S^2 partition functions: Coulomb vs Higgs localization and vortices

Francesco Benini

Simons Center for Geometry and Physics Stony Brook University

Kavli IPMU (Tokyo) Math / String Theory seminar 10th October 2012

with S. Cremonesi: arXiv:1206.2356

Introduction

Strongly coupled (gauge) quantum field theories ubiquitous in physics: QCD, beyond the SM particle physics, condensed matter, inflation,

Strong coupling: difficult to approach - no perturbative (Feynman) expansion

Introduction

Strongly coupled (gauge) quantum field theories ubiquitous in physics: QCD, beyond the SM particle physics, condensed matter, inflation,

Strong coupling: difficult to approach – no perturbative (Feynman) expansion

Other methods:

- Lattice (gauge) theory. Especially useful for numerical simulations.
- Large N expansion of gauge theories. Diagrammatic simplifies (only planar diagrams at leading order). 't Hooft coupling $\lambda = Ng^2$. If $\lambda \gtrsim 1$ still a problem.
- AdS/CFT: use dual gravity description. Useful at large N and large λ .
- Integrability: exploit infinite number of conserved charges.
- SUSY: often full perturbative + non-perturbative computations exactly. Exploit dualities.

We will consider the last approach

Supersymmetry

SUSY: fermionic symmetry that relates bosons and fermions

SUSY (gauge) theories may look exotic or unrealistic...

... however share many key features with more "conventional" theories

SUSY: fermionic symmetry that relates bosons and fermions

SUSY (gauge) theories may look exotic or unrealistic...

 \ldots however share many key features with more "conventional" theories

- 4d: confinement & chiral symmetry breaking (cfr. QCD)
- 3d: topological sectors (*cfr.* topological insulators)
 Chern-Simons = SUSY Chern-Simons
 Particle / vortex duality
- 2d: statistical models may show "accidental" SUSY (*cfr.* tricritical Ising) Particle / kink (soliton) duality

Sphere partition functions

Recently lots of work on SUSY gauge theories on compact manifolds Simplest example: d-dimensional SUSY theory on S^d

Sphere partition functions

Recently lots of work on SUSY gauge theories on compact manifolds Simplest example: d-dimensional SUSY theory on S^d

• S^d partition functions:

Euclidean SUSY theory on S^d (not twisted as in [Witten 88; Vafa, Witten 94])

Compute path-integral:
$$Z_{S^d}(t) = \int_{S^d} \mathcal{D}\Phi \; e^{-S[\Phi,t]}$$

Parameters t: from flat space Lagrangian & curved S^d

With enough SUSY, exactly computable with localization techniques.

Sphere partition functions

Recently lots of work on SUSY gauge theories on compact manifolds Simplest example: d-dimensional SUSY theory on S^d

• S^d partition functions:

Euclidean SUSY theory on S^d (not twisted as in [Witten 88; Vafa, Witten 94])

Compute path-integral:
$$Z_{S^d}(t) = \int_{S^d} \mathcal{D}\Phi \; e^{-S[\Phi,t]}$$

Parameters t: from flat space Lagrangian & curved S^d

With enough SUSY, exactly computable with localization techniques.

• Compute VEVs of SUSY operators (e.g. line operators) as well:

$$Z_{S^d}(t,\mathcal{O}) = \int_{S^d} \mathcal{D}\Phi \ \mathcal{O} \ e^{-S[\Phi,t]}$$

Examples

• Examples: S^d partition functions

 S^4 with $\mathcal{N}=2$ SUSY [Pestun 07] S^3 with $\mathcal{N}=2$ SUSY [Kupustin, Willett, Yaakov 09; Jafferis 10; Hama, Hosomichi, Lee 11] S^5 with $\mathcal{N}=1$ SUSY [Hosomici, Seong, Terashima 12; Kallen, Qiu, Zabzine 12; Kim, Kim 12] S^2 with $\mathcal{N}=(2,2)$ SUSY [FB, Cremonesi 12; Doroud, Gomis, Le Floch, Lee 12]

• Generalizations: e.g. squashing of spheres

[Hama, Hosomichi, Lee 11; Imamura, Yokoyama 11;Hama, Hosomichi 12]

Examples

• Examples: S^d partition functions

 S^4 with $\mathcal{N}=2$ SUSY [Pestun 07] S^3 with $\mathcal{N}=2$ SUSY [Kupustin, Willett, Yaakov 09; Jafferis 10; Hama, Hosomichi, Lee 11] S^5 with $\mathcal{N}=1$ SUSY [Hosomici, Seong, Terashima 12; Kallen, Qiu, Zabzine 12; Kim, Kim 12] S^2 with $\mathcal{N}=(2,2)$ SUSY [FB, Cremonesi 12; Doroud, Gomis, Le Floch, Lee 12]

• Generalizations: e.g. squashing of spheres

[Hama, Hosomichi, Lee 11; Imamura, Yokoyama 11;Hama, Hosomichi 12]

• Other manifolds: e.g. $S^{d-1} \times S^1$

Index: $I(f) = \operatorname{Tr} (-1)^F e^{-\beta H} f_i^{\mathcal{O}_i}$

4d with $\mathcal{N} = 1$ SUSY [Gadde, Gaiotto, Pomoni, Rastelli, Razamat, Yan] 3d with $\mathcal{N} = 2$ SUSY [Kim 09; Imamura, Yokoyama 11] 5d with $\mathcal{N} = 1$ SUSY [Kim, Kim, Lee 12]

 $Z_{S^d}(t)$ is an interesting function:

• Information about the theory that can be computed exactly (and non-perturbatively) at strong coupling

Very non-trivial new tests of conjectured dualities (4d S-duality, 4d Seiberg duality, Seiberg-like dualities, 3d & 2d mirror symmetry, ...

Conformal theories: exact VEVs of (local & non-local) operators $\langle \mathcal{O} \rangle$

 $Z_{S^d}(t)$ is an interesting function:

• Information about the theory that can be computed exactly (and non-perturbatively) at strong coupling

Very non-trivial new tests of conjectured dualities (4d S-duality, 4d Seiberg duality, Seiberg-like dualities, 3d & 2d mirror symmetry, ...

Conformal theories: exact VEVs of (local & non-local) operators $\langle O \rangle$

Information about the IR fixed point

Often $Z_{S^d}(t)$ does not depend on UV cutoff

 $Z_{S^d}(t)$ is an interesting function:

• Information about the theory that can be computed exactly (and non-perturbatively) at strong coupling

Very non-trivial new tests of conjectured dualities (4d S-duality, 4d Seiberg duality, Seiberg-like dualities, 3d & 2d mirror symmetry, ...

Conformal theories: exact VEVs of (local & non-local) operators $\langle O \rangle$

Information about the IR fixed point

Often $Z_{S^d}(t)$ does not depend on UV cutoff

• Dualities \rightarrow interesting (often not-yet-proven) mathematical identities

• In 3d it provides a "central charge" [Jafferis 10; Jafferis, Klabanov, Pufu, Safdi 11] that decreases from fixed point to fixed point along RG flows

$$c_{\rm 3d}=Z_{S^3}(t=t_{\rm conf})$$

No conformal anomaly in odd dimensions: $\langle T^{\mu}_{\mu} \rangle = 0$

Related to entanglement entropy

• In 3d it provides a "central charge" [Jafferis 10; Jafferis, Klabanov, Pufu, Safdi 11] that decreases from fixed point to fixed point along RG flows

$$c_{\rm 3d} = Z_{S^3}(t = t_{\rm conf})$$

No conformal anomaly in odd dimensions: $\langle T^{\mu}_{\mu} \rangle = 0$

Related to entanglement entropy

Very interesting mathematical structures

AGT [Alday, Gaiotto, Tachikawa 09] 4d $\mathcal{N}=2$ SUSY (S^4) \leftrightarrow 2d Liouville

 $Z_{\text{inst}}^{\text{4d}}(q, a, m) = \text{conformal blocks}(q, a, m)$

 $\begin{array}{ll} \mbox{4d } \mathcal{N}=2 \mbox{ index } (S^3\times S^1) & \leftrightarrow & \mbox{2d topological theory (YM)} \\ \mbox{[Gadde, Rastelli, Razamat, Yan 11; Gaiotto, Rastelli, Razamat 12]} \end{array}$

3d $\mathcal{N} = 2$ SUSY \leftrightarrow 3d Chern-Simons [Dimofte, Gaiotto, Gukov 11; Cecotti, Cordova, Vafa 11]

2d theories

• We consider two-dimensional theories:

connection with strings and topological strings;

connection with geometry via non-linear sigma models [Witten 93] .

 $\label{eq:star} \operatorname{2d} \, \mathcal{N} = (2,2) \, \operatorname{SUSY}$ and a vector-like R-symmetry $U(1)_R$

 \rightarrow $\;$ non-twisted SUSY preserved on S^2

Gauge theory of vector multiplets + chiral multiplets Admit generic twisted superpotential $\widetilde{W}(\Sigma)$

Localization

Path-integral computed *exactly* with localization techniques.

Works even with certain (BPS) operator insertions (e.g. loop operators).

• Supersymmetric action S, and operators \mathcal{O} , w.r.t. supercharge \mathcal{Q} :

deform path-integral by \mathcal{Q} -exact action

$$Z = \int \mathcal{D}\Phi \ \mathcal{O} \ e^{-S - u \, S_{\mathsf{loc}}}$$

Path-integral does not depend on u.

Localization

Path-integral computed *exactly* with localization techniques.

Works even with certain (BPS) operator insertions (e.g. loop operators).

• Supersymmetric action S, and operators \mathcal{O} , w.r.t. supercharge \mathcal{Q} :

deform path-integral by \mathcal{Q} -exact action

$$Z = \int \mathcal{D}\Phi \ \mathcal{O} \ e^{-S - u \, S_{\mathsf{loc}}}$$

Path-integral does not depend on u.

• In the large *u* limit, semiclassical approximation becomes *exact*:

$$Z = \sum_{\text{BPS } \Phi_0} e^{-S[\Phi_0]} Z_{1\text{-loop}}[\Phi_0]$$

- Z_{S^2} computed with localization techniques
- \rightarrow integral over "Coulomb branch", sum over flux sectors:

$$Z_{S^2}(\text{masses}, \mathsf{FI}, \mathsf{R}\text{-charges}) = \sum_{\mathfrak{m}} \int d\sigma \ e^{-S_{\text{class}}} \ Z_{\text{vector}}^{1\text{-loop}} \ Z_{\text{chiral}}^{1\text{-loop}}$$

- Z_{S^2} computed with localization techniques
- \rightarrow integral over "Coulomb branch", sum over flux sectors:

$$Z_{S^2}(\text{masses}, \mathsf{FI}, \mathsf{R}\text{-charges}) = \sum_{\mathfrak{m}} \int d\sigma \ e^{-S_{\text{class}}} \ Z_{\text{vector}}^{1\text{-loop}} \ Z_{\text{chiral}}^{1\text{-loop}}$$

- Properties:
 - Expression very similar to 3d, 4d, 5d
 - Finite dimensional integral and series: easy to compute
 - One can check or conjecture 2d dualities (e.g. Hori-Tong)

Surprise: localization can be performed in a different way

 \rightarrow sum over discrete "Higgs branch":

$$Z_{S^2} = \sum_{\rm Higgs \ vacua} e^{-S_{\rm class}} \ Z_{\rm 1-loop} \ Z_{\rm vortex} \ Z_{\rm anti-vortex}$$

 $Z_{\rm vortex}: \mbox{ partition function of vortices on } \mathbb{R}^2_{\varepsilon} \mbox{ in } \Omega\mbox{-background [Shadchin 06; Nekrasov 02]}$

Vortices at north pole, antivortices at south pole of S^2 .

Surprise: localization can be performed in a different way

 \rightarrow sum over discrete "Higgs branch":

$$Z_{S^2} = \sum_{\text{Higgs vacua}} e^{-S_{\text{class}}} \ Z_{\text{1-loop}} \ Z_{\text{vortex}} \ Z_{\text{anti-vortex}}$$

 $Z_{\rm vortex}: \text{ partition function of vortices on } \mathbb{R}^2_{\varepsilon} \text{ in } \Omega\text{-background [Shadchin 06; Nekrasov 02]}$

Vortices at north pole, antivortices at south pole of S^2 .

- Higgs branch expression reminiscent of Pestun's S^4 result in terms of instanton partition function Z_{inst} [Nekrasov 02]
- \bullet Factorization as observed on S^3 [Pasquetti 11]

•
$$Z_{S^2}^{
m Coulomb} = Z_{S^2}^{
m Higgs}$$
 can be used to compute $Z_{
m vortex}$

Conclusions

- Z_{S^2} can be computed exactly in 2d with localization
- Conformal theories: VEVs computed exactly (e.g. Wilson lines)
- Dualities: new checks and new dualities
- $\bullet~$ The same Z_{S^2} can be written in two very different ways: Coulomb ~vs~ Higgs
- Provides a computationally powerful way to determine vortex partition functions
- Z_{vortex} is related to Gromov-Witten invariants of Kähler manifolds see [Jockers, Kumar, Lapan, Morrison, Romo 12]
- Open questions about similar phenomena in higher dimensions

Part II

Rigid supersymmetry on S^2

• Two-dimensional $\mathcal{N} = (2,2)$ theories with a vector-like $U(1)_R$ R-symmetry can be placed supersymmetrically on S^2 (2 complex supercharges):

$$\mathfrak{osp}^*(2|2) \cong \mathfrak{su}(2|1) \supset \mathfrak{su}(2) \times \mathfrak{u}(1)_R$$

No twisting!

Contained in global Euclidean superconformal algebra

$$\mathfrak{osp}(2|2,\mathbb{C}) \supset \mathfrak{sl}(2,\mathbb{C}) \times \mathfrak{u}(1)^2$$

Algebra:

$$\begin{bmatrix} \delta_{\epsilon}, \delta_{\bar{\epsilon}} \end{bmatrix} = \mathcal{L}_{\xi}^{A} + \frac{i}{2r} \alpha R \qquad \xi^{\mu} = i\bar{\epsilon}\gamma^{\mu}\epsilon \\ \begin{bmatrix} \delta_{\epsilon_{1}}, \delta_{\epsilon_{2}} \end{bmatrix} = 0 \qquad \alpha = i\bar{\epsilon}\epsilon \qquad D_{\mu}\epsilon = \frac{i}{2r}\gamma_{\mu}\epsilon$$

Rigid supersymmetry on S^2

• Two-dimensional $\mathcal{N} = (2,2)$ theories with a vector-like $U(1)_R$ R-symmetry can be placed supersymmetrically on S^2 (2 complex supercharges):

$$\mathfrak{osp}^*(2|2) \cong \mathfrak{su}(2|1) \supset \mathfrak{su}(2) \times \mathfrak{u}(1)_R$$

No twisting!

Contained in global Euclidean superconformal algebra

$$\mathfrak{osp}(2|2,\mathbb{C}) \supset \mathfrak{sl}(2,\mathbb{C}) \times \mathfrak{u}(1)^2$$

Algebra: $\begin{bmatrix} \delta \\ \delta_{\epsilon_1} \end{bmatrix}$

$$\begin{aligned} \delta_{\epsilon}, \delta_{\bar{\epsilon}}] &= \mathcal{L}_{\xi}^{A} + \frac{i}{2r} \alpha R & \xi^{\mu} = i \bar{\epsilon} \gamma^{\mu} \epsilon \\ , \delta_{\epsilon_{2}}] &= 0 & \alpha = i \bar{\epsilon} \epsilon \end{aligned} \qquad D_{\mu} \epsilon = \frac{i}{2r} \gamma_{\mu} \epsilon \end{aligned}$$

• Vector multiplet: $(A_{\mu}, \lambda, \overline{\lambda}, \sigma, \eta, D)$ Chiral multiplet: $(\phi, \overline{\phi}, \psi, \overline{\psi}, F, \overline{F})$

Euclidean signature: fields get complexified.

On S^2 freedom to choose R-charges q of chiral multiplets \rightarrow couplings

Action constructed order by order in $\frac{1}{r}$ or by coupling to SUGRA [Festuccia, Seiberg 11]

• Yang-Mills action for vector multiplets:

$$\mathcal{L}_{YM} = \frac{1}{g^2} \operatorname{Tr} \left\{ \frac{1}{2} \left(F_{12} - \frac{\eta}{r} \right)^2 + \frac{1}{2} \left(D + \frac{\sigma}{r} \right)^2 + \frac{1}{2} (D_\mu \sigma)^2 + \frac{1}{2} (D_\mu \eta)^2 - \frac{1}{2} [\sigma, \eta]^2 + \frac{i}{2} \bar{\lambda} \not{D} \lambda + \frac{i}{2} \bar{\lambda} [\sigma, \lambda] + \frac{1}{2} \bar{\lambda} \gamma_3 [\eta, \lambda] \right\}$$

Action constructed order by order in $\frac{1}{r}$ or by coupling to SUGRA [Festuccia, Seiberg 11]

• Yang-Mills action for vector multiplets:

$$\mathcal{L}_{YM} = \frac{1}{g^2} \operatorname{Tr} \left\{ \frac{1}{2} \left(F_{12} - \frac{\eta}{r} \right)^2 + \frac{1}{2} \left(D + \frac{\sigma}{r} \right)^2 + \frac{1}{2} (D_\mu \sigma)^2 + \frac{1}{2} (D_\mu \eta)^2 - \frac{1}{2} [\sigma, \eta]^2 + \frac{i}{2} \bar{\lambda} \not{D} \lambda + \frac{i}{2} \bar{\lambda} [\sigma, \lambda] + \frac{1}{2} \bar{\lambda} \gamma_3 [\eta, \lambda] \right\}$$

• Twisted superpotential $\widetilde{W}(\Sigma)$

$$\mathcal{L}_{\widetilde{W}} = i\widetilde{W}'\left(D - iF_{12} + \frac{\sigma + i\eta}{r}\right) - \frac{i}{2}\widetilde{W}''\,\overline{\lambda}(1+\gamma_3)\lambda - \frac{i}{r}\widetilde{W}$$

and its anti-chiral counterpart $\widetilde{W}^*(\Sigma).$ We will take complex conjugate.

Twisted chiral superfield: $\Sigma = (\sigma + i\eta, \lambda, D - iF_{12})$

Special case: complexified Fayet-Iliopoulos term: $\widetilde{W}(z) = \frac{1}{2} \left(-\xi + \frac{i\theta}{2\pi} \right) z$

$$\mathcal{L}_{FI} = -i\xi D + i\frac{\theta}{2\pi} F_{12}$$

• Matter kinetic action for chiral multiplets (of R-charge q):

$$\mathcal{L}_{\text{mat}} = |D_{\mu}\phi|^{2} + \bar{\phi} \Big(\sigma^{2} + \eta^{2} + iD + \frac{iq}{r}\sigma + \frac{q(2-q)}{4r^{2}}\Big)\phi + \bar{F}F \\ + \bar{\psi} \Big(-i\not\!\!D + i\sigma - \gamma_{3}\eta - \frac{q}{2r}\Big)\psi + i\bar{\psi}\lambda\phi - i\bar{\phi}\bar{\lambda}\psi$$

• Matter kinetic action for chiral multiplets (of R-charge q):

$$\begin{aligned} \mathcal{L}_{\text{mat}} &= |D_{\mu}\phi|^{2} + \bar{\phi}\Big(\sigma^{2} + \eta^{2} + iD + \frac{iq}{r}\sigma + \frac{q(2-q)}{4r^{2}}\Big)\phi + \bar{F}F \\ &\quad + \bar{\psi}\Big(-i\not\!\!D + i\sigma - \gamma_{3}\eta - \frac{q}{2r}\Big)\psi + i\bar{\psi}\lambda\phi - i\bar{\phi}\bar{\lambda}\psi \end{aligned}$$

• Superpotential (R[W] = 2):

$$\mathcal{L}_W = \sum_j \frac{\partial W}{\partial \phi_j} F_j - \frac{1}{2} \sum_{j,k} \frac{\partial^2 W}{\partial \phi_j \partial \phi_k} \psi_j \psi_k$$

• Matter kinetic action for chiral multiplets (of R-charge q):

$$\begin{aligned} \mathcal{L}_{\mathsf{mat}} &= |D_{\mu}\phi|^{2} + \bar{\phi}\Big(\sigma^{2} + \eta^{2} + iD + \frac{iq}{r}\sigma + \frac{q(2-q)}{4r^{2}}\Big)\phi + \bar{F}F \\ &\quad + \bar{\psi}\Big(-i\not\!\!D + i\sigma - \gamma_{3}\eta - \frac{q}{2r}\Big)\psi + i\bar{\psi}\lambda\phi - i\bar{\phi}\bar{\lambda}\psi \end{aligned}$$

• Superpotential (R[W] = 2):

$$\mathcal{L}_W = \sum_j \frac{\partial W}{\partial \phi_j} F_j - \frac{1}{2} \sum_{j,k} \frac{\partial^2 W}{\partial \phi_j \partial \phi_k} \psi_j \psi_k$$

• Couple global flavor symmetries to external vector multiplets, give VEV to $\sigma^{\text{ext}} = -rD^{\text{ext}}$, $\eta^{\text{ext}} = rF_{12}^{\text{ext}}$.

 $\sigma^{\text{ext}} \rightarrow \text{real (or twisted) masses } M$

 $\sigma^{\text{ext}} + \frac{iq}{2r}$ form a holomorphic pair.

Localization

• Supersymmetric action S and operators \mathcal{O} w.r.t. supercharge \mathcal{Q} :

$$[\mathcal{Q}, S] = [\mathcal{Q}, \mathcal{O}] = 0$$

 $\mathcal Q\text{-exact}$ terms do not affect the path-integral:

$$\frac{\partial}{\partial u} \int \mathcal{D}\Phi \ \mathcal{O} \ e^{-S - u \left\{ \mathcal{Q}, \mathcal{P} \right\}} = 0$$

Z is sensitive only to Q-cohomology (in space of functionals).

Localization

• Supersymmetric action S and operators \mathcal{O} w.r.t. supercharge \mathcal{Q} :

$$[\mathcal{Q}, S] = [\mathcal{Q}, \mathcal{O}] = 0$$

 $\mathcal Q\text{-exact}$ terms do not affect the path-integral:

$$\frac{\partial}{\partial u} \int \mathcal{D}\Phi \ \mathcal{O} \ e^{-S-u\left\{\mathcal{Q},\mathcal{P}\right\}} = 0$$

Z is sensitive only to Q-cohomology (in space of functionals).

• Choose exact deformation action with positive definite bosonic part:

$$S_{\text{loc}} = u \sum_{\text{fermions } \chi} \mathcal{Q}\left(\left(\overline{\mathcal{Q}\chi}\right)\chi\right) \qquad \qquad S_{\text{loc}}\big|_{\text{bos}} = u \sum_{\chi} \big|\mathcal{Q}\chi\big|^2$$

In $u \to \infty$ limit, only BPS configurations $\mathcal{Q}\chi = 0$ contribute:

$$Z = \sum_{\Phi_0 \mid \mathcal{Q}\chi=0} e^{-S[\Phi_0]} Z_{1\text{-loop}}[\Phi_0]$$

Localization on ${\cal S}^2$

• Choose "equivariant" supercharge:

$$Q^2 = J + \frac{R}{2} + i\Lambda(\sigma,\eta)$$

Form a superalgebra $\mathfrak{su}(1|1)$.

North and south pole: fixed points of J.

At north (south) pole looks like topological (anti-topological) A-twist

Localization on ${\cal S}^2$

• Choose "equivariant" supercharge:

$$Q^2 = J + \frac{R}{2} + i\Lambda(\sigma,\eta)$$

Form a superalgebra $\mathfrak{su}(1|1)$.

North and south pole: fixed points of J. At north (south) pole looks like topological (anti-topological) A-twist

• All actions constructed before are Q-exact, except the *twisted superpotential* Z_{S^2} depends on \widetilde{W} , (complexified) real masses M and external fluxes \mathfrak{n}

Coulomb branch localization

Euclidean path integral: complexified fields \Rightarrow choose a contour.

• Regard A_{μ} , σ , η , D real, and $(\lambda, \bar{\lambda})$, $(\psi, \bar{\psi})$, $(\phi, \bar{\phi})$, (F, \bar{F}) complex conjugates

$$\mathcal{L}_{YM} = \operatorname{Tr} \mathcal{Q}\big[(\overline{\mathcal{Q}\lambda})\lambda + \lambda^{\dagger}(\overline{\mathcal{Q}\lambda^{\dagger}})\big] \qquad \qquad \mathcal{L}_{\psi} = \operatorname{Tr} \mathcal{Q}\big[(\overline{\mathcal{Q}\psi})\psi + \psi^{\dagger}(\overline{\mathcal{Q}\psi^{\dagger}})\big]$$

Solve BPS equations:

$$0 = \mathcal{Q}\lambda = \mathcal{Q}\lambda^{\dagger} \qquad 0 = \mathcal{Q}\psi = \mathcal{Q}\psi^{\dagger}$$

Coulomb branch localization

Euclidean path integral: complexified fields \Rightarrow choose a contour.

• Regard A_{μ} , σ , η , D real, and $(\lambda, \bar{\lambda})$, $(\psi, \bar{\psi})$, $(\phi, \bar{\phi})$, (F, \bar{F}) complex conjugates

$$\mathcal{L}_{YM} = \operatorname{Tr} \mathcal{Q}\big[(\overline{\mathcal{Q}\lambda})\lambda + \lambda^{\dagger}(\overline{\mathcal{Q}\lambda^{\dagger}})\big] \qquad \qquad \mathcal{L}_{\psi} = \operatorname{Tr} \mathcal{Q}\big[(\overline{\mathcal{Q}\psi})\psi + \psi^{\dagger}(\overline{\mathcal{Q}\psi^{\dagger}})\big]$$

Solve BPS equations:

$$0 = \mathcal{Q}\lambda = \mathcal{Q}\lambda^{\dagger} \qquad 0 = \mathcal{Q}\psi = \mathcal{Q}\psi^{\dagger}$$

Simple BPS configurations:

$$\sigma = -r D = \text{constant}$$
 $F_{12} = \frac{\eta}{r} \equiv \frac{\mathfrak{m}}{2r^2}$ $[\sigma, \mathfrak{m}] = 0$
 $\phi = F = 0$

This is a "Coulomb branch" (very similar to S^3 case)

Coulomb branch localization

The S^2 partition function is:

$$Z_{S^2} = \frac{1}{|\mathcal{W}|} \sum_{\mathfrak{m}} \int \left(\prod_j \frac{d\sigma_j}{2\pi}\right) Z_{\mathsf{class}}(\sigma, \mathfrak{m}) \ Z_{\mathsf{gauge}}(\sigma, \mathfrak{m}) \ \prod_{\Phi} Z_{\Phi}(\sigma, \mathfrak{m}; M, \mathfrak{n})$$

The one-loop determinants are:

$$\begin{split} Z_{\text{gauge}} &= \prod_{\alpha \in G, \; \alpha > 0} \left(\frac{\alpha(\mathfrak{m})^2}{4} + \alpha(\sigma)^2 \right) \\ Z_{\Phi} &= \prod_{\rho \in R_{\Phi}} \frac{\Gamma\Big(\frac{R[\Phi]}{2} - i\rho(\sigma) - if^a[\Phi]M_a - \frac{\rho(\mathfrak{m}) + f^a[\Phi]n_a}{2}\Big)}{\Gamma\Big(1 - \frac{R[\Phi]}{2} + i\rho(\sigma) + if^a[\Phi]M_a - \frac{\rho(\mathfrak{m}) + f^a[\Phi]n_a}{2}\Big)} \end{split}$$

The classical action is:

$$Z_{\mathsf{class}} = e^{-4\pi i \xi \operatorname{Tr} \sigma - i\theta \operatorname{Tr} \mathfrak{m}} \exp\left\{8\pi i r \operatorname{\mathbb{R}e} \widetilde{W}\left(\frac{\sigma}{r} + i\frac{\mathfrak{m}}{2r}\right)\right\}$$

We isolated the linear piece in \widetilde{W} (Fayet-Iliopoulos term)

Some simple checks

• Give large twisted mass to a chiral multiplet: $w = \rho(\sigma) + f^a M_a \to \pm \infty$

$$Z_{\Phi} \rightarrow e^{8\pi i r \operatorname{\mathbb{R}e} \widetilde{W}_{\text{eff}}}$$

$$\widetilde{W}_{\text{eff}}(\Sigma) = -\frac{1}{4\pi} \Sigma_s \big[\log(-ir\Sigma_s) - 1 \big] \qquad \qquad \Sigma_s = \rho(\Sigma) + f^a M_a$$

reproduces the correct one-loop running of FI term

Some simple checks

• Give large twisted mass to a chiral multiplet: $w = \rho(\sigma) + f^a M_a \to \pm \infty$

$$Z_{\Phi} \rightarrow e^{8\pi i r \operatorname{\mathbb{R}e} \widetilde{W}_{\text{eff}}}$$

$$\widetilde{W}_{\text{eff}}(\Sigma) = -\frac{1}{4\pi} \Sigma_s \left[\log(-ir\Sigma_s) - 1 \right] \qquad \Sigma_s = \rho(\Sigma) + f^a M_a$$

reproduces the correct one-loop running of FI term

• U(1) with 1 fundamental X of charge Q:

$$Z_{S^2} = \frac{1}{Q^2} \sum_{n=0}^{|Q|-1} \exp\left[2ie^{-2\pi\xi/Q}\sin\left(\frac{\theta - 2\pi n}{Q}\right)\right]$$

Mirror symmetry [Hori, Vafa 00] : twisted chiral Σ , Y with

$$\widetilde{W} = \frac{1}{4\pi} \left[\Sigma \left(QY - \tau(\mu) \right) + i\mu e^{-Y} \right]$$

The on-shell action evaluated at critical points precisely reproduces Z_{S^2} .

Higgs branch localization

• In the Euclidean theory fields are complexified and we can choose a contour.

Allow σ, D to be complex in BPS eqns \rightarrow Higgs branches and vortex solutions

Motivated by [Pasquetti 11] we might hope to be able to perform localization in such a way that vortices (and *not* Coulomb branch) contribute.

Higgs branch localization

• In the Euclidean theory fields are complexified and we can choose a contour.

Allow σ, D to be complex in BPS eqns \rightarrow Higgs branches and vortex solutions

Motivated by [Pasquetti 11] we might hope to be able to perform localization in such a way that vortices (and *not* Coulomb branch) contribute.

• Trick: introduce *exact* FI term ζ and impose D-term equation:

$$\mathcal{L}_{H} = \mathcal{Q} \operatorname{Tr} \left[\frac{\epsilon^{\dagger} \lambda - \lambda^{\dagger} \epsilon}{2i} (\phi \phi^{\dagger} - \zeta \mathbb{1}) \right] = i \left(D + \frac{\sigma}{r} \right) (\phi \phi^{\dagger} - \zeta \mathbb{1}) + \dots$$

D appears quadratically in localizing action $\mathcal{L}_{\mathsf{loc}} = u \big(\mathcal{L}_{YM} + \mathcal{L}_H + \mathcal{L}_\psi \big)$

$$\label{eq:Gaussian path-integral} \mbox{Gaussian path-integral} \qquad \rightarrow \qquad D + \frac{\sigma}{r} + i(\phi \phi^\dagger - \zeta \, \mathbbm{1}) = 0$$

A posteriori: $D \notin \mathbb{R}$.

When gauge group gets completely broken, and with generic real masses M:

• Higgs branches: $\phi \phi^{\dagger} = \zeta \, \mathbbm{1}_N \qquad \left(\sigma + M\right) \phi = 0 \qquad F_{12} = \eta = 0$

 \rightarrow vacua where N chirals get VEV, at fixed positions on Coulomb branch

$$\sigma_a = -M_{l_a} \qquad a = 1, \dots, N$$

When gauge group gets completely broken, and with generic real masses M:

• Higgs branches: $\phi \phi^{\dagger} = \zeta \mathbb{1}_N$ $(\sigma + M)\phi = 0$ $F_{12} = \eta = 0$

 \rightarrow $\;$ vacua where N chirals get VEV, at fixed positions on Coulomb branch

$$\sigma_a = -M_{l_a} \qquad a = 1, \dots, N$$

E.g.: U(N) with (N_f, N_a) flavors: $\vec{l} \in C(N, N_f)$ color-flavor locking phases

 $U(N) \times S\big[U(N_f) \times U(N_a)\big] \stackrel{\text{c-f locking}}{\to} S\big[U(N) \times U(N_f - N)\big] \times U(1) \times SU(N_a)$

- Vortices at north pole, antivortices at south pole size of vortices $~\sim~1/\sqrt{\zeta}$

Limit
$$\zeta \to \infty$$
:

$$\begin{aligned} \mathsf{NP:} \qquad D_{\bar{z}}\phi &= 0 \qquad F_{12} = -(|\phi|^2 - \zeta \mathbb{1}) \\ \mathsf{SP:} \qquad D_{z}\phi &= 0 \qquad F_{12} = |\phi|^2 - \zeta \mathbb{1} \end{aligned}$$

• Vortices at north pole, antivortices at south pole size of vortices $~\sim~1/\sqrt{\zeta}$

Limit
$$\zeta \to \infty$$
:
NP: $D_{\bar{z}}\phi = 0$ $F_{12} = -(|\phi|^2 - \zeta \mathbb{1})$
SP: $D_{z}\phi = 0$ $F_{12} = |\phi|^2 - \zeta \mathbb{1}$

Close to poles: same action as 2d $\Omega\text{-}\mathsf{background}\ \mathbb{R}^2_\epsilon$ [Shadchin 06]

identifying equivariant parameters with $S^2\ {\rm parameters}.$

Sum over BPS vortices \rightarrow vortex partition function.

Vortex partition function is equivariant volume of the vortex moduli space:

$$Z_{\text{vortex}}(z,\varepsilon,a) = \sum_{k=0}^{\infty} z^k Z_k(\varepsilon,a) \qquad \qquad z = e^{-2\pi\xi - i\theta}$$

Higgs branch localization

Result:

$$\label{eq:ZS2} \boxed{Z_{S^2} = \sum_{\mathsf{vacua}} \, e^{-4\pi i \xi \, \sum_{j=1}^N \, \sigma_j} \, Z'_{\mathsf{1-loop}} \, Z_\mathsf{v} \, Z_\mathsf{av}}$$

with

and

$$Z_{\mathsf{v}} = Z_{\mathsf{vortex}} \left((-1)^N z \,, \, \frac{1}{r} \,, \, -iM_{\mathsf{eff}} \right)$$
$$Z_{\mathsf{av}} = Z_{\mathsf{vortex}} \left((-1)^N \bar{z} \,, \, -\frac{1}{r} \,, \, iM_{\mathsf{eff}} \right)$$

$$z = e^{-2\pi x i - i\theta}$$

٠

 Z'_{1-loop} does not include the N non-vanishing chiral multiplets.

U(N) with (N_f, N_a) flavors (assume $N_f \ge N_a$):

k-vortex moduli space in a given vacuum \vec{l} is a symplectic quotient

ADHM-like: Higgs branch of an $\mathcal{N}=2$ quantum mechanics [Hanany, Tong 03; Eto, Isozumi, Nitta, Ohashi, Sakai 05], dimensional reduction of a 2d $\mathcal{N}=(0,2)~U(k)$ gauge theory

U(N) with (N_f, N_a) flavors (assume $N_f \ge N_a$):

k-vortex moduli space in a given vacuum \vec{l} is a symplectic quotient

ADHM-like: Higgs branch of an $\mathcal{N}=2$ quantum mechanics [Hanany, Tong 03; Eto, Isozumi, Nitta, Ohashi, Sakai 05], dimensional reduction of a 2d $\mathcal{N}=(0,2)~U(k)$ gauge theory

 Z_k is the equivariant volume, getting contribution from fixed points of unbroken symmetry (color-flavor locked phase):

$$U(1)_{\varepsilon} \times S[U(N) \times U(N_f - N)] \times U(1) \times SU(N_a)$$

Equivariant parameters: ε , a_i , \tilde{a}_j

The result can be written as a contour integral

[Nekrasov, Shadchin 04; Dimofte, Gukov, Hollands 10]

$$\left| Z_k = \oint \left[\prod_{j=1}^k \frac{d\varphi_j}{2\pi i} \right] \mathcal{Z}_{\mathsf{vec}}(\varphi, \varepsilon) \, \mathcal{Z}_{\mathsf{fund}}(\varphi, \varepsilon, a) \, \mathcal{Z}_{\mathsf{antifund}}(\varphi, \varepsilon, \tilde{a}) \right.$$

where

$$\begin{split} \mathcal{Z}_{\text{vec}} &= \frac{1}{\varepsilon^k k!} \prod_{i < j}^k \frac{\varphi_i - \varphi_j)^2}{(\varphi_i - \varphi_j)^2 - \varepsilon^2} \\ \mathcal{Z}_{\text{fund}} &= \prod_{j=1}^k \prod_{r \in \vec{l}} \frac{1}{\varphi_j - a_r} \prod_{s \not\in \vec{l}} \frac{1}{a_s - \varphi_j - \varepsilon} \\ \mathcal{Z}_{\text{antifund}} &= \prod_{j=1}^k \prod_{f=1}^{N_a} (\tilde{a}_f + \varphi_j) \end{split}$$

Contour encircles multi-poles parametrized by $\vec{k} \in \mathbb{Z}_{\geq 0}^N$ with $\sum k_i = k$:

$$\{\varphi_j\} = \{a_r + (l_r - 1)\varepsilon \mid r \in \vec{l}, \ l_r = 1, \dots, k_r\}$$

One-to-one correspondence between multi-poles and equivariant fixed points.

• Sum over residues at the poles:

$$Z_{k} = \varepsilon^{(N_{a}-N_{f})k} \sum_{\substack{\vec{k} \in \mathbb{Z}_{\geq 0}^{N} \\ |\vec{k}| = k}} \prod_{r \in \vec{l}} \frac{\prod_{f=1}^{N_{a}} \left(\frac{\tilde{a}_{f} + a_{r}}{\varepsilon}\right)_{k_{r}}}{k_{r}! \prod_{\substack{s \in \vec{l} \\ s \neq r}} \left(\frac{a_{s} - a_{r}}{\varepsilon} - k_{r}\right)_{k_{s}} \prod_{j \notin \vec{l}} \left(\frac{a_{j} - a_{r}}{\varepsilon} - k_{r}\right)_{k_{r}}}$$

For a U(1) gauge theory, $Z_{\rm vortex}$ reduces to hypergeometric function $_{N_a}F_{N_f-1}$

• Sum over residues at the poles:

$$Z_k = \varepsilon^{(N_a - N_f)k} \sum_{\substack{\vec{k} \in \mathbb{Z}_{\geq 0}^N \\ |\vec{k}| = k}} \prod_{r \in \vec{l}} \frac{\prod_{f=1}^{N_a} \left(\frac{\tilde{a}_f + a_r}{\varepsilon}\right)_{k_r}}{k_r! \prod_{\substack{s \in \vec{l} \\ s \neq r}} \left(\frac{a_s - a_r}{\varepsilon} - k_r\right)_{k_s} \prod_{j \notin \vec{l}} \left(\frac{a_j - a_r}{\varepsilon} - k_r\right)_{k_r}}$$

For a U(1) gauge theory, $Z_{\rm vortex}$ reduces to hypergeometric function $_{N_a}F_{N_f-1}$

• Explicitly verify that this Z_k plugged into the Higgs branch localization formula agrees with the Coulomb branch expression

To evaluate Coulomb branch integral, close the contour of integration and sum over residues

Dualities

Equality of Z_{S^2} for pair of theories (\rightarrow conjecture duality):

U(N) with $(N_f, 0) \quad \leftrightarrow \quad U(N_f - N)$ with $(N_f, 0) \qquad N_f > 1$

SU(N) with $(N_f, 0) \leftrightarrow SU(N_f - N)$ with $(N_f, 0)$ [Hori, Tong 06]

$$\begin{array}{rcl} U(N) \mbox{ with } (N_f,N_a) & \leftrightarrow & U(N_f-N) \mbox{ with } (N_f,N_a) & N_f > N_a+1 \\ & & N_f N_a \mbox{ singlets } + W = \tilde{q} M q \end{array}$$

Dualities

Equality of Z_{S^2} for pair of theories (\rightarrow conjecture duality):

U(N) with $(N_f, 0) \quad \leftrightarrow \quad U(N_f - N)$ with $(N_f, 0) \qquad N_f > 1$

SU(N) with $(N_f, 0) \leftrightarrow SU(N_f - N)$ with $(N_f, 0)$ [Hori, Tong 06]

 $\begin{array}{rcl} U(N) \mbox{ with } (N_f,N_a) & \leftrightarrow & U(N_f-N) \mbox{ with } (N_f,N_a) & N_f > N_a+1 \\ & & N_f N_a \mbox{ singlets } + W = \tilde{q} M q \end{array}$

- Unitary: use Higgs branch expression
 - 1-1 correspondence of vacua $\vec{l} \in C(N, N_f)$
 - Classical action + 1-loop determinants easily coincide
 - To prove coincidence of $Z_k \ \forall k$, use contour integral expression
- Special unitary: perform Fourier transform

$$Z_{SU(N)}^{(N_F,0)}(b;a_j) = \int_0^{2\pi} \frac{d\theta}{2\pi} \int_{-\infty}^{+\infty} 4\pi \, d\xi \, e^{4\pi i\xi} \, Z_{U(N)}^{(N_f,0)}(\xi,\theta;a_j)$$

[Jockers, Kumar, Lapan, Morrison, Romo 12] have recently observed that

when the 2d GLSM theory flows to a conformal non-linear σ -model on a compact CY.

 Z_{S^2} computes the full quantum genus-zero Khaler potential on the Kähler moduli space of the CY:

$$Z_{S^2} = e^K$$

Does not need to know what the mirror is (and do the computation in the mirror)

 ${\it K}$ computes Gromow-Witten invariants.

Conclusions

We have computed the p.f. of a 2d $\mathcal{N} = (2,2)$ theory on S^2 . Generalizations:

- include twisted chiral superfields (mirror symmetry)
- $\bullet \ {\rm squash} \ S^2$
- higher genus Riemann surfaces?
- $\mathcal{N} = (0, 2)$ supersymmetry?

Explore the connection with non-linear $\sigma\text{-models}$ and Gromov-Witten invariants

Alternative localization allowing (some) complex fields

- \bullet compute $Z_{\rm vortex}$ in absence of ADHM-like construction
- does it work in higher dimensions?