Squashed group manifolds in String Theory

brane realization and classical integrability

Domenico Orlando

CERN

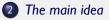
IPMU - 4 December 2012

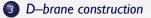
Based on: [arXiv:1003.0712, arXiv:1011.1771, arXiv:1104.0738, arXiv:1208.3680]

Collaboration with:

I.Kawaguchi (Kyoto),S.Reffert (CERN), L.Uruchurtu (Imperial College), K.Yoshida (Kyoto)

Why	The idea	Туре II	Integrability	Conclusion
0000	0000000	00000	00000000000	
Outline				





Integrability of the Principal Chiral Model

Why	The idea	Туре II	Integrability	Conclusion
0000	0000000	00000	0000000000	
Outline				

2 The main idea

3 D-brane construction

Integrability of the Principal Chiral Model

5 Conclusion

Why ●○○○	<i>The idea</i>	Туре II 00000	Integrability 00000000000	Conclusion
Squashe	ed geometries			

- String theory provides a dual description of the same physics: worldsheet and target space
- In very few cases we can access both and learn from both sides
- Most of these cases (flat spacetime, group manifolds, plane waves) have a high degree of symmetry
- More symmetry means more structure (and simpler analysis)
- Can we break part of this symmetry, at the same time preserving the "nice" structures?

- Three-dimensional gravity provides a simple laboratory for quantum gravity
- There are no propagating gravitons
- There are non-trivial solutions (BTZ black holes)
- Pure gravity solutions are always locally AdS₃
- Anti-de Sitter spaces appear in **near-horizon geometries** of various D-brane configurations
- AdS₃ appears as an **exact string theory background** (Wess–Zumino–Witten model)

Why	The idea	Туре II	Integrability	Conclusion
ooeo	0000000	00000	00000000000	
TMG				

 Three–dimensional AdS spaces also appear as solutions of topologically massive gravity (TMG)

$$S_{trng}(g) = \frac{1}{16 \pi G} \int d^3 x \sqrt{-g} \left(R + \frac{2}{\ell^2} \right) + \mu S_{CS}$$

• for $\mu \neq 1$ the anti-de Sitter solution is unstable, but there are **two warped** solutions with metric of the type

$$ds^{2}[WAdS_{3}] = R^{2} \left[d\omega^{2} - \cosh^{2} \omega d\tau^{2} + \frac{1}{\cosh^{2} \Theta_{w}} \left(d\beta + \sinh \omega d\tau \right)^{2} \right]$$

where Θ_w is a deformation parameter:

- for $\Theta_w = 0$ this is AdS₃
- for $\Theta_w \to \infty$ this is $AdS_2 \times S^1$

Why	The idea	Туре II	Integrability	Conclusion
○○○●	0000000	00000	00000000000	
Today's t	alk			

- Geometry of squashed groups in general (and AdS₃ in particular)
- T-duality acts on principal fibrations
- Type II solutions with squashed AdS₃ and S³
- Integrability (without RR fields)

Why 0000	The idea	Туре II 00000	Integrability 000000000000	Conclusion
Outline				

2 The main idea

3 D-brane construction

Integrability of the Principal Chiral Model

5 Conclusion

Why	The idea	Туре II	Integrability	Conclusion
0000	000000	00000	00000000000	00
The Geometry – Group Manifold		Manifold		

- Consider a group manifold G (e.g. AdS₃ or S³)
- There is a bi-invariant metric such that the isometry group is $G \times G$
- The **metric** can be written **in terms of the currents** J_a that generate half of the symmetry

$$ds^2[G] = \sum_{a=1}^{\dim G} J_a \otimes J_a$$

• If $H \subset G$ is compact, G is the total space of a Hopf fibration over G/H:

$$H \longrightarrow G$$

$$\downarrow$$
 G/H

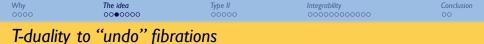
• Today H = U(1) and $G/H = S^2$, AdS₂.

- SqG is a deformation of G described by the same currents
- The symmetry group is $G(\mathbb{R}) \times U(1)$ (only left-invariance)
- The metric can be written in terms of the same J_a currents. Fix dim G = 3

$$ds^{2}[SqG] = J_{1} \otimes J_{1} + J_{2} \otimes J_{2} + \frac{I}{\cosh^{2} \Theta_{w}} J_{3} \otimes J_{3}$$

• SqG is the base space for a fibration that has $G \times S^1$ total space

the **embedding of** $S^1 \hookrightarrow S^1 \times S^1$ is described by Θ_w



- Construct NLSM on squashed groups via T-duality from principal chiral models with group manifold target space G
- We are not considering here conformal models: we start with the **metric only** (a *B*-field will appear)
- Main observation: if the space has a S¹ fibration structure

$$S^1 \longrightarrow M$$

$$\downarrow$$
 N

• T-duality along the fiber will "undo" the fibration and give a direct product

$$\widetilde{M} = N \times S^{\dagger}$$

• If there is a S¹ fibration, the action can be written as

$$S[u^i, z] = \int_{\Sigma} G_{ij}(u) \, \mathrm{d} u^i \wedge * \mathrm{d} u^j + \left(\mathrm{d} z + f_i(u) \, \mathrm{d} u^j \right) \wedge * \left(\mathrm{d} z + f_j(u) \, \mathrm{d} u^j \right) \,,$$

which is to say, the metric has a block form

$$\left(\begin{array}{c|c} G_{ij}(u) + f_i(u)f_j(u) & f_i(u) \\ \hline f_i(u) & 1 \end{array}\right)$$

• we want to T-dualize the S^1 described by z.

• introduce a gauge field A and a Lagrange multiplier

$$S[u^{i}, A, \widetilde{z}] = \int_{\Sigma} G_{ij}(u) du^{i} \wedge * du^{j} + (A + f_{i}(u) du^{i}) \wedge * (A + f_{i}(u) du^{i}) - 2\widetilde{z} dA.$$

• The EOM for \widetilde{z} give

$$dA = 0 \quad \Rightarrow \quad A = dz$$
,

which leads back to the original action

• The EOM for A gives

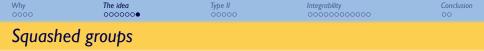
$$*d\tilde{z} = A + f_i(u) du^i = dz + f_i(u) du^i.$$

• The resulting action describes a direct product metric plus a B field

$$S[u^{i},\widetilde{z}] = \int_{\Sigma} G_{ij}(u) \, du^{i} \wedge * du^{j} + d\widetilde{z} \wedge * d\widetilde{z} - 2 \, d\widetilde{z} \wedge f_{i}(u) \, du^{i}$$

• as promised

$$\begin{array}{ccc} \mathsf{S}^{\mathsf{I}} & & & & \\ & & \downarrow & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$



start with

$$\begin{array}{ccc} U(1) & \longrightarrow & G \times U(1) \\ & & \downarrow \\ & & & \\$$

the fiber is a linear combination of the U(1) and one direction in the Cartan of ${\cal G}$

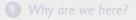
• The metric on SqG is

$$ds^{2}[SqG] = ds^{2}[G] + tanh^{2} \ominus j_{C} \otimes j_{C},$$

where \bigcirc measures the combination of the two U(1):

- for $\boxdot \rightarrow$ 0, SqG = G
- for $\Theta \to \infty$, SqG = G/U(1) × U(1).

Why	The idea	Туре II	Integrability	Conclusion
0000	0000000	00000	00000000000	
Outline				



2 The main idea

Integrability of the Principal Chiral Model

Why	The idea	Туре II	Integrability	Conclusion
0000	0000000	●0000	00000000000	
Initial setup				

- Consider the superposition of a D_1/D_5 system with a magnetic monopole and a plane wave
- This is the T-dual of the D = 4 extremal dyonic black string.
- The field content is

$$ds^{2} = H_{1}^{1/2} H_{5}^{1/2} \left(H_{1}^{-1} H_{5}^{-1} \left(du \, dv + K \, du^{2} \right) + H_{5}^{-1} \left(dy_{1}^{2} + \dots dy_{4}^{2} \right) + V^{-1} \left(d\psi + A_{i} \, dx^{i} \right)^{2} + V \left(dx_{1}^{2} + \dots dx_{3}^{2} \right) \right)$$

$$e^{2\varphi} = H_1^{-1}H_5, \qquad F_{[3]} = H_1^{-1} dt \wedge du \wedge dv - B_i dx^i \wedge d\psi$$

where $H_1(x)$, $H_5(x)$, K(x), V(x), $A_i(x)$, $B_i(x)$ are harmonic functions of the transverse coordinates x_i , i = 1, 2, 3 and

$$dB = - * dH_5, \qquad \qquad dA = - * dV$$

Why	The idea	Type II	Integrability	Conclusion
0000	0000000	⊙●○○○	00000000000	
Initial set	up			

• Consider the **near-horizon limit**

$$ds^{2} = Q_{m}Q_{1}^{1/2}Q_{5}^{1/2}\left(-d\tau^{2} + d\omega^{2} + Q_{w}d\sigma^{2} + 2Q_{w}^{1/2}\sinh\omega d\sigma d\tau\right) + Q_{m}Q_{1}^{1/2}Q_{5}^{1/2}\left(d\theta^{2} + d\varphi^{2} + d\psi^{2} + 2\cos\theta d\psi d\varphi\right) + Q_{1}^{1/2}Q_{5}^{-1/2}\left(dy_{1}^{2} + \dots + dy_{4}^{2}\right),$$

 $F_{[3]} = Q_m Q_1^{1/2} Q_5^{1/2} \left(\cosh \omega \, \mathrm{d} \, \tau \, \wedge \mathrm{d} \omega \wedge \mathrm{d} \, \sigma + \sin \, \theta \, \mathrm{d} \, \phi \wedge \mathrm{d} \, \psi \wedge \mathrm{d} \, \theta \, \right) \, .$

- The geometry is $AdS_3 \times S^3 \times T^4$
- The radii are fixed by the monopole charge Q_m (quantized)
- The plane wave charge appears in the AdS₃ part

$$S^{1} \longrightarrow AdS_{3} \times S^{1}$$

$$\downarrow$$

$$WAdS_{3}$$

• We want to use the fact that

 $\bullet\,$ Single out a AdS_3 $\times\,S^1\,$ part from the ten-dimensional geometry

Implement Hopf-T-duality.
 If the geometry is the total space for a S¹ fibration and there are only
 Ramond-Ramond fields, the T-dual along the fiber has geometry B × S¹.

$$S^{1} \longrightarrow E$$

 $\downarrow + RR \text{ fields} \xrightarrow{T-dual} (B \times S^{1}) + RR \text{ and NS fields}$
 B

Why	The idea	Туре II	Integrability	Conclusion
0000	0000000	000●0	೦೦೦೦೦೦೦೦೦೦೦	
Hopf-T-di	ıality			

• Starting from $AdS_3 \times S^1$:

$$ds^{2} = R^{2} \left(-d\tau^{2} + d\omega^{2} + Q_{w} d\sigma^{2} + 2\sqrt{Q_{w}} \sinh \omega d\sigma d\tau \right) + \sqrt{\frac{Q_{1}}{Q_{5}}} dy_{1}^{2}$$

$$F_{[3]} = R^{2} \cosh \omega d\tau \wedge d\omega \wedge d\sigma$$

T-duality

 \bullet we obtain the metric we want: $\mathsf{WAdS}_3\times\mathsf{S}^1$

$$ds^{2} = R^{2} \left[d\omega^{2} - \cosh^{2} \omega d\tau^{2} + \frac{1}{\cosh^{2} \Theta_{w}} \left(d\beta + \sinh \omega d\tau \right)^{2} \right] + d\zeta_{w}^{2}$$

$$F_{4} = \frac{R^{2}}{\cosh^{2} \Theta_{w}} \cosh \omega d\omega \wedge d\tau \wedge d\beta \wedge d\zeta_{w},$$

$$F_{2} = R \tanh \Theta_{w} \cosh \omega d\omega \wedge d\tau ,$$

$$H_{3} = R \tanh \Theta_{w} \cosh \omega d\omega \wedge d\tau \wedge d\zeta_{w}.$$

Why	The idea	Type II	Integrability	Conclusion
0000	0000000	0000●	00000000000	
Observatio	ns			

- Having started from a pure RR background, the geometry is globally WAdS₃. We can get orbifolds by adding NS fluxes in the initial background
- The parameters of the solution are understood in terms of charges:

$$R^2 = Q_m \sqrt{Q_1 Q_5} \qquad \qquad \sinh^2 \Theta_w = 4 Q_w Q_m Q_5$$

- the quantization of the deformation corresponds to the quantization of the linear combination of the fibers.
- The group $SL_2(\mathbb{R})$ has three different types of generators. Each can be chosen for this construction and lead to different geometries.
- The same construction can be used to describe other squashed groups (simplest case: squashed S³)

Why 0000	The idea 0000000	Туре II 00000	Integrability	Conclusion
Outline				

Why are we here?

2 The main idea

3 D-brane construction

Integrability of the Principal Chiral Model

5 Conclusion

Why	The idea	Туре II	Integrability	Conclusion
0000	0000000	00000	●0000000000	
Currents	and EOM			

• Consider the **PCM for a group** G

$$S = -\frac{1}{2} \int_{\Sigma} \operatorname{Tr}[\operatorname{dg}(x,t) \wedge * \operatorname{dg}^{-1}(x,t)],$$

where g is a map from the worldsheet to the group $g: \Sigma \to G$

• The equations of motion are

$$d*(g^{-1} dg) = d*(dgg^{-1}) = 0.$$

• these are the conservation laws for two currents

$$j = g^{-1} dg$$
, $\bar{j} = - dg g^{-1}$.

• the currents are flat and thus fulfill the Maurer–Cartan (MC) equations:

$$dj + j \wedge j = 0, \qquad \qquad d\bar{j} + \bar{j} \wedge \bar{j} = 0.$$

Conservation and flatness are the reasons for the integrability.

Why	The idea	Туре II	Integrability	Conclusion
0000	0000000	00000	○●○○○○○○○○○	
Lax current				

- We will consider only the left currents. The right side works in the same way
- Introduce the one-parameter family of currents

$$J(x,t; \zeta) = -\frac{\zeta}{1-\zeta^2} \left(\zeta j(x,t) + *j(x,t) \right)$$

where $\zeta \in \mathbb{C}$ is the spectral parameter.

• The flatness of *J* is an equation for the components (*J_x*, *J_t*), the so-called Lax equations:

$$\partial_t J_x - \partial_x J_t + [J_t, J_x] = 0$$

this is a Lax Pair.

Why	The idea	Туре II	Integrability	Conclusion
0000	0000000	00000	○○●○○○○○○○○	
Lax current				

- The flatness of J and \overline{J} implies both the EOM and the MC equations.
- Conversely, imposing the EOM and MC equations results in the flatness of the currents.
- This can be easily verified by observing that

$$dJ(\zeta) + J(\zeta) \wedge J(\zeta) = \frac{\zeta}{\zeta^2 - 1} (d*j + \zeta (dj + j \wedge j)) .$$

- We started with a conserved current. Its flatness implies the existence of a one-parameter family of flat currents.
- Algebraically we passed from $j \in \mathfrak{g}$ to the loop algebra $J \in \mathfrak{g} \otimes \mathbb{C}[\zeta, \zeta^{-1}]$
- We literally have infinitely more currents (after Fourier transform).

Why 0000	The idea 0000000	Туре II 00000	Integrability	Conclusion
Wilson line				

- We have constructed infinite currents. Where are the **conserved charges**?
- Since $J(\zeta)$ is flat we can introduce a Wilson line as the path-ordered exponential

$$W(x,t|x_0,t_0;\,\zeta\,) = \mathsf{P}\left\{\exp\left[\int_{\mathcal{C}:(x_0,t_0)\to(x,t)} J(\,\xi\,,\,\tau\,;\,\zeta\,)\right]\right\}\,,$$

and

$$J(x,t; \zeta) = W^{-1}(x,t; \zeta) dW(x,t; \zeta).$$

• This generalizes the relation $j = g^{-1} dg$ to the loop algebra.

• For spin chain experts: this is the transfer matrix.

Wilson loop and conserved charges

The idea

• We can now define a one-parameter family of conserved charges:

$$Q(t; \zeta) = W(\infty, t | -\infty, t; \zeta) = P\left\{\exp\left[\int_{-\infty}^{\infty} J_{x}(x, t; \zeta) dx\right]\right\}.$$

- note that Q goes "all around" the worldsheet. This is a Wilson loop
- Key point: using the Lax equations and with appropriate BC, the one-parameter charge Q(t; ζ) is conserved

$$\frac{\mathrm{d}}{\mathrm{d}t}Q(t;\,\zeta\,)=0$$

• Expand on ζ and find an infinite set of conserved charges Q_n

$$Q(t; \zeta) = 1 + \sum_{n=0}^{\infty} \zeta^{n+1} Q^{(n)}(t).$$

for which

Why

$$\frac{\mathrm{d}}{\mathrm{d}t}Q^{(n)}(t)=0,$$

 $\forall n = 0, 1, \dots$

Integrability

Domenico Orlando

Squashed group manifolds

- The principal chiral model has two **conserved currents** corresponding to the $G \times G$ symmetry of the action
- These currents are also **flat**
- Out of these one can construct two **one-parameter families of flat currents**
- The Wilson loops of these currents are time-independent
- The Fourier development gives infinite conserved charges
- These charges close under an infinite-dimensional algebra (Yangian or affine)
- the g ⊕ g symmetry of the action is the zero mode of the ĝ ⊕ ĝ symmetry of the equations of motion.

- How much of this structure remains after T-duality?
- We have a linear transformation of the current components $J(\zeta) \mapsto \widetilde{J}(\zeta)$ that leaves the (on-shell) flatness conditions invariant:

$$\mathrm{d}\widetilde{J}+\widetilde{J}\wedge\widetilde{J}=0\,,$$

• concretely we define T–dual Lax currents $\widetilde{J}(\zeta)$ by imposing the condition

$$*d\widetilde{z} = dz + f_i(u) \, du^i \, .$$

- Flatness is the key. This is preserved: the system is still integrable.
- The condition is not local (mix time and space derivatives). The resulting charges are all non-local and do dot correspond to isometries.

Why	The idea	Туре II	Integrability	Conclusion
0000	0000000	00000	○○○○○○●○○○○	
A techni	cal remark			

- The current that we use for T-duality does not commute with the others
- some of the components of *J* depend explicitly on *z*, when we have an equation for d*z*.
- We need to perform a gauge transformation

$$J' = h^{-1}Jh + h^{-1} dh,$$

 $\bullet\,$ after the transformation, the new current has a zero–mode (in the $\,\zeta\,$ expansion)

$$\widetilde{f}'(\zeta) = h^{-1} dh - \wedge (\zeta) h^{-1} jh \big|_{dz = *d\widetilde{z} - f_i(u) du^i} = \widetilde{f}'^{(0)} - \wedge (\zeta) \widetilde{j}.$$

• for the experts: in the hierarchies we will have to covariantize w.r.t. $\tilde{j}^{\prime(0)}$.

Why	The idea Type II Integ		Type II Integrability		Type II Integra		Type II		Conclusion
0000		0000000		00000		0000000000000	00		
			1 0						

The simplest example: Squashed three-sphere

$$\begin{split} \tilde{J}^{-1}(\zeta) &= -i \wedge (\zeta) \sin \theta \, \mathrm{d} \varphi \,, \\ \tilde{J}^{\prime 2}(\zeta) &= -i \wedge (\zeta) \, \mathrm{d} \theta \,, \\ \tilde{J}^{\prime 3}(\zeta) &= -i \left[(1 + \wedge (\zeta)) \left(\frac{\mathrm{d} \alpha + \cos \theta \, \mathrm{d} \varphi}{\cosh^2 \Theta} + \tanh \Theta \ast \mathrm{d} \tilde{z} \right) - \cos \theta \, \mathrm{d} \varphi \right] \,, \\ \tilde{J}^{\prime 4}(\zeta) &= -i \tanh \Theta \wedge (\zeta) \left(\ast \mathrm{d} \tilde{z} - \tanh \Theta \left(\mathrm{d} \alpha + \cos \theta \, \mathrm{d} \varphi \right) \right) \,, \end{split}$$

and

$$\begin{split} \widetilde{J}^{1}(\zeta) &= -\imath \wedge (\zeta) \Big[\frac{1}{\cosh^{2} \ominus} \cos \varphi \sin \theta \, \mathrm{d} \, \alpha - \sin \varphi \, \mathrm{d} \, \theta + \tanh^{2} \ominus \cos \varphi \sin \theta \, \cos \theta \, \mathrm{d} \phi + \tanh \ominus \cos \varphi \sin \theta \, \star \mathrm{d} \overline{z} \Big] \\ \widetilde{J}^{2}(\zeta) &= \imath \wedge (\zeta) \Big[\frac{1}{\cosh^{2} \ominus} \sin \varphi \sin \theta \, \mathrm{d} \, \alpha + \cos \varphi \, \mathrm{d} \, \theta - \tanh^{2} \ominus \sin \varphi \sin \theta \, \cos \theta \, \mathrm{d} \phi + \tanh \ominus \sin \varphi \sin \theta \, \star \mathrm{d} \overline{z} \Big] , \\ \widetilde{J}^{3}(\zeta) &= \imath \wedge (\zeta) \Big[\frac{1}{\cosh^{2} \ominus} \cos \theta \, \mathrm{d} \, \alpha + \left(1 - \tanh^{2} \ominus \cos^{2} \theta \right) \mathrm{d} \phi + \tanh \ominus \cos \theta \, \star \mathrm{d} \overline{z} \Big] , \\ \widetilde{J}^{4}(\zeta) &= \imath \tanh \ominus \wedge (\zeta) \left(\star \mathrm{d} \overline{z} - \tanh \ominus (\mathrm{d} \, \alpha + \cos \theta \, \mathrm{d} \phi) \right) . \end{split}$$

- we recover SU(2) \times SU(2) \times U(1) currents even if the isometry is SU(2) \times U(1) \times U(1)
- this is promoted to affine when looking at the non-local charges

Symmetries of the squashed group model

- The action with squashed group target space is obtained via T-duality
- T-duality preserves the integrable structure of the PCM
- The full $\widehat{\mathfrak{g}} \oplus \widehat{\mathfrak{g}}$ symmetry is preserved
- Only part of the zero-modes are realized as isometries $\mathfrak{g} \oplus \mathfrak{u}(1)$
- The other zero modes are non-local
- Adding RR fluxes does not change the overall picture:
 - NS and R sectors are separated under T-duality
 - We already know (from the previous section) the expressions for the RR fields
 - The PCM + RR fields is integrable and has an infinite symmetry
 - This infinite symmetry will be preserved

Why	The idea	Type II	Integrability	Conclusion
0000	0000000	00000	00000000000	00
T I C				
Ibo (-ro	on Schwarz a	tion		

$$\begin{split} \mathcal{L}_{NS}^{SqS^{3}} &= -i\bar{\theta}^{-1}(\sqrt{h}h^{ij} - e^{ij} \Gamma_{11})\Big\{\sum_{a=0}^{5} e_{i}^{a} \gamma_{a} \left[\partial_{j} - \frac{1}{2R} \gamma^{5[4}e_{j}^{3]}\cos 2\varpi + \frac{1}{4R} \gamma^{34}\left(e_{j}^{5} - 2\cot\theta e_{j}^{4}\right)\right] \\ &= \sum_{m=6}^{9} e_{i}^{m} \gamma_{m} \left[\partial_{j} - \frac{1}{2R} \gamma^{9[4}e_{j}^{3]}\sin 2\varpi\right] \Big\} \theta^{-1} \\ &+ i\bar{\theta}^{2}(\sqrt{h}h^{ij} - e^{ij} \Gamma_{11})\Big\{\sum_{a=0}^{z} e_{i}^{a} \gamma_{a} \left[\partial_{j} + \frac{1}{2R} \gamma^{z[4}e_{j}^{3]}\cos 2\varpi - \frac{1}{4R} \gamma^{34}\left(e_{j}^{z} - 2\cot\theta e_{j}^{4}\right)\right] \\ &+ \sum_{m=6}^{z} e_{i}^{m} \gamma_{m} \left[\partial_{j} - \frac{1}{2R} \gamma^{z[4}e_{j}^{3]}\sin 2\varpi\right] \Big\} \theta^{2} \\ &- i\bar{\theta}^{-1}(\sqrt{h}h^{ij} - e^{ij} \Gamma_{11})\Big\{\sum_{a=0}^{5} e_{i}^{a} \gamma_{a} \left[\partial_{j} + \frac{1}{4R} (\gamma^{5[4}e_{j}^{3]} - \gamma^{z[4}e_{j}^{3]}) - \frac{1}{4R} \gamma^{34} \left(\frac{1 - \gamma^{5z}}{2}\right) \left(e_{j}^{z} - 2\cot\theta e_{j}^{4}\right)\Big] \\ &+ \sum_{m=6}^{9} e_{i}^{m} \gamma_{a} \left[\partial_{j} + \frac{1}{4R} (\gamma^{5[4}e_{j}^{3]} + \gamma^{z[4}e_{j}^{3]}) - \frac{1}{4R} \gamma^{34} \left(\frac{1 - \gamma^{5z}}{2}\right) \left(e_{j}^{z} - 2\cot\theta e_{j}^{4}\right)\Big] \\ &+ i\bar{\theta}^{2}(\sqrt{h}h^{ij} - e^{ij} \Gamma_{11})\Big\{\sum_{a=0}^{z} e_{i}^{a} \gamma_{a} \left[\partial_{j} + \frac{1}{4R} (\gamma^{5[4}e_{j}^{3]} - \gamma^{z[4}e_{j}^{3]}) + \frac{1}{4R} \gamma^{34} \left(\frac{1 + \gamma^{9z}}{2}\right) \left(e_{j}^{z} - 2\cot\theta e_{j}^{4}\right)\Big] \Big\} \theta^{2} \\ &+ i\bar{\theta}^{2}(\sqrt{h}h^{ij} - e^{ij} \Gamma_{11})\Big\{\sum_{a=0}^{z} e_{i}^{a} \gamma_{a} \left[\partial_{j} + \frac{1}{4R} (\gamma^{5[4}e_{j}^{3]} - \gamma^{z[4}e_{j}^{3]}) + \frac{1}{4R} \gamma^{34} \left(\frac{1 + \gamma^{9z}}{2}\right) \left(e_{j}^{5} - 2\cot\theta e_{j}^{4}\right)\Big] \Big\} \theta^{2} \\ &+ i\bar{\theta}^{2}(\sqrt{h}h^{ij} - e^{ij} \Gamma_{11})\Big\{\sum_{a=0}^{z} e_{i}^{a} \gamma_{a} \left[\partial_{j} + \frac{1}{4R} (\gamma^{5[4}e_{j}^{3]} - \gamma^{z[4}e_{j}^{3]}) + \frac{1}{4R} \gamma^{34} \left(\frac{1 + \gamma^{9z}}{2}\right) \left(e_{j}^{5} - 2\cot\theta e_{j}^{4}\right)\Big] \Big\} \theta^{-1} \\ &+ \sum_{m=6}^{z} e_{i}^{a} \gamma_{a} \left[\partial_{j} - \frac{1}{4R} (\gamma^{5[4}e_{j}^{3]} + \gamma^{z[4}e_{j}^{3]}) + \frac{1}{4R} \gamma^{34} \left(\frac{1 - \gamma^{5z}}{2}\right) \left(e_{j}^{5} - 2\cot\theta e_{j}^{4}\right)\Big] \Big\} \theta^{-1} \\ &+ \sum_{m=6}^{z} e_{i}^{a} \gamma_{a} \left[\partial_{j} - \frac{1}{4R} \left(\gamma^{5[4}e_{j}^{3]} + \gamma^{z[4}e_{j}^{3]}\right) + \frac{1}{4R} \gamma^{34} \left(\frac{1 - \gamma^{5z}}{2}\right) \left(e_{j}^{5} - 2\cot\theta e_{j}^{4}\right)\Big] \Big\} \theta^{-1} \\ &+ \sum_{m=6}^{z} e_{i}^{a} \gamma_{a} \left[\partial_{j} - \frac{1}{4R} \left(\gamma^{5[4}e_{j}^{3]} + \gamma^{2[4}e_{j}^{3]}\right) + \frac{1}{4R} \gamma^{4} \left(\frac{1 - \gamma^{5z}}{2}\right) \left(e_{j}^{5} - 2\cot\theta e_{j}^{4}\right)\Big] \Big\} \theta^{-1} \\ &+$$

- The Green–Schwarz superstring on $AdS_3 \times S^3$ can be understood in terms of the sigma model on the supergroup PSU(1, 1|2)
- $\bullet\,$ there is a \mathbb{Z}_4 grading, i.e. the Lie algebra decomposes into the form

$$\mathfrak{g} = \bigoplus_{n=0}^{3} \mathfrak{g}_n$$

- the decomposition works for the Noether currents and is needed to impose a flatness condition
- the same decomposition (and flatness condition) is preserved by T-duality precisely in the same way as before
- we obtain a set of (non-local) currents for the squashed group that still generate $\mathfrak{psu}(1,1|2)$.

Why 0000	<i>The idea</i>	Туре II 00000	Integrability 00000000000	Conclusion
Outline				

Why are we here?

2 The main idea

3 D-brane construction

Integrability of the Principal Chiral Model

Why	The idea	Туре II	Integrability	Conclusion
0000	0000000	00000	00000000000	●○
Summary				

- Squashed group manifolds have met renewed attention during the last years
 - Topologically massive gravity
 - Schrödinger spacetimes
- They can be understood as natural deformations of group manifolds
- Using the Hopf fibration structure we can construct type II backgrounds.
- Using the Lie algebra structure we can construct exact heterotic backgrounds.
- Using both structures we can prove their classical integrability

Why	The idea	Туре II	Integrability	Conclusion
0000	0000000	00000	00000000000	O
The end				

