 is a paraboloid

K< -1 are hyperboloids

All these curves have the
same osculating radius R near
the origin. The surface is

y2+ 2Rx + (K+1)x2 = 0

so x ~ y2/(2R) for small y



The simplest refecting telescope is the Newtonian. It has a paraboloidal
prmary (objective) mirror, and a flat mirror to make the focus accessible;
for sufficiently large telescopes, the flat diagonal is not necessary and one
can work at PRIME FOCUS. The primary aberration is coma, and is quite

terrible without other ( corrector’ ) optics, which can be quite complex. (cf HSC)
Newton-Teleskop

if one introduces a convex hyperboloid with one focus at the focus of the
paraboloid and the other well behind the primary mirror, one gets the
Cassegrain. All large telescopes are prime focus/cassegrain systems.

The coma can be corrected by making both mirrors hyperboloids, which results
in the Ritchey-Chretien design, also widely used. A simple auxiliary aspheric
lens also gets rid of astigmatism, resulting in quite wide fields with good images.




It is possible to combine reflecting and refracting systems; usually

the idea is to let the mirror do most of the ‘work' forming the image, and

to use lenses only to correct the aberrations of the mirror. The simplest

and most beautiful of these is

the Schmidt camera, which uses

a spherical mirror (which by itself

has ghastly spherical aberration--

but remember that spherical is

field-independent) with a thin

fourth-order aspheric corrector

plate at the center of curvature

of the mirror whose sole role is

to correct the spherical aberration

of the spherical primary. Since

it is at the center of curvature and

REFLECTING its power does not change much
SURFACE with field angle, the result is excellent

imaging over huge (many degree)

fields with very fast optics.




There is a theorem that all opticians are insane. This was certainly
true of Bernhard Schmidt, an Estonian optician who invented the
Schmidt camera. But it turns out that he did NOT invent the Schmidt

camera; someone else did it, 400 milliion years ago.

The eye of the giant sea scallop:

/ image

argentea (mirror)

Figure 3. The image on the retina 1s mainly formed
by reflection.
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