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Introduction

Strongly coupled (gauge) quantum field theories ubiquitous in physics:
QCD, beyond the SM particle physics, condensed matter, inflation, . . .

Strong coupling: difficult to approach – no perturbative (Feynman) expansion

Other methods:

Lattice (gauge) theory. Especially useful for numerical simulations.

Large N expansion of gauge theories.
Diagrammatic simplifies (only planar diagrams at leading order).
’t Hooft coupling λ = Ng2. If λ & 1 still a problem.

AdS/CFT: use dual gravity description.
Useful at large N and large λ.

Integrability: exploit infinite number of conserved charges.

SUSY: often full perturbative + non-perturbative computations exactly.
Exploit dualities.

We will consider the last approach
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Supersymmetry

SUSY: fermionic symmetry that relates bosons and fermions

SUSY (gauge) theories may look exotic or unrealistic. . .

. . . however share many key features with more “conventional” theories

4d: confinement & chiral symmetry breaking (cfr. QCD)

3d: topological sectors (cfr. topological insulators)

Chern-Simons = SUSY Chern-Simons

Particle / vortex duality

2d: statistical models may show “accidental” SUSY (cfr. tricritical Ising)

Particle / kink (soliton) duality
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Sphere partition functions

Recently lots of work on SUSY gauge theories on compact manifolds

Simplest example: d-dimensional SUSY theory on Sd

• Sd partition functions:

Euclidean SUSY theory on Sd (not twisted as in [Witten 88; Vafa, Witten 94] )

Compute path-integral: ZSd(t) =

∫
Sd

DΦ e−S[Φ,t]

Parameters t: from flat space Lagrangian & curved Sd

With enough SUSY, exactly computable with localization techniques.

• Compute VEVs of SUSY operators (e.g. line operators) as well:

ZSd(t,O) =

∫
Sd

DΦ O e−S[Φ,t]
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Examples

• Examples: Sd partition functions

S4 with N = 2 SUSY [Pestun 07]

S3 with N = 2 SUSY [Kupustin, Willett, Yaakov 09; Jafferis 10; Hama, Hosomichi, Lee 11]

S5 with N = 1 SUSY [Hosomici, Seong, Terashima 12; Kallen, Qiu, Zabzine 12; Kim, Kim 12]

S2 with N = (2, 2) SUSY [FB, Cremonesi 12; Doroud, Gomis, Le Floch, Lee 12]

• Generalizations: e.g. squashing of spheres
[Hama, Hosomichi, Lee 11; Imamura, Yokoyama 11;Hama, Hosomichi 12]

• Other manifolds: e.g. Sd−1 × S1

Index: I(f) = Tr (−1)F e−βH fOi
i

4d with N = 1 SUSY [Gadde, Gaiotto, Pomoni, Rastelli, Razamat, Yan]

3d with N = 2 SUSY [Kim 09; Imamura, Yokoyama 11]

5d with N = 1 SUSY [Kim, Kim, Lee 12]
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Physical information in ZSd(t)

ZSd(t) is an interesting function:

Information about the theory that can be computed exactly (and
non-perturbatively) at strong coupling

Very non-trivial new tests of conjectured dualities
(4d S-duality, 4d Seiberg duality, Seiberg-like dualities, 3d & 2d mirror
symmetry, . . .

Conformal theories: exact VEVs of (local & non-local) operators 〈O〉

Information about the IR fixed point

Often ZSd(t) does not depend on UV cutoff

Dualities → interesting (often not-yet-proven) mathematical identities
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Physical information in ZSd(t)

In 3d it provides a “central charge” [Jafferis 10; Jafferis, Klabanov, Pufu, Safdi 11]

that decreases from fixed point to fixed point along RG flows

c3d = ZS3(t = tconf)

No conformal anomaly in odd dimensions: 〈Tµµ 〉 = 0

Related to entanglement entropy

Very interesting mathematical structures

AGT [Alday, Gaiotto, Tachikawa 09] 4d N = 2 SUSY (S4) ↔ 2d Liouville

Z4d
inst(q, a,m) = conformal blocks (q, a,m)

4d N = 2 index (S3 × S1) ↔ 2d topological theory (YM)
[Gadde, Rastelli, Razamat, Yan 11; Gaiotto, Rastelli, Razamat 12]

3d N = 2 SUSY ↔ 3d Chern-Simons
[Dimofte, Gaiotto, Gukov 11; Cecotti, Cordova, Vafa 11]
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2d theories

• We consider two-dimensional theories:

connection with strings and topological strings;

connection with geometry via non-linear sigma models [Witten 93] .

2d N = (2, 2) SUSY

and a vector-like R-symmetry U(1)R

→ non-twisted SUSY preserved on S2

Gauge theory of vector multiplets + chiral multiplets

Admit generic twisted superpotential W̃ (Σ)



Localization

Path-integral computed exactly with localization techniques.

Works even with certain (BPS) operator insertions (e.g. loop operators).

• Supersymmetric action S, and operators O, w.r.t. supercharge Q:

deform path-integral by Q-exact action

Z =

∫
DΦ O e−S−uSloc

Path-integral does not depend on u.

• In the large u limit, semiclassical approximation becomes exact:

Z =
∑

BPS Φ0

e−S[Φ0] Z1-loop[Φ0]
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Summary of results

• ZS2 computed with localization techniques

→ integral over “Coulomb branch”, sum over flux sectors:

ZS2(masses,FI,R-charges) =
∑
m

∫
dσ e−Sclass Z1-loop

vector Z
1-loop
chiral

• Properties:

Expression very similar to 3d, 4d, 5d

Finite dimensional integral and series: easy to compute

One can check or conjecture 2d dualities (e.g. Hori-Tong)
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Summary of results

Surprise: localization can be performed in a different way

→ sum over discrete “Higgs branch”:

ZS2 =
∑

Higgs vacua

e−Sclass Z1-loop Zvortex Zanti-vortex

Zvortex: partition function of vortices on R2
ε in

Ω-background [Shadchin 06; Nekrasov 02]

σ + M = 0

Vortices at north pole, antivortices at south pole of S2.

Higgs branch expression reminiscent of Pestun’s S4 result in terms of
instanton partition function Zinst [Nekrasov 02]

Factorization as observed on S3
[Pasquetti 11]

ZCoulomb
S2 = ZHiggs

S2 can be used to compute Zvortex
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Conclusions

ZS2 can be computed exactly in 2d with localization

Conformal theories: VEVs computed exactly (e.g. Wilson lines)

Dualities: new checks and new dualities

The same ZS2 can be written in two very different ways:

Coulomb vs Higgs

Provides a computationally powerful way to determine vortex partition
functions

Zvortex is related to Gromov-Witten invariants of Kähler manifolds
see [Jockers, Kumar, Lapan, Morrison, Romo 12]

Open questions about similar phenomena in higher dimensions



Part II



Rigid supersymmetry on S2

• Two-dimensional N = (2, 2) theories with a vector-like U(1)R R-symmetry
can be placed supersymmetrically on S2 (2 complex supercharges):

osp∗(2|2) ∼= su(2|1) ⊃ su(2)× u(1)R

No twisting!

Contained in global Euclidean superconformal algebra

osp(2|2,C) ⊃ sl(2,C)× u(1)2

Algebra:
[δε, δε̄] = LAξ + i

2rαR ξµ = iε̄γµε

[δε1 , δε2 ] = 0 α = iε̄ε
Dµε = i

2rγµε

• Vector multiplet: (Aµ, λ, λ̄, σ, η,D)
Chiral multiplet: (φ, φ̄, ψ, ψ̄, F, F̄ )

Euclidean signature: fields get complexified.

On S2 freedom to choose R-charges q of chiral multiplets → couplings
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Supersymmetric actions on S2

Action constructed order by order in 1
r or by coupling to SUGRA [Festuccia, Seiberg 11]

Yang-Mills action for vector multiplets:

LYM =
1

g2
Tr

{
1

2

(
F12−

η

r

)2

+
1

2

(
D+

σ

r

)2

+
1

2
(Dµσ)2+

1

2
(Dµη)2−1

2
[σ, η]2

+
i

2
λ̄ /Dλ+

i

2
λ̄[σ, λ] +

1

2
λ̄γ3[η, λ]

}

Twisted superpotential W̃ (Σ)

L
W̃

= iW̃ ′
(
D − iF12 +

σ + iη

r

)
− i

2
W̃ ′′ λ̄(1 + γ3)λ− i

r
W̃

and its anti-chiral counterpart W̃ ∗(Σ). We will take complex conjugate.

Twisted chiral superfield: Σ = (σ + iη, λ, D − iF12)

Special case: complexified Fayet-Iliopoulos term: W̃ (z) = 1
2

(
− ξ + iθ

2π

)
z

LFI = −iξ D + i
θ

2π
F12
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Supersymmetric actions on S2

Matter kinetic action for chiral multiplets (of R-charge q):

Lmat = |Dµφ|2 + φ̄
(
σ2 + η2 + iD +

iq

r
σ +

q(2− q)
4r2

)
φ+ F̄F

+ ψ̄
(
− i /D + iσ − γ3η −

q

2r

)
ψ + iψ̄λφ− iφ̄λ̄ψ

Superpotential (R[W ] = 2):

LW =
∑
j

∂W

∂φj
Fj −

1

2

∑
j,k

∂2W

∂φj∂φk
ψjψk

Couple global flavor symmetries to external vector multiplets,
give VEV to σext = −rDext, ηext = rF ext

12 .

σext → real (or twisted) masses M

σext + iq
2r form a holomorphic pair.
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Localization

• Supersymmetric action S and operators O w.r.t. supercharge Q:

[Q, S] = [Q,O] = 0

Q-exact terms do not affect the path-integral:

∂

∂u

∫
DΦ O e−S−u {Q,P} = 0

Z is sensitive only to Q-cohomology (in space of functionals).

• Choose exact deformation action with positive definite bosonic part:

Sloc = u
∑

fermions χ

Q
(

(Qχ)χ
)

Sloc

∣∣
bos

= u
∑
χ

∣∣Qχ∣∣2
In u→∞ limit, only BPS configurations Qχ = 0 contribute:

Z =
∑

Φ0 | Qχ=0

e−S[Φ0] Z1-loop[Φ0]
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Localization on S2

• Choose “equivariant” supercharge:

Q2 = J +
R

2
+ iΛ(σ, η)

Form a superalgebra su(1|1).

North and south pole: fixed points of J .

At north (south) pole looks like topological (anti-topological) A-twist

• All actions constructed before are Q-exact, except the twisted superpotential

ZS2 depends on W̃ , (complexified) real masses M and external fluxes n
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Coulomb branch localization

Euclidean path integral: complexified fields ⇒ choose a contour.

• Regard Aµ, σ, η, D real, and (λ, λ̄), (ψ, ψ̄), (φ, φ̄), (F, F̄ ) complex conjugates

LYM = TrQ
[
(Qλ)λ+ λ†(Qλ†)

]
Lψ = TrQ

[
(Qψ)ψ + ψ†(Qψ†)

]
Solve BPS equations:

0 = Qλ = Qλ† 0 = Qψ = Qψ†

Simple BPS configurations:

σ = −r D = constant F12 =
η

r
≡ m

2r2
[σ,m] = 0

φ = F = 0

This is a “Coulomb branch” (very similar to S3 case)
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Coulomb branch localization

The S2 partition function is:

ZS2 =
1

|W|
∑
m

∫ (∏
j

dσj
2π

)
Zclass(σ,m) Zgauge(σ,m)

∏
Φ

ZΦ(σ,m;M, n)

The one-loop determinants are:

Zgauge =
∏

α∈G ,α>0

(α(m)2

4
+ α(σ)2

)

ZΦ =
∏
ρ∈RΦ

Γ
(R[Φ]

2
− iρ(σ)− ifa[Φ]Ma −

ρ(m) + fa[Φ]na
2

)
Γ
(

1− R[Φ]

2
+ iρ(σ) + ifa[Φ]Ma −

ρ(m) + fa[Φ]na
2

)
The classical action is:

Zclass = e−4πiξTrσ−iθTrm exp
{

8πirRe W̃
(
σ
r + i m2r

)}
We isolated the linear piece in W̃ (Fayet-Iliopoulos term)



Some simple checks

Give large twisted mass to a chiral multiplet: w = ρ(σ) + faMa → ±∞

ZΦ → e8πir Re W̃eff

W̃eff(Σ) = − 1

4π
Σs
[

log(−irΣs)− 1
]

Σs = ρ(Σ) + faMa

reproduces the correct one-loop running of FI term

U(1) with 1 fundamental X of charge Q:

ZS2 =
1

Q2

|Q|−1∑
n=0

exp
[
2ie−2πξ/Q sin

(θ − 2πn

Q

)]
Mirror symmetry [Hori, Vafa 00] : twisted chiral Σ, Y with

W̃ =
1

4π

[
Σ
(
QY − τ(µ)

)
+ iµe−Y

]
The on-shell action evaluated at critical points precisely reproduces ZS2 .
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Σs
[

log(−irΣs)− 1
]

Σs = ρ(Σ) + faMa

reproduces the correct one-loop running of FI term

U(1) with 1 fundamental X of charge Q:

ZS2 =
1

Q2

|Q|−1∑
n=0

exp
[
2ie−2πξ/Q sin

(θ − 2πn

Q

)]
Mirror symmetry [Hori, Vafa 00] : twisted chiral Σ, Y with

W̃ =
1

4π

[
Σ
(
QY − τ(µ)

)
+ iµe−Y

]
The on-shell action evaluated at critical points precisely reproduces ZS2 .



Higgs branch localization

• In the Euclidean theory fields are complexified and we can choose a contour.

Allow σ,D to be complex in BPS eqns → Higgs branches and vortex solutions

Motivated by [Pasquetti 11] we might hope to be able to perform localization in such
a way that vortices (and not Coulomb branch) contribute.

• Trick: introduce exact FI term ζ and impose D-term equation:

LH = QTr

[
ε†λ− λ†ε

2i
(φφ† − ζ 1)

]
= i

(
D +

σ

r

)
(φφ† − ζ 1) + . . .

D appears quadratically in localizing action Lloc = u
(
LYM + LH + Lψ

)
Gaussian path-integral → D +

σ

r
+ i(φφ† − ζ1) = 0

A posteriori: D 6∈ R.
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Higgs BPS configurations

When gauge group gets completely broken, and with generic real masses M :

Higgs branches: φφ† = ζ 1N
(
σ +M

)
φ = 0 F12 = η = 0

→ vacua where N chirals get VEV, at fixed positions on Coulomb branch

σa = −Mla a = 1, . . . , N

σ + M = 0

E.g.: U(N) with (Nf , Na) flavors: ~l ∈ C(N,Nf )

color-flavor locking phases

U(N)×S
[
U(Nf )×U(Na)

] c-f locking→ S
[
U(N)×U(Nf−N)

]
×U(1)×SU(Na)
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Higgs BPS configurations

Vortices at north pole, antivortices at south pole

size of vortices ∼ 1/
√
ζ

Limit ζ →∞:
NP: Dz̄φ = 0 F12 = −

(
|φ|2 − ζ1

)
SP: Dzφ = 0 F12 = |φ|2 − ζ1

Close to poles: same action as 2d Ω-background R2
ε [Shadchin 06]

Q2 = J +
R

2
+ iσ → ε =

1

r
, a = −iMeff

identifying equivariant parameters with S2 parameters.

Sum over BPS vortices → vortex partition function.

Vortex partition function is equivariant volume of the vortex moduli space:

Zvortex(z, ε, a) =

∞∑
k=0

zkZk(ε, a) z = e−2πξ−iθ
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Higgs branch localization

Result:

ZS2 =
∑
vacua

e
−4πiξ

N∑
j=1

σj

Z ′1-loop Zv Zav

with
Zv = Zvortex

(
(−1)Nz , 1

r , −iMeff

)
Zav = Zvortex

(
(−1)N z̄ , − 1

r , iMeff

)
and

z = e−2πxi−iθ .

Z ′1-loop does not include the N non-vanishing chiral multiplets.



Vortex partition function of SQCD

U(N) with (Nf , Na) flavors (assume Nf ≥ Na):

k-vortex moduli space in a given vacuum ~l is a symplectic quotient

ADHM-like: Higgs branch of an N = 2 quantum mechanics [Hanany, Tong 03; Eto,

Isozumi, Nitta, Ohashi, Sakai 05] , dimensional reduction of a 2d N = (0, 2) U(k) gauge
theory

Zk is the equivariant volume, getting contribution from fixed points of unbroken
symmetry (color-flavor locked phase):

U(1)ε × S
[
U(N)× U(Nf −N)

]
× U(1)× SU(Na)

Equivariant parameters: ε , ai , ãj
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Vortex partition function of SQCD

The result can be written as a contour integral
[Nekrasov, Shadchin 04; Dimofte, Gukov, Hollands 10]

Zk =

∮ [ k∏
j=1

dϕj
2πi

]
Zvec(ϕ, ε) Zfund(ϕ, ε, a) Zantifund(ϕ, ε, ã)

where

Zvec =
1

εkk!

k∏
i<j

ϕi − ϕj)
2

(ϕi − ϕj)2 − ε2

Zfund =

k∏
j=1

∏
r∈~l

1

ϕj − ar

∏
s 6∈~l

1

as − ϕj − ε

Zantifund =

k∏
j=1

Na∏
f=1

(ãf + ϕj)

Contour encircles multi-poles parametrized by ~k ∈ ZN≥0 with
∑
ki = k:

{ϕj} = {ar + (lr − 1)ε | r ∈ ~l, lr = 1, . . . , kr}

One-to-one correspondence between multi-poles and equivariant fixed points.



Vortex partition function of SQCD

• Sum over residues at the poles:

Zk = ε(Na−Nf )k
∑

~k∈ZN
≥0

|~k|=k

∏
r∈~l

∏Na

f=1

( ãf + ar
ε

)
kr

kr!
∏
s∈~l
s6=r

(as − ar
ε

− kr
)
ks

∏
j 6∈~l

(aj − ar
ε

− kr
)
kr

For a U(1) gauge theory, Zvortex reduces to hypergeometric function NaFNf−1

• Explicitly verify that this Zk plugged into the Higgs branch localization formula
agrees with the Coulomb branch expression

To evaluate Coulomb branch integral, close the contour of integration and sum
over residues
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Dualities

Equality of ZS2 for pair of theories (→ conjecture duality):

U(N) with (Nf , 0) ↔ U(Nf −N) with (Nf , 0) Nf > 1

SU(N) with (Nf , 0) ↔ SU(Nf −N) with (Nf , 0) [Hori,Tong 06]

U(N) with (Nf , Na) ↔ U(Nf −N) with (Nf , Na) Nf > Na + 1

NfNa singlets +W = q̃Mq

Unitary: use Higgs branch expression
1-1 correspondence of vacua ~l ∈ C(N,Nf )
Classical action + 1-loop determinants easily coincide
To prove coincidence of Zk ∀k, use contour integral expression

Special unitary: perform Fourier transform

Z
(NF ,0)
SU(N)(b; aj) =

∫ 2π

0

dθ

2π

∫ +∞

−∞
4π dξ e4πiξ Z

(Nf ,0)

U(N) (ξ, θ; aj)
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S2 partition function and Gromow-Witten invariants

[Jockers, Kumar, Lapan, Morrison, Romo 12] have recently observed that
when the 2d GLSM theory flows to a conformal non-linear σ-model on a compact
CY,
ZS2 computes the full quantum genus-zero Kḧaler potential on the Kähler moduli
space of the CY:

ZS2 = eK

Does not need to know what the mirror is (and do the computation in the mirror)

K computes Gromow-Witten invariants.



Conclusions

We have computed the p.f. of a 2d N = (2, 2) theory on S2. Generalizations:

include twisted chiral superfields (mirror symmetry)

squash S2

higher genus Riemann surfaces?

N = (0, 2) supersymmetry?

Explore the connection with non-linear σ-models and Gromov-Witten invariants

Alternative localization allowing (some) complex fields

compute Zvortex in absence of ADHM-like construction

does it work in higher dimensions?


