Subaru fiber multi-object spectroscopy ~ Current & future instruments for large census in astronomy ~

> Naoyuki TAMURA Subaru Instrument Astronomer (Subaru Telescope, NAOJ)

1. Introductions

- Subaru telescope
- "Instrument Astronomer" in the Subaru operation
- Personal history & research interests
- 2. Subaru "FMOS" (Fiber Multi Object Spectrograph)
 - Background
 - Instrument overview & highlighting subsystems [Fiber positioner, fiber system, spectrograph & camera]
 - Data example
 - On-going & future programs
- 3. Future instruments
 - SuMIRe/PFS A new challenge centered by IPMU.
 - SuFAIFS Flexibly addressable integral field spectrograph
- 4. Summary & some remarks on future

Subaru Telescope

'Hilo base

Summit

~ *100 staffs* (~ 60% are Japanese)

Subaru instrument operation

Subaru instrument operation

Personal history & research interests

1997-2002: Graduate School of Science, Kyoto University, Japan [Supervisor: Prof. K. Ohta]

• Doctoral thesis titled: "Origin of color gradients in elliptical galaxies and implications for formation processes" Tamura+ 00,Tamura &

• Started being interested in spectroscopic follow-up of fainered galaxies (e.g. ERO) and joined the FMOS development team [PI: Prof. Maihara in Kyoto] (Optical design of WFC & IRS, measurements of optical fibers characteristics)

2002-2005: Durham University, UK

[Main collaborators: R. Sharples, J. Allington-Smith, G. Murray]

"fibre"

- Development of fiber system for Subaru FMOS
- Cryogenic test of Volume Phase Holographic (VPH) grating
- <u>Globular cluster populations in luminous elliptical galaxies</u>
- FMOS feasibility study, development of spectrum simulator
- Planning high-redshift (z=1-3) galaxy surveys for FMOS GTO & SSP

2005/12- Present: Subaru Telescope, NAOJ

• *FMOS integration, commissioning & stabilization* (working on high-z galaxies, globular clusters, VF A few papers in prep ...

Tamura+ 03,05,06

'fiber"

Tamura+ 06a,b

History of FMOS development

o 1996?: Project started.

. . .

- 1997: Tamura joined the project.
- Dec 2005: Tamura moved to Subaru.
- Late 2005: Delivery & integration started.
- Late 2006: Echidna commissioning started.
- Nov 2007: Fiber cables installed on the telescope.
- Dec 2007: Engineering observation started.
- May 2008: Engineering first light.
- Mar 2009: Performance verification started.
- May 2010: Open use started (IRS1 LR only).
- Feb 2011: IRS2 LR has joined open use. Due to mechanical trouble
- Sep 2011: IRS1 HR has become available.
- Feb-Mar 2012: IRS1 & IRS2 HR will join.

"Multi-phase" epoch in 2009-2011

"<u>Commissioning</u>"

- Performance verification and instrument optimization
- IRS2 & High Res. mode

"<u>Operation</u>" (Open use & GTO from S10A)

- User support (day & night)
- Support of support astronomer

"<u>Stabilization</u>"

- Trouble shooting & maintenance
- Clean-up
- Upgrade of hardware & software

Galaxy evolution: A motivation for FMOS

A Schematic Outline of the Cosmic History

Galaxy evolution can be investigated by studying the "statistical" properties of galaxies as a function of time.

Spectroscopy is essential not only to locate galaxies in the redshift (= time) space but also characterize them.

Star-forming activity, AGN activity, abundance, dust, stellar age, etc

Access to z>1 is important.

Properties of galaxies & AGNs are found "different" at high redshift in various aspects, especially at 1 < z, from those at $z=0.\Box$

FMOS to scrutinize galaxies & AGN at z>1

NIR spectroscopy is important to observe redshifted rest-frame optical spectral features.

High multiplicity & widefield of view are keys to enhance observing efficiency, achieve good statistics, & study cosmic variance & environmental effects on galaxies.

"FMOS": Fiber Multi Object Spectrograph

International collaboration to FMOS

Durham U. Durham Fiber connector Fiber cable/slit S/w for Sp. #2

Kyoto U., Tohoku U. Spectrograph #1 Prime focus unit Echidna commissioning

Oxford U., RAL Spectrograph #2

University

Science & Technology Facilities Council

Subaru Assembly Commissioning Operation

AAO Fiber positioner "Echidna" Wide-field corrector

Fiber spectroscopy

Light travels in a fiber with a high throughput. Position fiber tips on objects & feed them to spectrographs.

Flexibility to spectrograph design is significantly increased.

Fiber positioner "Echidna"

- Designed, developed & manufactured by AAO.
- Shipped to Hilo in 2007.
- After reassembled and tested, transferred to the summit.

Ref.

Akiyama et al. (2008, SPIE, Vol. 7018, p. 26)
Brzeski et al. (2004, SPIE, Vol. 5492, p. 1228)
... etc

 \uparrow Echidna unit on the test jig on the "TUE" floor in the telescope dome where top units stand by.

Fiber positioning

Fiber positioning

Positioning accuracy & required time (Test results at a lab)

~ 95% of the spines are positioned with < 12 μm accuracy (~0".1) in 7 iterations (~13 minutes) at ZD < 60 deg.

Focal plane map: $(\alpha, \delta) \rightarrow (x, y)$

Telescope pointing, position angle, field distortion, atmospheric dispersion, differential atmospheric refraction, misalignment of rotator axis & M1 axis, difference of wavelength between fiber and guide camera ... etc.

Final refinement was made by telescope raster scan.

2D flux map (F1-F9) \rightarrow Centroid of the star

Fiber positioning: Residuals on sky

. RMS ~ 0".15

was achieved in Oct 2008.

Error

 $(\alpha, \delta) \longrightarrow (x, y)$

Model

Echidna spine goes to

a requested position.

Erroi

Open cluster NGC 6633 (α , $\delta \leftarrow$ UCAC3)

An important upgrade in fiber positioning: Metrology camera [PI: Tamura]

FMOS fiber positioning takes time to scan 400 fibers with FPI ...

A "metrology camera" system to image 400 backilluminated fibers at once.

<u>Overhead: 30-40% → ~10%</u>

The concept has been present for a while, but none has been applied yet to the operation of an actual instrument (as far as we know ... ?).

- Moore & McGrath (2004, a prime-focus MOS on an ELT)
- WFMOS
- SuMIRe/PFS

Collaboration with the SuMIRe/PFS team in ASIAA → Upgrade for FMOS and verification for PFS

FMOS fibre cables ~ Not just cables however ! ~

InfraRed Spectrographs

IRS2

200 fibers go to each of IRS1 & IRS2. Cooled down to -55 deg. OH suppression by the mask mirror

"Low Res.": R~600 (w/ VPH), "High Res.": R~2200 (w/o VPH)

InfraRed Spectrographs

Data example

A 15 min exposure ramp sampling image by IRS1 in Low Resolution.

Left: J-band Right: H-band The gap in between is due to fiber slit (no light comes through).

There are 4 glows at the readout ports.

Data example

2 frames taken with the same exp. time & the telescope dithered and one is subtracted from another. This data is an image after this subtraction.

Since this is from Cross Beam Switching, a few pairs of positive and negative spectra from single bright objects are visible.

Residual sky is subtracted by a way like "skysub" for long-slit data after fiber extraction.

Data example

SXDS, Cross beam switching, 8 hr on-source with IRS1 LR [GTO, Oct 2011] Targets: Star-forming galaxy candidates w/ z(phot)~1.4 (Yabe+ 2012, in prep.)

The image shown here is that after data reduction and stacking several frames (still flux-uncalibrated).

Data reduction & calibration is performed in parallel to the observation using a reduction package "FIBREpac" (Iwamuro et al. 2011, PASJ, in press).

Mass-metallicity (M-Z) relation at z>1

Simple trend or not - Larger samples should help to understand what are behind the sample dependency.

M-Z relation at z~1.4 by FMOS

Star-forming galaxies at 1.2<z<1.6 were observed. Metallicities of these objects are derived from [NII]/H α flux ratios using the metallicity calibration by Pettini & Pagel (2004).

Resulting mass-metallicity relation (MZR) shows that the MZR at $z\sim1.4$ lies between the previous result at $z\sim2.2$ obtained by Erb+2006 and that at $z\sim0.8$ obtained by Zahid+2011.

K. Yabe (Kyoto) et al. (2012), in prep.

Now that FMOS is about to be fully operational(?), it's hopefully(!) time to quit being a "frequent traveller" to the Mauna Kea summit for engineering works & observations, and re-visit the motivations to have joined this FMOS project 10 years ago ...

"SCDXT"

To get deeper spectra

1. Introductions

- Subaru telescope
- "Instrument Astronomer" in Subaru operation
- Personal history & research interests
- 2. Subaru "FMOS" (Fiber Multi Object Spectrograph)
 - Background
 - Instrument overview & highlighting subsystems [Fiber positioner, fiber system, spectrograph & camera]
 - Data example
 - On-going & future programs
- 3. Future instruments
 - $\underline{SuMIRe/PFS}$ A new challenge centered by IPMU.
 - <u>SuFAIFS</u> Flexibly addressable integral field spectrograph
- 4. Summary & some remarks on future

Summary

FMOS was developed as a common-use instrument on Subaru through the collaboration of Japan, UK, and Australia.

FMOS has been open to general observers since May 2010, after >10 years efforts since the project began, and it will be (hopefully) fully operational from early 2012.

Now is the time to move on to science using FMOS data & R&D activities for instrumentation (e.g. for SuFAIFS)(!?)

SuMIRe/PFS is more challenging in almost all aspects than FMOS, but now I strongly intend to make committements to make it, exploiting lessons & learns from FMOS.

Can IPMU be another base in Japan for astronomical instrumentation?