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Squashed geometries

String theory provides a dual description of the same physics: worldsheet
and target space

In very few cases we can access both and learn from both sides

Most of these cases (flat spacetime, group manifolds, plane waves) have a
high degree of symmetry

More symmetry means more structure (and simpler analysis)

Can we break part of this symmetry, at the same time preserving the “nice”
structures?
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Three dimensional gravity

Three–dimensional gravity provides a simple laboratory for quantum gravity

There are no propagating gravitons

There are non-trivial solutions (BTZ black holes)

Pure gravity solutions are always locally AdS3

Anti–de Sitter spaces appear in near-horizon geometries of various
D–brane configurations

AdS3 appears as an exact string theory background (Wess–Zumino–Witten
model)
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TMG

Three–dimensional AdS spaces also appear as solutions of topologically
massive gravity (TMG)

Stmg(g) =
1

16πG

∫
d3x

√
−g

(
R +

2
ℓ2

)
+μ SCS

forμ ̸= 1 the anti–de Sitter solution is unstable, but there are two warped
solutions with metric of the type

ds2[WAdS3] = R2
[
dω2 − cosh2ω dτ2 +

1

cosh2Θw

(
dβ + sinhω dτ

)2
]

whereΘw is a deformation parameter :
forΘw = 0 this is AdS3

forΘw → ∞ this is AdS2 × S1
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Today’s talk

Geometry of squashed groups in general (and AdS3 in particular)

T–duality acts on principal fibrations

Type II solutions with squashed AdS3 and S3

Integrability (without RR fields)
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The Geometry – Group Manifold

Consider a group manifold G (e.g. AdS3 or S3)

There is a bi-invariant metric such that the isometry group is G × G

The metric can be written in terms of the currents Ja that generate half of
the symmetry

ds2[G] =
dim G∑
a=1

Ja ⊗ Ja

If H ⊂ G is compact, G is the total space of a Hopf fibration over G/H:

H −−−−→ Gy
G/H

Today H = U(1) and G/H = S2,AdS2.
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The Geometry – Squashed group

SqG is a deformation of G described by the same currents

The symmetry group is G(R)× U(1) (only left-invariance)

The metric can be written in terms of the same Ja currents. Fix dim G = 3

ds2[SqG] = J1 ⊗ J1 + J2 ⊗ J2 +
1

cosh2Θw
J3 ⊗ J3

SqG is the base space for a fibration that has G × S1 total space

S1 × S1 −−−−→ G × S1y
G/U(1)

choose embedding−−−−−−−−−−→

S1 −−−−→ G × S1y
SqG

the embedding of S1 ↪→ S1 × S1 is described byΘw
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T-duality to “undo” fibrations

Construct NLSM on squashed groups via T-duality from principal chiral
models with group manifold target space G

We are not considering here conformal models: we start with the metric
only (a B-field will appear)

Main observation: if the space has a S1 fibration structure

S1 −−−−→ My
N

T-duality along the fiber will “undo” the fibration and give a direct product

M̃ = N × S1
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T-duality on the worldsheet

If there is a S1 fibration, the action can be written as

S[ui, z] =
∫
Σ

Gij(u) dui ∧ ∗duj +
(
dz + fi(u) dui) ∧ ∗

(
dz + fj(u) duj) ,

which is to say, the metric has a block form(
Gij(u) + fi(u)fj(u) fi(u)

fi(u) 1

)
.

we want to T-dualize the S1 described by z.
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T-duality on the worldsheet

introduce a gauge field A and a Lagrange multiplier

S[ui, A, z̃] =
∫
Σ

Gij(u) dui ∧ ∗duj +
(
A + fi(u) dui)∧ ∗

(
A + fi(u) dui)− 2z̃ dA .

The EOM for z̃ give
dA = 0 ⇒ A = dz ,

which leads back to the original action

The EOM for A gives

∗dz̃ = A + fi(u) dui = dz + fi(u) dui .
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T-duality on the worldsheet

The resulting action describes a direct product metric plus a B field

S[ui, z̃] =
∫
Σ

Gij(u) dui ∧ ∗duj + dz̃ ∧ ∗dz̃ − 2 dz̃ ∧ fi(u) dui

as promised

S1 −−−−→ My
N

−−−−→
T-duality

M̃ = N × S1
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Squashed groups

start with
U(1) −−−−→ G × U(1)y

SqG

the fiber is a linear combination of the U(1) and one direction in the
Cartan of G

The metric on SqG is

ds2[SqG] = ds2[G] + tanh2Θ jC ⊗ jC ,

whereΘ measures the combination of the two U(1):
forΘ → 0, SqG = G
forΘ → ∞, SqG = G/U(1)× U(1).
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Initial setup

Consider the superposition of a D1/D5 system with a magnetic monopole
and a plane wave
This is the T–dual of the D = 4 extremal dyonic black string.
The field content is

ds2 = H1/2
1 H1/2

5

(
H−1

1 H−1
5

(
du dv + K du2

)
+ H−1

5

(
dy2

1 + . . . dy2
4

)
+

+ V−1 (dψ + Ai dxi)2
+ V

(
dx2

1 + . . . dx2
3

))
e2φ = H−1

1 H5 , F[3] = H−1
1 dt ∧ du ∧ dv − Bi dxi ∧ dψ

where H1(x),H5(x), K(x), V(x), Ai(x), Bi(x) are harmonic functions of the
transverse coordinates xi, i = 1, 2, 3 and

dB = − ∗ dH5 , dA = − ∗ dV
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Initial setup

Consider the near–horizon limit

ds2 = QmQ1/2
1 Q1/2

5

(
− dτ2 + dω2 + Qw dσ2 + 2Qw

1/2 sinhω dσ dτ
)

+ QmQ1/2
1 Q1/2

5

(
dθ2

+ dφ2 + dψ2 + 2 cosθ dψ dφ
)

+ Q1/2
1 Q−1/2

5

(
dy2

1 + · · ·+ dy2
4

)
,

F[3] = QmQ1/2
1 Q1/2

5

(
coshω dτ ∧ dω ∧ dσ + sinθ dφ ∧ dψ ∧ dθ

)
.

The geometry is AdS3 × S3 × T4

The radii are fixed by the monopole charge Qm (quantized)

The plane wave charge appears in the AdS3 part
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Hopf–T–duality

We want to use the fact that

S1 −−−−→ AdS3 × S1y
WAdS3

Single out a AdS3 × S1 part from the ten-dimensional geometry

Implement Hopf–T–duality.
If the geometry is the total space for a S1 fibration and there are only
Ramond–Ramond fields, the T–dual along the fiber has geometry B × S1.

S1 −−−−→ Ey
B

+ RR fields T–dual−−−→
(
B × S1)+ RR and NS fields
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Hopf–T–duality

Starting from AdS3 × S1:

ds2 = R2
(
− dτ2 + dω2 + Qw dσ2 + 2

√
Qw sinhω dσ dτ

)
+

√
Q1

Q5
dy2

1

F[3] = R2 coshω dτ ∧ dω ∧ dσ

T–duality
we obtain the metric we want: WAdS3 × S1

ds2 = R2
[
dω2 − cosh2ω dτ2 +

1

cosh2Θw

(
dβ + sinhω dτ

)2
]
+ dζ2

w

F4 =
R2

cosh2Θw
coshω dω ∧ dτ ∧ dβ ∧ dζw ,

F2 = R tanhΘw coshω dω ∧ dτ ,

H3 = R tanhΘw coshω dω ∧ dτ ∧ dζw .
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Observations

Having started from a pure RR background, the geometry is globally
WAdS3. We can get orbifolds by adding NS fluxes in the initial background

The parameters of the solution are understood in terms of charges:

R2 = Qm

√
Q1Q5 sinh2Θw = 4QwQmQ5

the quantization of the deformation corresponds to the quantization of the
linear combination of the fibers.

The group SL2(R) has three different types of generators. Each can be
chosen for this construction and lead to different geometries.

The same construction can be used to describe other squashed groups
(simplest case: squashed S3)
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Currents and EOM

Consider the PCM for a group G

S = −1
2

∫
Σ

Tr[dg(x, t) ∧ ∗dg−1(x, t)] ,

where g is a map from the worldsheet to the group g :Σ → G
The equations of motion are

d∗(g−1 dg) = d∗(dg g−1) = 0 .

these are the conservation laws for two currents

j = g−1 dg , j = − dg g−1 .

the currents are flat and thus fulfill the Maurer–Cartan (MC) equations:

dj + j ∧ j = 0 , dj + j ∧ j = 0 .

Conservation and flatness are the reasons for the integrability.
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Lax current

We will consider only the left currents. The right side works in the same way

Introduce the one-parameter family of currents

J(x, t;ζ) = − ζ
1 −ζ2 (ζ j(x, t) + ∗j(x, t))

whereζ ∈ C is the spectral parameter.

The flatness of J is an equation for the components (Jx, Jt), the so-called Lax
equations:

∂t Jx − ∂x Jt + [Jt, Jx] = 0

this is a Lax Pair.
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Lax current

The flatness of J and J implies both the EOM and the MC equations.

Conversely, imposing the EOM and MC equations results in the flatness of
the currents.

This can be easily verified by observing that

dJ(ζ) + J(ζ) ∧ J(ζ) =
ζ

ζ2 − 1
(d∗j +ζ (dj + j ∧ j)) .

We started with a conserved current. Its flatness implies the existence of a
one-parameter family of flat currents.

Algebraically we passed from j ∈ g to the loop algebra J ∈ g⊗ C[ζ,ζ−1
]

We literally have infinitely more currents (after Fourier transform).
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Wilson line

We have constructed infinite currents. Where are the conserved charges?

Since J(ζ) is flat we can introduce a Wilson line as the path-ordered
exponential

W(x, t|x0, t0;ζ) = P

{
exp

[∫
C:(x0,t0)→(x,t)

J(ξ,τ;ζ)

]}
,

and
J(x, t;ζ) = W−1(x, t;ζ) dW(x, t;ζ) .

This generalizes the relation j = g−1 dg to the loop algebra.

For spin chain experts: this is the transfer matrix.
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Wilson loop and conserved charges

We can now define a one-parameter family of conserved charges:

Q(t;ζ) = W(∞, t| −∞, t;ζ) = P

{
exp

[∫ ∞

−∞
Jx(x, t;ζ) dx

]}
.

note that Q goes “all around” the worldsheet. This is a Wilson loop
Key point: using the Lax equations and with appropriate BC, the
one-parameter charge Q(t;ζ) is conserved

d
dt

Q(t;ζ) = 0

Expand onζ and find an infinite set of conserved charges Qn

Q(t;ζ) = 1 +
∞∑

n=0

ζn+1Q(n)(t) .

for which
d
dt

Q(n)(t) = 0, ∀ n = 0, 1, . . . .
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Integrability of the PCM (in short)

The principal chiral model has two conserved currents corresponding to the
G × G symmetry of the action

These currents are also flat

Out of these one can construct two one-parameter families of flat currents

The Wilson loops of these currents are time-independent

The Fourier development gives infinite conserved charges

These charges close under an infinite-dimensional algebra (Yangian or affine)

the g⊕ g symmetry of the action is the zero mode of the ĝ⊕ ĝ symmetry of
the equations of motion.
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Integrability and squashed groups

How much of this structure remains after T–duality?

We have a linear transformation of the current components J(ζ) 7→ J̃(ζ)
that leaves the (on-shell) flatness conditions invariant:

d̃J + J̃ ∧ J̃ = 0 ,

concretely we define T–dual Lax currents J̃(ζ) by imposing the condition

∗dz̃ = dz + fi(u) dui .

Flatness is the key. This is preserved: the system is still integrable.

The condition is not local (mix time and space derivatives). The resulting
charges are all non-local and do dot correspond to isometries.
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A technical remark

The current that we use for T–duality does not commute with the others

some of the components of J depend explicitly on z, when we have an
equation for dz.

We need to perform a gauge transformation

J′ = h−1J h + h−1 dh ,

after the transformation, the new current has a zero–mode (in theζ
expansion)

J̃′(ζ) = h−1 dh −Λ(ζ)h−1jh
∣∣
dz=∗d̃z−fi(u) dui = J̃′(0) −Λ(ζ)̃j .

for the experts: in the hierarchies we will have to covariantize w.r.t. J̃′(0).
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The simplest example: Squashed three-sphere

J̃′1
(ζ) = −ıΛ(ζ) sinθ dφ ,

J̃′2
(ζ) = −ıΛ(ζ) dθ ,

J̃′3
(ζ) = −ı

[
(1 +Λ(ζ))

(
dα + cosθ dφ

cosh2Θ
+ tanhΘ ∗d̃z

)
− cosθ dφ

]
,

J̃′4
(ζ) = −ı tanhΘΛ(ζ)

(
∗d̃z − tanhΘ

(
dα + cosθ dφ

))
,

and

J̃1(ζ) = −ıΛ(ζ)
[ 1

cosh2Θ
cosφ sinθ dα − sinφ dθ + tanh2Θ cosφ sinθ cosθ dφ + tanhΘ cosφ sinθ ∗d̃z

]
,̃J2(ζ) = ıΛ(ζ)

[ 1

cosh2Θ
sinφ sinθ dα + cosφ dθ − tanh2Θ sinφ sinθ cosθ dφ + tanhΘ sinφ sinθ ∗d̃z

]
,

J̃3(ζ) = ıΛ(ζ)

[
1

cosh2Θ
cosθ dα +

(
1 − tanh2Θ cos2θ

)
dφ + tanhΘ cosθ ∗d̃z

]
,

J̃4(ζ) = ı tanhΘΛ(ζ)
(
∗d̃z − tanhΘ

(
dα + cosθ dφ

))
.

we recover SU(2)× SU(2)× U(1) currents even if the isometry is
SU(2)× U(1)× U(1)
this is promoted to affine when looking at the non-local charges
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Symmetries of the squashed group model

The action with squashed group target space is obtained via T–duality

T–duality preserves the integrable structure of the PCM

The full ĝ⊕ ĝ symmetry is preserved

Only part of the zero-modes are realized as isometries g⊕ u(1)

The other zero modes are non-local
Adding RR fluxes does not change the overall picture:

NS and R sectors are separated under T–duality
We already know (from the previous section) the expressions for the RR fields
The PCM + RR fields is integrable and has an infinite symmetry
This infinite symmetry will be preserved
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The Green–Schwarz action

LSqS3

NS = − iθ̄1
(
√

hhij − ε
ijΓ11)

{ 5∑
a=0

ei
aγa

[
∂j −

1

2R
γ5[4ej

3] cos 2ϖ +
1

4R
γ34

(
ej

5 − 2 cotθej
4
)]

9∑
m=6

ei
mγm

[
∂j −

1

2R
γ9[4ej

3] sin 2ϖ
] }
θ1

+ iθ̄2
(
√

hhij − ε
ijΓ11)

{ z∑
a=0

ei
aγa

[
∂j +

1

2R
γz[4ej

3] cos 2ϖ −
1

4R
γ34

(
ej

z − 2 cotθej
4
)]

+
z̄∑

m=6

ei
mγm

[
∂j −

1

2R
γz̄[4ej

3] sin 2ϖ
] }
θ2

− iθ̄1
(
√

hhij − ε
ijΓ11)

{ 5∑
a=0

ei
aγa

[
∂j +

1

4R
(γ5[4ej

3] −γz[4ej
3]
) −

1

4R
γ34

( 1 −γ5z

2

)(
ej

z − 2 cotθej
4
)]

+
9∑

m=6

ei
mγa

[
∂j +

1

4R
(γ5[4ej

3]
+γz[4ej

3]
) −

1

4R
γ34

( 1 +γ9̄z

2

)(
ej

z − 2 cotθej
4
)]}

θ2

+ iθ̄2
(
√

hhij − ε
ijΓ11)

{ z∑
a=0

ei
aγa

[
∂j +

1

4R
(γ5[4ej

3] −γz[4ej
3]
) +

1

4R
γ34

( 1 +γ9̄z

2

)(
ej

5 − 2 cotθej
4
)]

+

z̄∑
m=6

ei
aγa

[
∂j −

1

4R
(γ5[4ej

3]
+γz[4ej

3]
) +

1

4R
γ34

( 1 −γ5z

2

)(
ej

5 − 2 cotθej
4
)]}

θ1

(1)
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Integrability for the full superstring

The Green–Schwarz superstring on AdS3 × S3 can be understood in terms
of the sigma model on the supergroup PSU(1, 1|2)
there is a Z4 grading, i.e. the Lie algebra decomposes into the form

g =

3⊕
n=0

gn

the decomposition works for the Noether currents and is needed to impose
a flatness condition

the same decomposition (and flatness condition) is preserved by T-duality
precisely in the same way as before

we obtain a set of (non-local) currents for the squashed group that still
generate psu(1, 1|2).
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Summary

Squashed group manifolds have met renewed attention during the last years
Topologically massive gravity
Schrödinger spacetimes

They can be understood as natural deformations of group manifolds

Using the Hopf fibration structure we can construct type II backgrounds.

Using the Lie algebra structure we can construct exact heterotic
backgrounds.

Using both structures we can prove their classical integrability
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The end

.
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Thank you

for your attention
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