S^{2} partition functions:
 Coulomb vs Higgs localization and vortices

Francesco Benini

Simons Center for Geometry and Physics
Stony Brook University

Kavli IPMU (Tokyo)
Math / String Theory seminar 10th October 2012
with S. Cremonesi: arXiv:1206.2356

Introduction

Strongly coupled (gauge) quantum field theories ubiquitous in physics: QCD, beyond the SM particle physics, condensed matter, inflation, ...

Strong coupling: difficult to approach - no perturbative (Feynman) expansion

Introduction

Strongly coupled (gauge) quantum field theories ubiquitous in physics: QCD, beyond the SM particle physics, condensed matter, inflation, ...

Strong coupling: difficult to approach - no perturbative (Feynman) expansion
Other methods:

- Lattice (gauge) theory. Especially useful for numerical simulations.
- Large N expansion of gauge theories.

Diagrammatic simplifies (only planar diagrams at leading order). 't Hooft coupling $\lambda=N g^{2}$. If $\lambda \gtrsim 1$ still a problem.

- AdS/CFT: use dual gravity description. Useful at large N and large λ.
- Integrability: exploit infinite number of conserved charges.
- SUSY: often full perturbative + non-perturbative computations exactly. Exploit dualities.

We will consider the last approach

Supersymmetry

SUSY: fermionic symmetry that relates bosons and fermions
SUSY (gauge) theories may look exotic or unrealistic...
... however share many key features with more "conventional" theories

Supersymmetry

SUSY: fermionic symmetry that relates bosons and fermions
SUSY (gauge) theories may look exotic or unrealistic...
... however share many key features with more "conventional" theories

- 4d: confinement \& chiral symmetry breaking (cfr. QCD)
- 3d: topological sectors (cfr. topological insulators)

Chern-Simons $=$ SUSY Chern-Simons
Particle / vortex duality

- 2d: statistical models may show "accidental" SUSY (cfr. tricritical Ising) Particle / kink (soliton) duality

Sphere partition functions

Recently lots of work on SUSY gauge theories on compact manifolds Simplest example: d-dimensional SUSY theory on S^{d}

Sphere partition functions

Recently lots of work on SUSY gauge theories on compact manifolds Simplest example: d-dimensional SUSY theory on S^{d}

- S^{d} partition functions:

Euclidean SUSY theory on $S^{d} \quad$ (not twisted as in [Witten 88; Vafa, Witten 94])
Compute path-integral: $\quad Z_{S^{d}}(t)=\int_{S^{d}} \mathcal{D} \Phi e^{-S[\Phi, t]}$
Parameters t : from flat space Lagrangian \& curved S^{d}
With enough SUSY, exactly computable with localization techniques.

Sphere partition functions

Recently lots of work on SUSY gauge theories on compact manifolds Simplest example: d-dimensional SUSY theory on S^{d}

- S^{d} partition functions:

Euclidean SUSY theory on $S^{d} \quad$ (not twisted as in [Witten 88; Vafa, Witten 94])
Compute path-integral: $\quad Z_{S^{d}}(t)=\int_{S^{d}} \mathcal{D} \Phi e^{-S[\Phi, t]}$
Parameters t : from flat space Lagrangian \& curved S^{d}
With enough SUSY, exactly computable with localization techniques.

- Compute VEVs of SUSY operators (e.g. line operators) as well:

$$
Z_{S^{d}}(t, \mathcal{O})=\int_{S^{d}} \mathcal{D} \Phi \mathcal{O} e^{-S[\Phi, t]}
$$

Examples

- Examples: S^{d} partition functions
S^{4} with $\mathcal{N}=2$ SUSY [Pestun 07]
S^{3} with $\mathcal{N}=2$ SUSY [Kupustin, Willett, Yaakov 09; Jafferis 10; Hama, Hosomichi, Lee 11]
S^{5} with $\mathcal{N}=1$ SUSY [Hosomici, Seong, Terashima 12; Kallen, Qiu, Zabzine 12; Kim, Kim 12]
S^{2} with $\mathcal{N}=(2,2)$ SUSY [FB, Cremonesi 12; Doroud, Gomis, Le Floch, Lee 12]
- Generalizations: e.g. squashing of spheres
[Hama, Hosomichi, Lee 11; Imamura, Yokoyama 11;Hama, Hosomichi 12]

Examples

- Examples: S^{d} partition functions
S^{4} with $\mathcal{N}=2$ SUSY [Pestun 07]
S^{3} with $\mathcal{N}=2$ SUSY [Kupustin, Willett, Yaakov 09; Jafferis 10; Hama, Hosomichi, Lee 11]
S^{5} with $\mathcal{N}=1$ SUSY [Hosomici, Seong, Terashima 12; Kallen, Qiu, Zabzine 12; Kim, Kim 12]
S^{2} with $\mathcal{N}=(2,2)$ SUSY [FB, Cremonesi 12; Doroud, Gomis, Le Floch, Lee 12]
- Generalizations: e.g. squashing of spheres
[Hama, Hosomichi, Lee 11; Imamura, Yokoyama 11;Hama, Hosomichi 12]
- Other manifolds: e.g. $S^{d-1} \times S^{1}$

Index:

$$
I(f)=\operatorname{Tr}(-1)^{F} e^{-\beta H} f_{i}^{\mathcal{O}_{i}}
$$

4d with $\mathcal{N}=1$ SUSY [Gadde, Gaiotto, Pomoni, Rastelli, Razamat, Yan]
3d with $\mathcal{N}=2$ SUSY [Kim 09; Imamura, Yokoyama 11]
5d with $\mathcal{N}=1$ SUSY [Kim, Kim, Lee 12]

Physical information in $Z_{S^{d}}(t)$

$Z_{S^{d}}(t)$ is an interesting function:

- Information about the theory that can be computed exactly (and non-perturbatively) at strong coupling

Very non-trivial new tests of conjectured dualities (4d S-duality, 4d Seiberg duality, Seiberg-like dualities, 3d \& 2d mirror symmetry, ...

Conformal theories: exact VEVs of (local \& non-local) operators

Physical information in $Z_{S^{d}}(t)$

$Z_{S^{d}}(t)$ is an interesting function:

- Information about the theory that can be computed exactly (and non-perturbatively) at strong coupling

Very non-trivial new tests of conjectured dualities (4d S-duality, 4d Seiberg duality, Seiberg-like dualities, 3d \& 2d mirror symmetry, ...

Conformal theories: exact VEVs of (local \& non-local) operators

- Information about the IR fixed point

Often $Z_{S^{d}}(t)$ does not depend on UV cutoff

Physical information in $Z_{S^{d}}(t)$

$Z_{S^{d}}(t)$ is an interesting function:

- Information about the theory that can be computed exactly (and non-perturbatively) at strong coupling

Very non-trivial new tests of conjectured dualities (4d S-duality, 4d Seiberg duality, Seiberg-like dualities, 3d \& 2d mirror symmetry, ...

Conformal theories: exact VEVs of (local \& non-local) operators

- Information about the IR fixed point

Often $Z_{S^{d}}(t)$ does not depend on UV cutoff

- Dualities \rightarrow interesting (often not-yet-proven) mathematical identities

Physical information in $Z_{S^{d}}(t)$

- In 3d it provides a "central charge" [Jafferis 10; Jafferis, Klabanov, Pufu, Safdi 11] that decreases from fixed point to fixed point along RG flows

$$
c_{3 \mathrm{~d}}=Z_{S^{3}}\left(t=t_{\mathrm{conf}}\right)
$$

No conformal anomaly in odd dimensions: $\left\langle T_{\mu}^{\mu}\right\rangle=0$
Related to entanglement entropy

Physical information in $Z_{S^{d}}(t)$

- In 3d it provides a "central charge" [Jafferis 10; Jafferis, Klabanov, Pufu, Safdi 11] that decreases from fixed point to fixed point along RG flows

$$
c_{3 \mathrm{~d}}=Z_{S^{3}}\left(t=t_{\mathrm{conf}}\right)
$$

No conformal anomaly in odd dimensions: $\quad\left\langle T_{\mu}^{\mu}\right\rangle=0$
Related to entanglement entropy

- Very interesting mathematical structures

AGT [Alday, Gaiotto, Tachikawa 09] 4d $\mathcal{N}=2 \operatorname{SUSY}\left(S^{4}\right) \quad \leftrightarrow \quad$ 2d Liouville

$$
Z_{\text {inst }}^{4 \mathrm{~d}}(q, a, m)=\text { conformal blocks }(q, a, m)
$$

4d $\mathcal{N}=2$ index $\left(S^{3} \times S^{1}\right) \quad \leftrightarrow \quad$ 2d topological theory (YM)
[Gadde, Rastelli, Razamat, Yan 11; Gaiotto, Rastelli, Razamat 12]
3d $\mathcal{N}=2$ SUSY $\quad \leftrightarrow \quad$ 3d Chern-Simons
[Dimofte, Gaiotto, Gukov 11; Cecotti, Cordova, Vafa 11]

2d theories

- We consider two-dimensional theories:
connection with strings and topological strings;
connection with geometry via non-linear sigma models [Witten 93].

$$
\begin{gathered}
2 \mathrm{~d} \mathcal{N}=(2,2) \text { SUSY } \\
\text { and a vector-like R-symmetry } U(1)_{R}
\end{gathered}
$$

$\rightarrow \quad$ non-twisted SUSY preserved on S^{2}
Gauge theory of vector multiplets + chiral multiplets
Admit generic twisted superpotential $\widetilde{W}(\Sigma)$

Localization

Path-integral computed exactly with localization techniques.
Works even with certain (BPS) operator insertions (e.g. loop operators).

- Supersymmetric action S, and operators \mathcal{O}, w.r.t. supercharge \mathcal{Q} :
deform path-integral by \mathcal{Q}-exact action

$$
Z=\int \mathcal{D} \Phi \mathcal{O} e^{-S-u S_{\mathrm{loc}}}
$$

Path-integral does not depend on u.

Localization

Path-integral computed exactly with localization techniques.
Works even with certain (BPS) operator insertions (e.g. loop operators).

- Supersymmetric action S, and operators \mathcal{O}, w.r.t. supercharge \mathcal{Q} :
deform path-integral by \mathcal{Q}-exact action

$$
Z=\int \mathcal{D} \Phi \mathcal{O} e^{-S-u S_{\text {loc }}}
$$

Path-integral does not depend on u.

- In the large u limit, semiclassical approximation becomes exact:

$$
Z=\sum_{\mathrm{BPS} \Phi_{0}} e^{-S\left[\Phi_{0}\right]} Z_{1 \text {-loop }}\left[\Phi_{0}\right]
$$

Summary of results

- $Z_{S^{2}}$ computed with localization techniques
$\rightarrow \quad$ integral over "Coulomb branch", sum over flux sectors:

$$
Z_{S^{2}}(\text { masses }, \text { FI, R-charges })=\sum_{\mathfrak{m}} \int d \sigma e^{-S_{\text {class }}} Z_{\text {vector }}^{1 \text {-loop }} Z_{\text {chiral }}^{1-\text { loop }}
$$

Summary of results

- $Z_{S^{2}}$ computed with localization techniques
$\rightarrow \quad$ integral over "Coulomb branch", sum over flux sectors:

$$
Z_{S^{2}}(\text { masses }, \text { FI, R-charges })=\sum_{\mathfrak{m}} \int d \sigma e^{-S_{\text {class }}} Z_{\text {vector }}^{1-\text {-loop }} Z_{\text {chiral }}^{1-\text { loop }}
$$

- Properties:
- Expression very similar to 3d, 4d, 5d
- Finite dimensional integral and series: easy to compute
- One can check or conjecture 2d dualities (e.g. Hori-Tong)

Summary of results

Surprise: localization can be performed in a different way
$\rightarrow \quad$ sum over discrete "Higgs branch":

$$
Z_{S^{2}}=\sum_{\text {Higgs vacua }} e^{-S_{\text {class }}} Z_{1 \text {-loop }} Z_{\text {vortex }} Z_{\text {anti-vortex }}
$$

$Z_{\text {vortex }}$: partition function of vortices on $\mathbb{R}_{\varepsilon}^{2}$ in
 Ω-background [Shadchin 06; Nekrasov 02]

Vortices at north pole, antivortices at south pole of S^{2}.

Summary of results

Surprise: localization can be performed in a different way
$\rightarrow \quad$ sum over discrete "Higgs branch":

$$
Z_{S^{2}}=\sum_{\text {Higgs vacua }} e^{-S_{\text {class }}} Z_{1 \text {-loop }} Z_{\text {vortex }} Z_{\text {anti-vortex }}
$$

$Z_{\text {vortex }}$: partition function of vortices on $\mathbb{R}_{\varepsilon}^{2}$ in

Ω-background [Shadchin 06; Nekrasov 02]
Vortices at north pole, antivortices at south pole of S^{2}.

- Higgs branch expression reminiscent of Pestun's S^{4} result in terms of instanton partition function $Z_{\text {inst }}$ [Nekrasov 02]
- Factorization as observed on S^{3} [Pasquetti 11]
- $Z_{S^{2}}^{\text {Coulomb }}=Z_{S^{2}}^{\mathrm{Higgs}}$ can be used to compute $Z_{\text {vortex }}$

Conclusions

- $Z_{S^{2}}$ can be computed exactly in 2 d with localization
- Conformal theories: VEVs computed exactly (e.g. Wilson lines)
- Dualities: new checks and new dualities
- The same $Z_{S^{2}}$ can be written in two very different ways:
Coulomb vs Higgs
- Provides a computationally powerful way to determine vortex partition functions
- $Z_{\text {vortex }}$ is related to Gromov-Witten invariants of Kähler manifolds see [Jockers, Kumar, Lapan, Morrison, Romo 12]
- Open questions about similar phenomena in higher dimensions

Part II

Rigid supersymmetry on S^{2}

- Two-dimensional $\mathcal{N}=(2,2)$ theories with a vector-like $U(1)_{R}$ R-symmetry can be placed supersymmetrically on S^{2} (2 complex supercharges):

$$
\mathfrak{o s p}^{*}(2 \mid 2) \cong \mathfrak{s u}(2 \mid 1) \supset \mathfrak{s u}(2) \times \mathfrak{u}(1)_{R}
$$

No twisting!
Contained in global Euclidean superconformal algebra

$$
\mathfrak{o s p}(2 \mid 2, \mathbb{C}) \supset \mathfrak{s l}(2, \mathbb{C}) \times \mathfrak{u}(1)^{2}
$$

Algebra:

$$
\left[\delta_{\epsilon}, \delta_{\bar{\epsilon}}\right]=\mathcal{L}_{\xi}^{A}+\frac{i}{2 r} \alpha R \quad \xi^{\mu}=i \bar{\epsilon} \gamma^{\mu} \epsilon
$$

$$
\left[\delta_{\epsilon_{1}}, \delta_{\epsilon_{2}}\right]=0 \quad \alpha=i \bar{\epsilon} \epsilon
$$

$$
D_{\mu} \epsilon=\frac{i}{2 r} \gamma_{\mu} \epsilon
$$

Rigid supersymmetry on S^{2}

- Two-dimensional $\mathcal{N}=(2,2)$ theories with a vector-like $U(1)_{R}$ R-symmetry can be placed supersymmetrically on S^{2} (2 complex supercharges):

$$
\mathfrak{o s p}^{*}(2 \mid 2) \cong \mathfrak{s u}(2 \mid 1) \supset \mathfrak{s u}(2) \times \mathfrak{u}(1)_{R}
$$

No twisting!
Contained in global Euclidean superconformal algebra

$$
\mathfrak{o s p}(2 \mid 2, \mathbb{C}) \supset \mathfrak{s l}(2, \mathbb{C}) \times \mathfrak{u}(1)^{2}
$$

Algebra:

$$
\left[\delta_{\epsilon}, \delta_{\bar{\epsilon}}\right]=\mathcal{L}_{\xi}^{A}+\frac{i}{2 r} \alpha R \quad \xi^{\mu}=i \bar{\epsilon} \gamma^{\mu} \epsilon
$$

$$
D_{\mu} \epsilon=\frac{i}{2 r} \gamma_{\mu} \epsilon
$$

- Vector multiplet:

$$
\begin{aligned}
& \left(A_{\mu}, \lambda, \bar{\lambda}, \sigma, \eta, D\right) \\
& (\phi, \bar{\phi}, \psi, \bar{\psi}, F, \bar{F})
\end{aligned}
$$

Chiral multiplet:
Euclidean signature: fields get complexified.
On S^{2} freedom to choose R-charges q of chiral multiplets \rightarrow couplings

Supersymmetric actions on S^{2}

Action constructed order by order in $\frac{1}{r}$ or by coupling to SUGRA [Festuccia, Seiberg 11]

- Yang-Mills action for vector multiplets:

$$
\begin{aligned}
\mathcal{L}_{Y M}=\frac{1}{g^{2}} \operatorname{Tr}\left\{\frac{1}{2}\left(F_{12}-\frac{\eta}{r}\right)^{2}+\frac{1}{2}(D\right. & \left.+\frac{\sigma}{r}\right)^{2}+\frac{1}{2}\left(D_{\mu} \sigma\right)^{2}+\frac{1}{2}\left(D_{\mu} \eta\right)^{2}-\frac{1}{2}[\sigma, \eta]^{2} \\
+ & \left.\frac{i}{2} \bar{\lambda} D D \lambda+\frac{i}{2} \bar{\lambda}[\sigma, \lambda]+\frac{1}{2} \bar{\lambda} \gamma_{3}[\eta, \lambda]\right\}
\end{aligned}
$$

Supersymmetric actions on S^{2}

Action constructed order by order in $\frac{1}{r}$ or by coupling to SUGRA [Festuccia, Seiberg 11]

- Yang-Mills action for vector multiplets:

$$
\begin{aligned}
\mathcal{L}_{Y M}=\frac{1}{g^{2}} \operatorname{Tr}\left\{\frac{1}{2}\left(F_{12}-\frac{\eta}{r}\right)^{2}+\frac{1}{2}(D\right. & \left.+\frac{\sigma}{r}\right)^{2}+\frac{1}{2}\left(D_{\mu} \sigma\right)^{2}+\frac{1}{2}\left(D_{\mu} \eta\right)^{2}-\frac{1}{2}[\sigma, \eta]^{2} \\
& \left.+\frac{i}{2} \bar{\lambda} D D \lambda+\frac{i}{2} \bar{\lambda}[\sigma, \lambda]+\frac{1}{2} \bar{\lambda} \gamma_{3}[\eta, \lambda]\right\}
\end{aligned}
$$

- Twisted superpotential $\widetilde{W}(\Sigma)$

$$
\mathcal{L}_{\widetilde{W}}=i \widetilde{W}^{\prime}\left(D-i F_{12}+\frac{\sigma+i \eta}{r}\right)-\frac{i}{2} \widetilde{W}^{\prime \prime} \bar{\lambda}\left(1+\gamma_{3}\right) \lambda-\frac{i}{r} \widetilde{W}
$$

and its anti-chiral counterpart $\widetilde{W}^{*}(\Sigma)$. We will take complex conjugate.
Twisted chiral superfield: $\quad \Sigma=\left(\sigma+i \eta, \lambda, D-i F_{12}\right)$
Special case: complexified Fayet-lliopoulos term: $\quad \widetilde{W}(z)=\frac{1}{2}\left(-\xi+\frac{i \theta}{2 \pi}\right) z$

$$
\mathcal{L}_{F I}=-i \xi D+i \frac{\theta}{2 \pi} F_{12}
$$

Supersymmetric actions on S^{2}

- Matter kinetic action for chiral multiplets (of R-charge q):

$$
\begin{aligned}
\mathcal{L}_{\mathrm{mat}}=\left|D_{\mu} \phi\right|^{2}+\bar{\phi}\left(\sigma^{2}\right. & \left.+\eta^{2}+i D+\frac{i q}{r} \sigma+\frac{q(2-q)}{4 r^{2}}\right) \phi+\bar{F} F \\
& +\bar{\psi}\left(-i \not D+i \sigma-\gamma_{3} \eta-\frac{q}{2 r}\right) \psi+i \bar{\psi} \lambda \phi-i \bar{\phi} \bar{\lambda} \psi
\end{aligned}
$$

Supersymmetric actions on S^{2}

- Matter kinetic action for chiral multiplets (of R-charge q):

$$
\begin{aligned}
\mathcal{L}_{\mathrm{mat}}=\left|D_{\mu} \phi\right|^{2}+\bar{\phi}\left(\sigma^{2}\right. & \left.+\eta^{2}+i D+\frac{i q}{r} \sigma+\frac{q(2-q)}{4 r^{2}}\right) \phi+\bar{F} F \\
& +\bar{\psi}\left(-i \not D+i \sigma-\gamma_{3} \eta-\frac{q}{2 r}\right) \psi+i \bar{\psi} \lambda \phi-i \bar{\phi} \bar{\lambda} \psi
\end{aligned}
$$

- Superpotential $(R[W]=2)$:

$$
\mathcal{L}_{W}=\sum_{j} \frac{\partial W}{\partial \phi_{j}} F_{j}-\frac{1}{2} \sum_{j, k} \frac{\partial^{2} W}{\partial \phi_{j} \partial \phi_{k}} \psi_{j} \psi_{k}
$$

Supersymmetric actions on S^{2}

- Matter kinetic action for chiral multiplets (of R-charge q):

$$
\begin{aligned}
\mathcal{L}_{\mathrm{mat}}=\left|D_{\mu} \phi\right|^{2}+\bar{\phi}\left(\sigma^{2}\right. & \left.+\eta^{2}+i D+\frac{i q}{r} \sigma+\frac{q(2-q)}{4 r^{2}}\right) \phi+\bar{F} F \\
& +\bar{\psi}\left(-i \not D+i \sigma-\gamma_{3} \eta-\frac{q}{2 r}\right) \psi+i \bar{\psi} \lambda \phi-i \bar{\phi} \bar{\lambda} \psi
\end{aligned}
$$

- Superpotential $(R[W]=2)$:

$$
\mathcal{L}_{W}=\sum_{j} \frac{\partial W}{\partial \phi_{j}} F_{j}-\frac{1}{2} \sum_{j, k} \frac{\partial^{2} W}{\partial \phi_{j} \partial \phi_{k}} \psi_{j} \psi_{k}
$$

- Couple global flavor symmetries to external vector multiplets, give VEV to $\sigma^{\text {ext }}=-r D^{\text {ext }}, \eta^{\text {ext }}=r F_{12}^{\text {ext }}$.
$\sigma^{\text {ext }} \quad \rightarrow \quad$ real (or twisted) masses M
$\sigma^{\text {ext }}+\frac{i q}{2 r} \quad$ form a holomorphic pair.

Localization

- Supersymmetric action S and operators \mathcal{O} w.r.t. supercharge \mathcal{Q} :

$$
[\mathcal{Q}, S]=[\mathcal{Q}, \mathcal{O}]=0
$$

\mathcal{Q}-exact terms do not affect the path-integral:

$$
\frac{\partial}{\partial u} \int \mathcal{D} \Phi \mathcal{O} e^{-S-u\{\mathcal{Q}, \mathcal{P}\}}=0
$$

Z is sensitive only to \mathcal{Q}-cohomology (in space of functionals).

Localization

- Supersymmetric action S and operators \mathcal{O} w.r.t. supercharge \mathcal{Q} :

$$
[\mathcal{Q}, S]=[\mathcal{Q}, \mathcal{O}]=0
$$

\mathcal{Q}-exact terms do not affect the path-integral:

$$
\frac{\partial}{\partial u} \int \mathcal{D} \Phi \mathcal{O} e^{-S-u\{\mathcal{Q}, \mathcal{P}\}}=0
$$

Z is sensitive only to \mathcal{Q}-cohomology (in space of functionals).

- Choose exact deformation action with positive definite bosonic part:

$$
S_{\text {loc }}=\left.u \sum_{\text {fermions } \chi} \mathcal{Q}((\overline{\mathcal{Q} \chi}) \chi) \quad S_{\text {loc }}\right|_{\text {bos }}=u \sum_{\chi}|\mathcal{Q} \chi|^{2}
$$

In $u \rightarrow \infty$ limit, only BPS configurations $\mathcal{Q} \chi=0$ contribute:

$$
Z=\sum_{\Phi_{0} \mid \mathcal{Q} \chi=0} e^{-S\left[\Phi_{0}\right]} Z_{1 \text {-loop }}\left[\Phi_{0}\right]
$$

Localization on S^{2}

- Choose "equivariant" supercharge:

$$
\mathcal{Q}^{2}=J+\frac{R}{2}+i \Lambda(\sigma, \eta)
$$

Form a superalgebra $\mathfrak{s u}(1 \mid 1)$.
North and south pole: fixed points of J.
At north (south) pole looks like topological (anti-topological) A-twist

Localization on S^{2}

- Choose "equivariant" supercharge:

$$
\mathcal{Q}^{2}=J+\frac{R}{2}+i \Lambda(\sigma, \eta)
$$

Form a superalgebra $\mathfrak{s u}(1 \mid 1)$.
North and south pole: fixed points of J.
At north (south) pole looks like topological (anti-topological) A-twist

- All actions constructed before are \mathcal{Q}-exact, except the twisted superpotential
$Z_{S^{2}}$ depends on \widetilde{W}, (complexified) real masses M and external fluxes \mathfrak{n}

Coulomb branch localization

Euclidean path integral: complexified fields \Rightarrow choose a contour.

- Regard A_{μ}, σ, η, D real, and $(\lambda, \bar{\lambda}),(\psi, \bar{\psi}),(\phi, \bar{\phi}),(F, \bar{F})$ complex conjugates

$$
\mathcal{L}_{Y M}=\operatorname{Tr} \mathcal{Q}\left[(\overline{\mathcal{Q} \lambda}) \lambda+\lambda^{\dagger}\left(\overline{Q \lambda^{\dagger}}\right)\right] \quad \mathcal{L}_{\psi}=\operatorname{Tr} \mathcal{Q}\left[(\overline{\mathcal{Q} \psi}) \psi+\psi^{\dagger}\left(\overline{Q \psi^{\dagger}}\right)\right]
$$

Solve BPS equations:

$$
0=\mathcal{Q} \lambda=\mathcal{Q} \lambda^{\dagger} \quad 0=\mathcal{Q} \psi=\mathcal{Q} \psi^{\dagger}
$$

Coulomb branch localization

Euclidean path integral: complexified fields \Rightarrow choose a contour.

- Regard A_{μ}, σ, η, D real, and $(\lambda, \bar{\lambda}),(\psi, \bar{\psi}),(\phi, \bar{\phi}),(F, \bar{F})$ complex conjugates

$$
\mathcal{L}_{Y M}=\operatorname{Tr} \mathcal{Q}\left[(\overline{\mathcal{Q} \lambda}) \lambda+\lambda^{\dagger}\left(\overline{Q \lambda^{\dagger}}\right)\right] \quad \mathcal{L}_{\psi}=\operatorname{Tr} \mathcal{Q}\left[(\overline{\mathcal{Q} \psi}) \psi+\psi^{\dagger}\left(\overline{Q \psi^{\dagger}}\right)\right]
$$

Solve BPS equations:

$$
0=\mathcal{Q} \lambda=\mathcal{Q} \lambda^{\dagger} \quad 0=\mathcal{Q} \psi=\mathcal{Q} \psi^{\dagger}
$$

Simple BPS configurations:

$$
\begin{array}{ll}
\sigma=-r D=\mathrm{constant} & F_{12}=\frac{\eta}{r} \equiv \frac{\mathfrak{m}}{2 r^{2}} \quad[\sigma, \mathfrak{m}]=0 \\
\phi=F=0
\end{array}
$$

This is a "Coulomb branch" (very similar to S^{3} case)

Coulomb branch localization

The S^{2} partition function is:

$$
Z_{S^{2}}=\frac{1}{|\mathcal{W}|} \sum_{\mathfrak{m}} \int\left(\prod_{j} \frac{d \sigma_{j}}{2 \pi}\right) Z_{\text {class }}(\sigma, \mathfrak{m}) Z_{\text {gauge }}(\sigma, \mathfrak{m}) \prod_{\Phi} Z_{\Phi}(\sigma, \mathfrak{m} ; M, \mathfrak{n})
$$

The one-loop determinants are:

$$
\begin{aligned}
Z_{\text {gauge }} & =\prod_{\alpha \in G, \alpha>0}\left(\frac{\alpha(\mathfrak{m})^{2}}{4}+\alpha(\sigma)^{2}\right) \\
Z_{\Phi} & =\prod_{\rho \in R_{\Phi}} \frac{\Gamma\left(\frac{R[\Phi]}{2}-i \rho(\sigma)-i f^{a}[\Phi] M_{a}-\frac{\rho(\mathfrak{m})+f^{a}[\Phi] n_{a}}{2}\right)}{\Gamma\left(1-\frac{R[\Phi]}{2}+i \rho(\sigma)+i f^{a}[\Phi] M_{a}-\frac{\rho(\mathfrak{m})+f^{a}[\Phi] n_{a}}{2}\right)}
\end{aligned}
$$

The classical action is:

$$
Z_{\text {class }}=e^{-4 \pi i \xi \operatorname{Tr} \sigma-i \theta \operatorname{Tr} \mathfrak{m}} \exp \left\{8 \pi i r \mathbb{R e} \widetilde{W}\left(\frac{\sigma}{r}+i \frac{\mathfrak{m}}{2 r}\right)\right\}
$$

We isolated the linear piece in \widetilde{W} (Fayet-lliopoulos term)

Some simple checks

- Give large twisted mass to a chiral multiplet: $w=\rho(\sigma)+f^{a} M_{a} \rightarrow \pm \infty$

$$
\begin{gathered}
Z_{\Phi} \rightarrow e^{8 \pi i r \mathbb{R e} \widetilde{W}_{\text {eff }}} \\
\widetilde{W}_{\text {eff }}(\Sigma)=-\frac{1}{4 \pi} \Sigma_{s}\left[\log \left(-i r \Sigma_{s}\right)-1\right] \quad \Sigma_{s}=\rho(\Sigma)+f^{a} M_{a}
\end{gathered}
$$

reproduces the correct one-loop running of FI term

Some simple checks

- Give large twisted mass to a chiral multiplet: $w=\rho(\sigma)+f^{a} M_{a} \rightarrow \pm \infty$

$$
\begin{gathered}
Z_{\Phi} \rightarrow e^{8 \pi i r \mathbb{R e} \widetilde{W}_{\text {eff }}} \\
\widetilde{W}_{\text {eff }}(\Sigma)=-\frac{1}{4 \pi} \Sigma_{s}\left[\log \left(-i r \Sigma_{s}\right)-1\right] \quad \Sigma_{s}=\rho(\Sigma)+f^{a} M_{a}
\end{gathered}
$$

reproduces the correct one-loop running of FI term

- $U(1)$ with 1 fundamental X of charge Q :

$$
Z_{S^{2}}=\frac{1}{Q^{2}} \sum_{n=0}^{|Q|-1} \exp \left[2 i e^{-2 \pi \xi / Q} \sin \left(\frac{\theta-2 \pi n}{Q}\right)\right]
$$

Mirror symmetry [Hori, Vafa 00]: twisted chiral Σ, Y with

$$
\widetilde{W}=\frac{1}{4 \pi}\left[\Sigma(Q Y-\tau(\mu))+i \mu e^{-Y}\right]
$$

The on-shell action evaluated at critical points precisely reproduces $Z_{S^{2}}$.

Higgs branch localization

- In the Euclidean theory fields are complexified and we can choose a contour.

Allow σ, D to be complex in BPS eqns $\quad \rightarrow \quad$ Higgs branches and vortex solutions
Motivated by [Pasquetti 11] we might hope to be able to perform localization in such a way that vortices (and not Coulomb branch) contribute.

Higgs branch localization

- In the Euclidean theory fields are complexified and we can choose a contour.

Allow σ, D to be complex in BPS eqns $\quad \rightarrow \quad$ Higgs branches and vortex solutions
Motivated by [Pasquetti 11] we might hope to be able to perform localization in such a way that vortices (and not Coulomb branch) contribute.

- Trick: introduce exact FI term ζ and impose D-term equation:

$$
\mathcal{L}_{H}=\mathcal{Q} \operatorname{Tr}\left[\frac{\epsilon^{\dagger} \lambda-\lambda^{\dagger} \epsilon}{2 i}\left(\phi \phi^{\dagger}-\zeta \mathbb{1}\right)\right]=i\left(D+\frac{\sigma}{r}\right)\left(\phi \phi^{\dagger}-\zeta \mathbb{1}\right)+\ldots
$$

D appears quadratically in localizing action $\mathcal{L}_{\text {loc }}=u\left(\mathcal{L}_{Y M}+\mathcal{L}_{H}+\mathcal{L}_{\psi}\right)$

$$
\text { Gaussian path-integral } \quad \rightarrow \quad D+\frac{\sigma}{r}+i\left(\phi \phi^{\dagger}-\zeta \mathbb{1}\right)=0
$$

A posteriori: $D \notin \mathbb{R}$.

Higgs BPS configurations

When gauge group gets completely broken, and with generic real masses M :

- Higgs branches: $\quad \phi \phi^{\dagger}=\zeta \mathbb{1}_{N} \quad(\sigma+M) \phi=0 \quad F_{12}=\eta=0$
$\rightarrow \quad$ vacua where N chirals get VEV, at fixed positions on Coulomb branch

$$
\sigma_{a}=-M_{l_{a}} \quad a=1, \ldots, N
$$

Higgs BPS configurations

When gauge group gets completely broken, and with generic real masses M :

- Higgs branches: $\quad \phi \phi^{\dagger}=\zeta \mathbb{1}_{N} \quad(\sigma+M) \phi=0 \quad F_{12}=\eta=0$
$\rightarrow \quad$ vacua where N chirals get VEV, at fixed positions on Coulomb branch

$$
\sigma_{a}=-M_{l_{a}} \quad a=1, \ldots, N
$$

E.g.: $U(N)$ with $\left(N_{f}, N_{a}\right)$ flavors: $\vec{l} \in C\left(N, N_{f}\right)$
color-flavor locking phases
$U(N) \times S\left[U\left(N_{f}\right) \times U\left(N_{a}\right)\right] \xrightarrow{\text { c-f locking }} S\left[U(N) \times U\left(N_{f}-N\right)\right] \times U(1) \times S U\left(N_{a}\right)$

Higgs BPS configurations

- Vortices at north pole, antivortices at south pole size of vortices $\sim 1 / \sqrt{\zeta}$

Limit $\zeta \rightarrow \infty$:
NP: $\quad D_{\bar{z}} \phi=0 \quad F_{12}=-\left(|\phi|^{2}-\zeta \mathbb{1}\right)$
SP: $\quad D_{z} \phi=0 \quad F_{12}=|\phi|^{2}-\zeta \mathbb{1}$

Higgs BPS configurations

- Vortices at north pole, antivortices at south pole size of vortices $\sim 1 / \sqrt{\zeta}$

$$
\begin{array}{llll}
\text { Limit } \zeta \rightarrow \infty: & \text { NP: } & D_{\bar{z}} \phi=0 & F_{12}=-\left(|\phi|^{2}-\zeta \mathbb{1}\right) \\
& \text { SP: } & D_{z} \phi=0 & F_{12}=|\phi|^{2}-\zeta \mathbb{1}
\end{array}
$$

Close to poles: same action as $2 \mathrm{~d} \Omega$-background $\mathbb{R}_{\epsilon}^{2}$ [Shadchin 06]

$$
\mathcal{Q}^{2}=J+\frac{R}{2}+i \sigma \quad \rightarrow \quad \varepsilon=\frac{1}{r}, a=-i M_{\mathrm{eff}}
$$

identifying equivariant parameters with S^{2} parameters.
Sum over BPS vortices $\quad \rightarrow \quad$ vortex partition function.
Vortex partition function is equivariant volume of the vortex moduli space:

$$
Z_{\mathrm{vortex}}(z, \varepsilon, a)=\sum_{k=0}^{\infty} z^{k} Z_{k}(\varepsilon, a) \quad z=e^{-2 \pi \xi-i \theta}
$$

Higgs branch localization

Result:

$$
Z_{S^{2}}=\sum_{\text {vacua }} e^{-4 \pi i \xi \sum_{j=1}^{N} \sigma_{j}} Z_{1-\text { loop }}^{\prime} Z_{\mathrm{v}} Z_{\mathrm{av}}
$$

with

$$
\begin{aligned}
Z_{\mathrm{v}} & =Z_{\mathrm{vortex}}\left((-1)^{N} z, \frac{1}{r},-i M_{\mathrm{eff}}\right) \\
Z_{\mathrm{av}} & =Z_{\mathrm{vortex}}\left((-1)^{N} \bar{z},-\frac{1}{r}, i M_{\mathrm{eff}}\right)
\end{aligned}
$$

and

$$
z=e^{-2 \pi x i-i \theta} .
$$

$Z_{1 \text {-loop }}^{\prime}$ does not include the N non-vanishing chiral multiplets.

Vortex partition function of SQCD

$U(N)$ with $\left(N_{f}, N_{a}\right)$ flavors (assume $N_{f} \geq N_{a}$):
k-vortex moduli space in a given vacuum \vec{l} is a symplectic quotient
ADHM-like: Higgs branch of an $\mathcal{N}=2$ quantum mechanics [Hanany, Tong 03; Eto, Isozumi, Nitta, Ohashi, Sakai 05], dimensional reduction of a $2 \mathrm{~d} \mathcal{N}=(0,2) U(k)$ gauge theory

Vortex partition function of SQCD

$U(N)$ with $\left(N_{f}, N_{a}\right)$ flavors (assume $N_{f} \geq N_{a}$):
k-vortex moduli space in a given vacuum \vec{l} is a symplectic quotient
ADHM-like: Higgs branch of an $\mathcal{N}=2$ quantum mechanics [Hanany, Tong 03; Eto, Isozumi, Nitta, Ohashi, Sakai 05] , dimensional reduction of a $2 \mathrm{~d} \mathcal{N}=(0,2) U(k)$ gauge theory
Z_{k} is the equivariant volume, getting contribution from fixed points of unbroken symmetry (color-flavor locked phase):

$$
U(1)_{\varepsilon} \times S\left[U(N) \times U\left(N_{f}-N\right)\right] \times U(1) \times S U\left(N_{a}\right)
$$

Equivariant parameters: $\varepsilon, a_{i}, \tilde{a}_{j}$

Vortex partition function of SQCD

The result can be written as a contour integral
[Nekrasov, Shadchin 04; Dimofte, Gukov, Hollands 10]

$$
Z_{k}=\oint\left[\prod_{j=1}^{k} \frac{d \varphi_{j}}{2 \pi i}\right] \mathcal{Z}_{\text {vec }}(\varphi, \varepsilon) \mathcal{Z}_{\text {fund }}(\varphi, \varepsilon, a) \mathcal{Z}_{\text {antifund }}(\varphi, \varepsilon, \tilde{a})
$$

where

$$
\begin{aligned}
\mathcal{Z}_{\text {vec }} & =\frac{1}{\varepsilon^{k} k!} \prod_{i<j}^{k} \frac{\left.\varphi_{i}-\varphi_{j}\right)^{2}}{\left(\varphi_{i}-\varphi_{j}\right)^{2}-\varepsilon^{2}} \\
\mathcal{Z}_{\text {fund }} & =\prod_{j=1}^{k} \prod_{r \in \vec{l}} \frac{1}{\varphi_{j}-a_{r}} \prod_{s \notin \vec{l}} \frac{1}{a_{s}-\varphi_{j}-\varepsilon} \\
\mathcal{Z}_{\text {antifund }} & =\prod_{j=1}^{k} \prod_{f=1}^{N_{a}}\left(\tilde{a}_{f}+\varphi_{j}\right)
\end{aligned}
$$

Contour encircles multi-poles parametrized by $\vec{k} \in \mathbb{Z}_{\geq 0}^{N}$ with $\sum k_{i}=k$:

$$
\left\{\varphi_{j}\right\}=\left\{a_{r}+\left(l_{r}-1\right) \varepsilon \mid r \in \vec{l}, l_{r}=1, \ldots, k_{r}\right\}
$$

One-to-one correspondence between multi-poles and equivariant fixed points.

Vortex partition function of SQCD

- Sum over residues at the poles:

$$
\left.\frac{\prod_{f=1}^{N_{a}}\left(\frac{\tilde{a}_{f}+a_{r}}{\varepsilon}\right)_{k_{r}}}{-a_{r}}-k_{r}\right)_{k_{s}} \prod_{j \notin \vec{l}}\left(\frac{a_{j}-a_{r}}{\varepsilon}-k_{r}\right)_{k_{r}}
$$

For a $U(1)$ gauge theory, $Z_{\text {vortex }}$ reduces to hypergeometric function $N_{a} F_{N_{f}-1}$

Vortex partition function of SQCD

- Sum over residues at the poles:

$$
Z_{k}=\varepsilon^{\left(N_{a}-N_{f}\right) k} \sum_{\substack{\vec{k} \in \mathbb{Z}_{\geq 0}^{N} \\|\vec{k}|=k}} \prod_{r \in \vec{l}} \frac{\prod_{f=1}^{N_{a}}\left(\frac{\tilde{a}_{f}+a_{r}}{\varepsilon}\right)_{k_{r}}}{k_{r}!\prod_{\substack{s \in \vec{l} \\ s \neq r}}\left(\frac{a_{s}-a_{r}}{\varepsilon}-k_{r}\right)_{k_{s}} \prod_{j \notin \vec{l}}\left(\frac{a_{j}-a_{r}}{\varepsilon}-k_{r}\right)_{k_{r}}}
$$

For a $U(1)$ gauge theory, $Z_{\text {vortex }}$ reduces to hypergeometric function $N_{a} F_{N_{f}-1}$

- Explicitly verify that this Z_{k} plugged into the Higgs branch localization formula agrees with the Coulomb branch expression

To evaluate Coulomb branch integral, close the contour of integration and sum over residues

Dualities

Equality of $Z_{S^{2}}$ for pair of theories (\rightarrow conjecture duality):

$$
U(N) \text { with }\left(N_{f}, 0\right) \quad \leftrightarrow \quad U\left(N_{f}-N\right) \text { with }\left(N_{f}, 0\right) \quad N_{f}>1
$$

$S U(N)$ with $\left(N_{f}, 0\right) \quad \leftrightarrow \quad S U\left(N_{f}-N\right)$ with $\left(N_{f}, 0\right)$
$U(N)$ with $\left(N_{f}, N_{a}\right) \leftrightarrow U\left(N_{f}-N\right)$ with $\left(N_{f}, N_{a}\right) \quad N_{f}>N_{a}+1$ $N_{f} N_{a}$ singlets $+W=\tilde{q} M q$

Dualities

Equality of $Z_{S^{2}}$ for pair of theories (\rightarrow conjecture duality):
$U(N)$ with $\left(N_{f}, 0\right) \quad \leftrightarrow \quad U\left(N_{f}-N\right)$ with $\left(N_{f}, 0\right) \quad N_{f}>1$
$S U(N)$ with $\left(N_{f}, 0\right) \quad \leftrightarrow \quad S U\left(N_{f}-N\right)$ with $\left(N_{f}, 0\right)$
$U(N)$ with $\left(N_{f}, N_{a}\right) \quad \leftrightarrow \quad U\left(N_{f}-N\right)$ with $\left(N_{f}, N_{a}\right) \quad N_{f}>N_{a}+1$

$$
N_{f} N_{a} \text { singlets }+W=\tilde{q} M q
$$

- Unitary: use Higgs branch expression
- 1-1 correspondence of vacua $\vec{l} \in C\left(N, N_{f}\right)$
- Classical action + 1-loop determinants easily coincide
- To prove coincidence of $Z_{k} \forall k$, use contour integral expression
- Special unitary: perform Fourier transform

$$
Z_{S U(N)}^{\left(N_{F}, 0\right)}\left(b ; a_{j}\right)=\int_{0}^{2 \pi} \frac{d \theta}{2 \pi} \int_{-\infty}^{+\infty} 4 \pi d \xi e^{4 \pi i \xi} Z_{U(N)}^{\left(N_{f}, 0\right)}\left(\xi, \theta ; a_{j}\right)
$$

S^{2} partition function and Gromow-Witten invariants

[Jockers, Kumar, Lapan, Morrison, Romo 12] have recently observed that when the 2d GLSM theory flows to a conformal non-linear σ-model on a compact CY,
$Z_{S^{2}}$ computes the full quantum genus-zero Kḧaler potential on the Kähler moduli space of the CY:

$$
Z_{S^{2}}=e^{K}
$$

Does not need to know what the mirror is (and do the computation in the mirror)
K computes Gromow-Witten invariants.

Conclusions

We have computed the p.f. of a $2 \mathrm{~d} \mathcal{N}=(2,2)$ theory on S^{2}. Generalizations:

- include twisted chiral superfields (mirror symmetry)
- squash S^{2}
- higher genus Riemann surfaces?
- $\mathcal{N}=(0,2)$ supersymmetry?

Explore the connection with non-linear σ-models and Gromov-Witten invariants

Alternative localization allowing (some) complex fields

- compute $Z_{\text {vortex }}$ in absence of ADHM-like construction
- does it work in higher dimensions?

