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On Apery constants of homogeneous varieties.
S.GALKIN

ABSTRACT. We do numerical computations of Apery constants for homogeneous varieties G/ P for
maximal parabolic groups P in Lie groups of type A,, n < 10, By, Cy, Dy, n < 7, Eg, E7 , Eg, Fy
and Ga. These numbers are identified to be polynomials in the values of Riemann zeta-function
¢(k) for natural arguments k > 2.

1. INTRODUCTION

The article is devoted to the computations of Apery numbers for the quantum differential equa-
tion of homogeneous varieties, so first we introduce these 3 notions.

Let X be a Fano variety of index 1 —Kx = rH, and ¢ be a coordinate on the anticanonical
torus Z — Kx ® C* = G,;, € Pic( X} ®C*, and D = qf be an invariant vector field. Cohomologies
H"(X) are endowed with the structure of quantum multiplication *, and associativity of * implies
that first Dubrovin’s connection given by

(1.1) D¢ = H ¢

is flat.

If we replace in equation 1.1 quantum multiplication with the ordinary cup-product, then it’s
solutions are constant Lefschetz coprimitive (with respect to H) classes in H'(X). Dimension u
of the space of homolorphic solutions of 1.1 is the same and equal to the number of admissible
initial conditions (of the recursion on coefficients) modulo g, i.e. the rank of the kernel of cup-
multiplication by H in H*(X), that is the dimension of coprimitive Lefschetz cohomologies.

Solving equation 1.1 by Newton’s method one obtains a matrix-valued few-step recursion recon-
structing all the holomorphic solutions from these initial Conditions

Givental’s theorem states that the solution A =143 - a™g” associated with the primitive
class 1 € H°(X) is the I-series of the variety X (the generating function counting some rational
curves of X). Choose a basis of other solutions A, ..., A,_; associated with homogeneous primitive
classes of nondecreasing codimension *

Put A=5> -, al™t” and A; = Yoo a,gn)t”. We call the number
o,

Hm ——

n—oo a,(n)
i-th Apery constant after the renown work [2], where ((3) and ¢(2) were shown to be of that kind
for some differential equations and such a presentation was used for proving the irrationality of
these two numbers. If there is no choosen basis, for any coprimitive class v one still may consider

10ne could also consider other bases, e.g. it is often exists a base with ith element B; determined by the condition
B; = t*(modt*). But the answer in this base looks worse. Finally one may reject to choose any basis and express
everything invariantly in the dual space of primitive classes.
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the solution A, =3 - alMgn = = Eroly + X AMgm) and the limit

G

(1.2) Apery(y) = lim ~c
Defined in that way, Apery is a linear map from coprimitive cohomologies to C. A linear map
on coprimitive cohomologies is dual ? to some (nonhomogeneous) primitive cohomology class with
coefficients in C. We name it Apery characteristic class A(X) € HSMmX (X C).

Consider the homogeneous ring R = Q[cy, ¢35, ¢3,...],dege; = ¢ and a map ev : R — C sending
c1 to Euler constant C ?, and ¢; to ¢ (7).

The main conjecture we verify is the following

Conjecture 1.3. Let X be any Fano variety and v € H'(X) be some coprimitive with respect
to —Kx homogeneous cohomology class of codimension n. Consider two solutions of quantum
D- module Ao associated with 1 and A, associated with v. Then Apery number for A e

Fing m) is equal to ev(f,) for some homogeneous polynomial f, € R™ of degree n.

Actually, in our case there is no Euler constant contributions, and the conjecture seems too
strong to be true - it would imply that some of differential equations studied in [1] has non-
geometric origin (at least come not from quantum cohomology), because their Apery numbers
does not seem to be of the kind described in the conjecture (e.g. Catalan’s constant, 7°, 7r3\/§).

From the other point of view, for toric varieties X the solutions of QDE are known to be pullbacks
of hypergeometric functions, coeflicients of hypergeometric functions are rational functions of I'-
values, and the Taylor expansion

(1.4) IOgI“(l-#a: C’:E+Zg

k=2

suggests all Apery constants would probably be rational functions in C' and ¢ (k). So whether one
believes in toric degenerations or hypergeometric pullback conjecture, he would find natural to

believe in 1.3. Also Apery limits like -2 432 (3) — 216 3 may appear as square roots” or factors

(convolutions with quadratic character or something) of geometric ones like -2 4322 (8)2 — 5am®.

This is not even the second paper (the computations of this paper were described by Golyshev
2-3 years ago) discussing the natural appearance of (-values in monodromies of QDEs. In case
of fourfolds X the expression of monodromies in terms of ¢(3),((2k) and characteristic numbers
of anticanonical section of X was given by van Straten [14], I-class for toric varieties appears in
Iritani’s work [9], and in general context in [10].

Let G be a (semi)simple Lie group, W be it’s Weyl group, P be a (maximal) parabolic subgroup
associated with the subset (or just one) of the simple roots of Dynkin diagram, and denote factor
G/P by X. X is a homogeneous Fano variety with rk Pic X equal to the number of chosen roots.
In case when G is simple and P is maximal we have Pic X = ZH, where H is an ample generator,
I{X ='—r

For homogeneous varieties with small number of roots in Dynkin diagram (being more precise,
with not too big total dimension of cohomologies) by the virtue of Peterson’s version of Quantum

2One may choose between Poincare and Lefschetz dualities. We prefer the first one.
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