

The quark-antiquark potential in $\mathcal{N}=4$ SYM from an open spin-chain

Nadav Drukker

Based on arXiv:1105.5144-N.D. and V. Forini arXiv:1203.1617 - N.D.

See also arXiv:1203.1913 - D. Correa, J. Maldacena and A. Sever

Kavli IPMU

January 29, 2013.

Introduction and motivation

- One of the most fundamental quantities in a quantum field theory is the potential between charged particles.
- In gauge theories this is captured by a long rectangular Wilson loop, or a pair of antiparallel lines.

Introduction and motivation

- One of the most fundamental quantities in a quantum field theory is the potential between charged particles.
- In gauge theories this is captured by a long rectangular Wilson loop, or a pair of antiparallel lines.
- Such an object exists also in $\mathcal{N}=4$ SYM.
- The Wilson loop calculates the potential between two W-bosons arising from a Higgs mechanism.

Introduction and motivation

- One of the most fundamental quantities in a quantum field theory is the potential between charged particles.
- In gauge theories this is captured by a long rectangular Wilson loop, or a pair of antiparallel lines.
- Such an object exists also in $\mathcal{N}=4$ SYM.
- The Wilson loop calculates the potential between two W-bosons arising from a Higgs mechanism.
- Explicit calculations at weak and at strong coupling:

$$
V(L, \lambda)= \begin{cases}-\frac{\lambda}{4 \pi L}+\frac{\lambda^{2}}{8 \pi^{2} L} \ln \frac{T}{L}+\cdots & \lambda \ll 1 \\ \frac{4 \pi^{2} \sqrt{\lambda}}{\Gamma\left(\frac{1}{4}\right)^{4} L}\left(1-\frac{1.3359 \ldots}{\sqrt{\lambda}}+\cdots\right) & \lambda \gg 1\end{cases}
$$

Introduction and motivation

- One of the most fundamental quantities in a quantum field theory is the potential between charged particles.
- In gauge theories this is captured by a long rectangular Wilson loop, or a pair of antiparallel lines.
- Such an object exists also in $\mathcal{N}=4$ SYM.
- The Wilson loop calculates the potential between two W-bosons arising from a Higgs mechanism.
- Explicit calculations at weak and at strong coupling:

$$
V(L, \lambda)= \begin{cases}-\frac{\lambda}{4 \pi L}+\frac{\lambda^{2}}{8 \pi^{2} L} \ln \frac{1}{\lambda}+\cdots & \lambda \ll 1 \\ \frac{4 \pi^{2} \sqrt{\lambda}}{\Gamma\left(\frac{1}{4}\right)^{4} L}\left(1-\frac{1.3359 \ldots}{\sqrt{\lambda}}+\cdots\right) & \lambda \gg 1\end{cases}
$$

Introduction and motivation

- One of the most fundamental quantities in a quantum field theory is the potential between charged particles.
- In gauge theories this is captured by a long rectangular Wilson loop, or a pair of antiparallel lines.
- Such an object exists also in $\mathcal{N}=4$ SYM.
- The Wilson loop calculates the potential between two W-bosons arising from a Higgs mechanism.
- Explicit calculations at weak and at strong coupling:

$$
V(L, \lambda)= \begin{cases}-\frac{\lambda}{4 \pi L}+\frac{\lambda^{2}}{8 \pi^{2} L} \ln \frac{1}{\lambda}+\cdots & \lambda \ll 1 \\ \frac{4 \pi^{2} \sqrt{\lambda}}{\Gamma\left(\frac{1}{4}\right)^{4} L}\left(1-\frac{1.3359 \ldots}{\sqrt{\lambda}}+\cdots\right) & \lambda \gg 1\end{cases}
$$

- Recently $O\left(\lambda^{3}\right)$ was calculated.
- Hard to guess how to connect these two regimes.

Introduction and motivation

- One of the most fundamental quantities in a quantum field theory is the potential between charged particles.
- In gauge theories this is captured by a long rectangular Wilson loop, or a pair of antiparallel lines.
- Such an object exists also in $\mathcal{N}=4$ SYM.
- The Wilson loop calculates the potential between two W-bosons arising from a Higgs mechanism.
- Explicit calculations at weak and at strong coupling:

$$
V(L, \lambda)= \begin{cases}-\frac{\lambda}{4 \pi L}+\frac{\lambda^{2}}{8 \pi^{2} L} \ln \frac{1}{\lambda}+\cdots & \lambda \ll 1 \\ \frac{4 \pi^{2} \sqrt{\lambda}}{\Gamma\left(\frac{1}{4}\right)^{4} L}\left(1-\frac{1.3359 \ldots}{\sqrt{\lambda}}+\cdots\right) & \lambda \gg 1\end{cases}
$$

- Recently $O\left(\lambda^{3}\right)$ was calculated.
- Hard to guess how to connect these two regimes.
- Can we do any better?

Introduction and motivation

- One of the most fundamental quantities in a quantum field theory is the potential between charged particles.
- In gauge theories this is captured by a long rectangular Wilson loop, or a pair of antiparallel lines.
- Such an object exists also in $\mathcal{N}=4$ SYM.
- The Wilson loop calculates the potential between two W-bosons arising from a Higgs mechanism.
- Explicit calculations at weak and at strong coupling:

$$
V(L, \lambda)= \begin{cases}-\frac{\lambda}{4 \pi L}+\frac{\lambda^{2}}{8 \pi^{2} L} \ln \frac{1}{\lambda}+\cdots & \lambda \ll 1 \\ \frac{4 \pi^{2} \sqrt{\lambda}}{\Gamma\left(\frac{1}{4}\right)^{4} L}\left(1-\frac{1.3359 \ldots}{\sqrt{\lambda}}+\cdots\right) & \lambda \gg 1\end{cases}
$$

- Recently $O\left(\lambda^{3}\right)$ was calculated.
- Hard to guess how to connect these two regimes.
- Can we do any better?
- Shouldn't integrability allow us to calculate this for all values of the coupling (in the planar approximation)?

Outline

- Introduction and motivation
- Wilson loops
- Cusp anomalous dimensions and the quark-antiquark potential
- Local operator insertions
- Generalize quark-antiquark potential in $\mathcal{N}=4 \mathrm{SYM}$
- Perturbative calculation
- String calculation
- Expansions in small angles
- Wilson loops and integrability
- Operator insertions and open spin-chains
- All loop reflection matrix and a twist
- Wrapping effects and the quark-antiquark potential

Wilson loops

- In any gauge theory one can define Wilson loop operators

$$
W=\operatorname{Tr} \mathcal{P} \exp \left[\oint i A_{\mu} \dot{x}^{\mu} d s\right]
$$

- Can be defined for an arbitrary curve in spacetime.

Wilson loops

- In any gauge theory one can define Wilson loop operators

$$
W=\operatorname{Tr} \mathcal{P} \exp \left[\oint i A_{\mu} \dot{x}^{\mu} d s\right]
$$

- Can be defined for an arbitrary curve in spacetime.
- For a pair of antiparallel lines

$$
\langle W\rangle \approx \exp [-T V(L, \lambda)]
$$

- The potential behaves like

$$
V(L, \lambda)= \begin{cases}g(\lambda) & \text { screening } \\ \frac{f(\lambda)}{L} & \text { conformal } \\ \alpha^{\prime} L & \text { confining }\end{cases}
$$

Wilson loops

- In any gauge theory one can define Wilson loop operators

$$
W=\operatorname{Tr} \mathcal{P} \exp \left[\oint i A_{\mu} \dot{x}^{\mu} d s\right]
$$

- Can be defined for an arbitrary curve in spacetime.
- For a pair of antiparallel lines

$$
\langle W\rangle \approx \exp [-T V(L, \lambda)]
$$

- The potential behaves like

$$
V(L, \lambda)=\left\{\begin{array}{cl}
g(\lambda) & \text { screening } \\
\frac{f(\lambda)}{L} & \text { conformal } \\
\alpha^{\prime} L & \text { confining }
\end{array}\right.
$$

- In $\mathcal{N}=4$ SYM the most natural Wilson loops includes a coupling to the scalar fields

$$
W=\operatorname{Tr} \mathcal{P} \exp \left[\oint\left(i A_{\mu} \dot{x}^{\mu}+|\dot{x}| n^{I} \Phi_{I}\right) d s\right]
$$

n^{I} do not have to be constant.

- For a smooth loop and continuous $\left|n^{I}\right|=1$, these are finite observables.

Cusp anomalous dimensions and quark-antiquark potential

- The antiparallel lines suffer also from a subtle linear IR divergence.

Cusp anomalous dimensions and quark-antiquark potential

- The antiparallel lines suffer also from a subtle linear IR divergence.
- It is simpler to control logarithmic divergences.

Cusp anomalous dimensions and quark-antiquark potential

- The antiparallel lines suffer also from a subtle linear IR divergence.
- It is simpler to control logarithmic divergences.
- Consider Wilson loops with cusps

- All but the black line will suffer from logarithmic divergences.
- Taking $\phi=i \varphi$ and $\varphi \rightarrow \infty$ gives the Lorenzian null cusp.
- A compact versions of cusped loops.
- No gauge-invariance subtleties!

- A compact versions of cusped loops.
- No gauge-invariance subtleties!
- Same divergences.
- Completely equivalent, in conformal theories.

- A compact versions of cusped loops.
- No gauge-invariance subtleties!
- Same divergences.
- Completely equivalent, in conformal theories.
- I label the opening angle $\pi-\phi$.
- $\phi=0$ is the circle.
- $\phi \rightarrow \pi$ gives the antiparallel lines.

- A compact versions of cusped loops.
- No gauge-invariance subtleties!
- Same divergences.
- Completely equivalent, in conformal theories.
- I label the opening angle $\pi-\phi$.
- $\phi=0$ is the circle.
- $\phi \rightarrow \pi$ gives the antiparallel lines.
- Can couple the two arcs to two different scalar fields

$$
\Phi_{1} \quad \text { and } \quad \Phi_{1} \cos \theta+\Phi_{2} \sin \theta
$$

- A compact versions of cusped loops.
- No gauge-invariance subtleties!
- Same divergences.
- Completely equivalent, in conformal theories.
- I label the opening angle $\pi-\phi$.
- $\phi=0$ is the circle.
- $\phi \rightarrow \pi$ gives the antiparallel lines.
- Can couple the two arcs to two different scalar fields

$$
\Phi_{1} \quad \text { and } \quad \Phi_{1} \cos \theta+\Phi_{2} \sin \theta
$$

- In a conformal theory, by the usual conformal Ward identity

$$
\langle W\rangle \sim \frac{1}{d^{2 \Delta}}, \quad d=r \frac{\cos \frac{\phi}{2}}{1-\sin \frac{\phi}{2}}
$$

- Δ is the coefficient of the log divergence.
- By the inverse exponential map we get the gauge theory on $\mathbb{S}^{3} \times \mathbb{R}$
- These are parallel lines on $\mathbb{S}^{3} \times \mathbb{R}$.

- By the inverse exponential map we get the gauge theory on $\mathbb{S}^{3} \times \mathbb{R}$
- These are parallel lines on $\mathbb{S}^{3} \times \mathbb{R}$.
- From this last picture we expect

$$
\langle W\rangle \approx \exp [-T V(\phi, \theta, \lambda)]
$$

- In a conformal theory T is related to divergence at the cusp by the exponential map

$$
T=\log \frac{\Lambda_{\mathrm{IR}}}{\Lambda_{\mathrm{UV}}}
$$

- Therefore $V(\phi, \theta, \lambda)$ is the same as Δ, the coefficient of the log divergence.
- By the inverse exponential map we get the gauge theory on $\mathbb{S}^{3} \times \mathbb{R}$
- These are parallel lines on $\mathbb{S}^{3} \times \mathbb{R}$.
- From this last picture we expect

$$
\langle W\rangle \approx \exp [-T V(\phi, \theta, \lambda)]
$$

- In a conformal theory T is related to divergence at the cusp by the exponential map

$$
T=\log \frac{\Lambda_{\mathrm{IR}}}{\Lambda_{\mathrm{UV}}}
$$

- Therefore $V(\phi, \theta, \lambda)$ is the same as Δ, the coefficient of the log divergence.
- This $V(\phi, \theta, \lambda)$ is the generalization of $V(L, \lambda)$ - the quark-antiquark potential.
- For a conformal theory it has a pole at $\phi \rightarrow \pi$ and the residue is
 $L V(L, \lambda)$.
- More generally controls all log divergences of all Wilson loops.
- Needed for a proper renormalization program of Wilson loop operators (and to derive regularized loop equations).

Generalized quark-antiquark potential in $\mathcal{N}=4$ SYM

- Crucial point: Calculations of $V(\phi, \theta, \lambda)$ are no harder than for the antiparallel case!

Generalized quark-antiquark potential in $\mathcal{N}=4$ SYM

- Crucial point: Calculations of $V(\phi, \theta, \lambda)$ are no harder than for the antiparallel case!
- Expanding at weak coupling

$$
V(\phi, \theta, \lambda)=\sum_{n=1}^{\infty}\left(\frac{\lambda}{16 \pi^{2}}\right)^{n} V^{(n)}(\phi, \theta)
$$

- And at strong coupling

$$
V(\phi, \theta, \lambda)=\frac{\sqrt{\lambda}}{4 \pi} \sum_{l=0}^{\infty}\left(\frac{4 \pi}{\sqrt{\lambda}}\right)^{l} V_{A d S}^{(l)}(\phi, \theta)
$$

Perturbative calculation

1-loop

- Just the exchange of a gluon and scalar field

- This graph is given by the integral

$$
\begin{aligned}
\left.\partial_{\lambda}\langle W\rangle\right|_{\lambda=0} & =\int_{s<t} d s d t\left\langle\left(i A_{\mu} \dot{x}^{\mu}(s)+|\dot{x}| \Phi^{I} n^{I}(s)\right)\left(i A_{\nu} \dot{x}^{\nu}(t)+|\dot{x}| \Phi^{J} n^{J}(t)\right)\right\rangle \\
& =\frac{\lambda}{8 \pi^{2}} \int d s d t \frac{-\dot{x}_{\mu}(s) \dot{x}^{\mu}(t)+n^{I}(s) n^{I}(t)}{|x(s)-x(t)|^{2}} \\
& =\frac{\lambda}{8 \pi^{2}} \int d s d t \frac{-\cos \phi+\cos \theta}{s^{2}+t^{2}+2 s t \cos \phi}=-\frac{\lambda}{8 \pi^{2}} \frac{\cos \phi-\cos \theta}{\sin \phi} \phi \log \frac{R}{\epsilon}
\end{aligned}
$$

- Therefore

$$
V^{(1)}(\phi, \theta)=2 \frac{\cos \phi-\cos \theta}{\sin \phi} \phi
$$

$\underline{\text { Higher order graphs }}$

- Ladder graphs are relatively easy.
- They dominate a funny double-scaled limit where $\theta \rightarrow i \infty$ with $\lambda \theta$ fixed.
$\left[\begin{array}{c}\text { Correa, Henn } \\ \text { Maldacena, Sever }\end{array}\right]$
- They are given by harmonic polylogs apparently to all orders.
[Henn, Huber]

- Results at weak and strong coupling match.

Higher order graphs

- Ladder graphs are relatively easy.
- They dominate a funny double-scaled limit where $\theta \rightarrow i \infty$ with $\lambda \theta$ fixed.
- They are given by harmonic polylogs apparently to all orders. [Henn, Huber]

- Results at weak and strong coupling match.
- Interacting graphs are a bit more complicated.
- At two loops there are bubble graphs and the single cubic vertex graphs.
- they give

$$
V_{\mathrm{int}}^{(2)}(\phi, \theta)=-\frac{2}{3}\left(\pi^{2}-\phi^{2}\right) V^{(1)}(\phi, \theta)
$$

- Full 3 loop answer was also calculated.

$\left[\begin{array}{c}\text { Correa, Henn } \\ \text { Maldacena, Sever }\end{array}\right]$

String calculation

- Within the $A d S /$ CFT correspondence Wilson loops are calculated by an infinite open string extending to the boundary of $A d S$.

String calculation

- Within the $A d S / C F T$ correspondence Wilson loops are calculated by an infinite open string extending to the boundary of $A d S$.
- At the leading order we should find the minimal surface ending on lines separated by $\pi-\phi$ on the boundary of $A d S$ and θ on \mathbb{S}^{5}.
- All the string solutions fit inside $A d S_{3} \times \mathbb{S}^{1}$

$$
d s^{2}=\sqrt{\lambda}\left(-\cosh ^{2} \rho d t^{2}+d \rho^{2}+\sinh ^{2} \rho d \varphi^{2}+d \vartheta^{2}\right)
$$

String calculation

- Within the $A d S / C F T$ correspondence Wilson loops are calculated by an infinite open string extending to the boundary of $A d S$.
- At the leading order we should find the minimal surface ending on lines separated by $\pi-\phi$ on the boundary of $A d S$ and θ on \mathbb{S}^{5}.
- All the string solutions fit inside $A d S_{3} \times \mathbb{S}^{1}$

$$
d s^{2}=\sqrt{\lambda}\left(-\cosh ^{2} \rho d t^{2}+d \rho^{2}+\sinh ^{2} \rho d \varphi^{2}+d \vartheta^{2}\right)
$$

- The equations of motion and classical action can be solved by elliptic integrals.
- $V_{A d S}^{(0)}$ given by a solution of a transcendental equation

String calculation

- Within the $A d S / C F T$ correspondence Wilson loops are calculated by an infinite open string extending to the boundary of $A d S$.
- At the leading order we should find the minimal surface ending on lines separated by $\pi-\phi$ on the boundary of $A d S$ and θ on \mathbb{S}^{5}.
- All the string solutions fit inside $A d S_{3} \times \mathbb{S}^{1}$

$$
d s^{2}=\sqrt{\lambda}\left(-\cosh ^{2} \rho d t^{2}+d \rho^{2}+\sinh ^{2} \rho d \varphi^{2}+d \vartheta^{2}\right)
$$

- The equations of motion and classical action can be solved by elliptic integrals.
- $V_{A d S}^{(0)}$ given by a solution of a transcendental equation
- Expand around $\phi=\theta=0$ the answer is

$$
\begin{aligned}
V_{A d S}^{(0)}(\phi, \theta)= & \frac{1}{\pi}\left(\theta^{2}-\phi^{2}\right)-\frac{1}{8 \pi^{3}}\left(\theta^{2}-\phi^{2}\right)\left(\theta^{2}-5 \phi^{2}\right) \\
& +\frac{1}{64 \pi^{5}}\left(\theta^{2}-\phi^{2}\right)\left(\theta^{4}-14 \theta^{2} \phi^{2}+37 \phi^{4}\right) \\
& -\frac{1}{2048 \pi^{7}}\left(\theta^{2}-\phi^{2}\right)\left(\theta^{6}-27 \theta^{4} \phi^{2}+291 \theta^{2} \phi^{4}-585 \phi^{6}\right)+O\left((\phi, \theta)^{10}\right)
\end{aligned}
$$

1-loop determinant

- Complicated fluctuation problem.
- Can be done analytically (implicitly) for either $\phi=0$ or $\theta=0$.
- For $\theta=0$ and small ϕ we can expand

$$
\begin{aligned}
V_{A d S}^{(1)}(\phi, 0)= & \frac{3}{2} \frac{\phi^{2}}{4 \pi^{2}}+\left(\frac{53}{8}-3 \zeta(3)\right) \frac{\phi^{4}}{16 \pi^{4}}+\left(\frac{223}{8}-\frac{15}{2} \zeta(3)-\frac{15}{2} \zeta(5)\right) \frac{\phi^{6}}{64 \pi^{6}} \\
& +\left(\frac{14645}{128}-\frac{229}{8} \zeta(3)-\frac{55}{4} \zeta(5)-\frac{315}{16} \zeta(7)\right) \frac{\phi^{8}}{256 \pi^{8}}+O\left(\phi^{10}\right)
\end{aligned}
$$

$\phi \rightarrow \pi$ limit

- $V^{(1)}, V^{(2)}, V_{A d S}^{(0)}$ and $V_{A d S}^{(1)}$ all have poles at $\phi=\pi$
- In perturbation theory

$$
V(\phi, \theta) \rightarrow-\frac{\lambda}{8 \pi} \frac{1+\cos \theta}{\pi-\phi}+\frac{\lambda^{2}}{32 \pi^{3}} \frac{(1+\cos \theta)^{2}}{\pi-\phi} \log \frac{e}{2(\pi-\phi)}+O\left(\lambda^{3}\right)
$$

$\phi \rightarrow \pi$ limit

- $V^{(1)}, V^{(2)}, V_{A d S}^{(0)}$ and $V_{A d S}^{(1)}$ all have poles at $\phi=\pi$
- In perturbation theory

$$
V(\phi, \theta) \rightarrow-\frac{\lambda}{8 \pi} \frac{1+\cos \theta}{\pi-\phi}+\frac{\lambda^{2}}{32 \pi^{3}} \frac{(1+\cos \theta)^{2}}{\pi-\phi} \log \frac{e}{2(\pi-\phi)}+O\left(\lambda^{3}\right)
$$

- In the case of $\theta=0$ we get essentially the same as the antiparallel lines with $L \rightarrow \pi-\phi$

$$
V(L, \lambda)= \begin{cases}-\frac{\lambda}{4 \pi L}+\frac{\lambda^{2}}{8 \pi^{2} L} \ln \frac{T}{L}+\cdots & \lambda \ll 1 \\ \frac{4 \pi^{2} \sqrt{\lambda}}{\Gamma\left(\frac{1}{4}\right)^{4} L}\left(1-\frac{1.3359 \ldots}{\sqrt{\lambda}}+\cdots\right) & \lambda \gg 1\end{cases}
$$

- The strong coupling calculations also agree in the limit.

Expansions in small angles

- Consider the expansion of $V(\phi, \theta, \lambda)$ at small ϕ or θ

$$
\left.\frac{1}{2} \frac{\partial^{2}}{\partial \theta^{2}} V(\phi, \theta, \lambda)\right|_{\phi=\theta=0}=-\left.\frac{1}{2} \frac{\partial^{2}}{\partial \phi^{2}} V(\phi, \theta, \lambda)\right|_{\phi=\theta=0}= \begin{cases}\frac{\lambda}{16 \pi^{2}}-\frac{\lambda^{2}}{384 \pi^{2}}+\cdots & \lambda \ll 1 \\ \frac{\sqrt{\lambda}}{4 \pi^{2}}-\frac{3}{8 \pi^{2}}+\cdots & \lambda \gg 1\end{cases}
$$

Expansions in small angles

- Consider the expansion of $V(\phi, \theta, \lambda)$ at small ϕ or θ

$$
\left.\frac{1}{2} \frac{\partial^{2}}{\partial \theta^{2}} V(\phi, \theta, \lambda)\right|_{\phi=\theta=0}=-\left.\frac{1}{2} \frac{\partial^{2}}{\partial \phi^{2}} V(\phi, \theta, \lambda)\right|_{\phi=\theta=0}= \begin{cases}\frac{\lambda}{16 \pi^{2}}-\frac{\lambda^{2}}{384 \pi^{2}}+\cdots & \lambda \ll 1 \\ \frac{\sqrt{\lambda}}{4 \pi^{2}}-\frac{3}{8 \pi^{2}}+\cdots & \lambda \gg 1\end{cases}
$$

- This quantity was named the bremsstrahlung function $B(\lambda)$
- Calculates the radiation of an accelerated quark.
- Is related to small deformations of BPS Wilson loops and can be calculated exactly

$$
\begin{gathered}
B=\frac{1}{2 \pi^{2}} \lambda \partial_{\lambda}\left\langle W_{\circ}\right\rangle \\
\left\langle W_{\circ}\right\rangle=\frac{1}{N} L_{N-1}^{1}\left(-\frac{\lambda}{4 N}\right) e^{\frac{\lambda}{8 N}}
\end{gathered}
$$

Result so far:

Explicit expressions for these families of Wilson loops at weak and strong coupling.

Wilson loops and integrability

- We want to apply the tools of integrability to the case of Wilson loops:
- Find a spin-chain model.
- Find the all loop scattering (and reflection) matrix
- Try to solve it exactly.
- This will allow to derive the gauge theory perturbative results from world-sheet techniques.

Wilson loops and integrability

- We want to apply the tools of integrability to the case of Wilson loops:
- Find a spin-chain model.
- Find the all loop scattering (and reflection) matrix
- Try to solve it exactly.
- This will allow to derive the gauge theory perturbative results from world-sheet techniques.
- Main trick will be to start with the Wilson loop with an arbitrary insertion in it, which will simplify the steps above and at the end remove the insertion.
- In the case of the straight line, after removing the insertion, the operator is $1 / 2 \mathrm{BPS}$, so no anomalous dimension. So need to know how to treat the cusp.

Local operator insertions

- There is another source of log divergences in Wilson loops:

Adjoint valued operators inserted into the Wilson loop.

Local operator insertions

- There is another source of log divergences in Wilson loops:

Adjoint valued operators inserted into the Wilson loop.

- For example, one operator in the straight line

$$
\begin{aligned}
W & =\operatorname{Tr} \mathcal{P}\left[\mathcal{O}(0) \exp \left(\int\left(i A_{\mu} \dot{x}^{\mu}+\Phi^{I} n^{I}|\dot{x}|\right) d s\right)\right] \\
& =\operatorname{Tr}\left[\mathcal{P} \exp \left(\int_{-\infty}^{0}\left(i A_{\mu} \dot{x}^{\mu}+\Phi^{I} n^{I}|\dot{x}|\right) d s\right) \mathcal{O}(0) \mathcal{P} \exp \left(\int_{0}^{\infty}\left(i A_{\mu} \dot{x}^{\mu}+\Phi^{I} n^{I}|\dot{x}|\right) d s\right)\right]
\end{aligned}
$$

- \mathcal{O} is any adjoint operator, e.g., F_{23}, Z^{L}, etc.

Local operator insertions

- There is another source of log divergences in Wilson loops:

Adjoint valued operators inserted into the Wilson loop.

- For example, one operator in the straight line

$$
\begin{aligned}
W & =\operatorname{Tr} \mathcal{P}\left[\mathcal{O}(0) \exp \left(\int\left(i A_{\mu} \dot{x}^{\mu}+\Phi^{I} n^{I}|\dot{x}|\right) d s\right)\right] \\
& =\operatorname{Tr}\left[\mathcal{P} \exp \left(\int_{-\infty}^{0}\left(i A_{\mu} \dot{x}^{\mu}+\Phi^{I} n^{I}|\dot{x}|\right) d s\right) \mathcal{O}(0) \mathcal{P} \exp \left(\int_{0}^{\infty}\left(i A_{\mu} \dot{x}^{\mu}+\Phi^{I} n^{I}|\dot{x}|\right) d s\right)\right]
\end{aligned}
$$

- \mathcal{O} is any adjoint operator, e.g., F_{23}, Z^{L}, etc.
- In a conformal theory, a Wilson loop with two operator insertions at a distance d will have a VEV

$$
\langle W\rangle \sim \frac{1}{d^{2 \Delta}}
$$

- Δ is the coefficient of the log divergences - the conformal dimension of the insertions.

Local operator insertions

- There is another source of log divergences in Wilson loops:

Adjoint valued operators inserted into the Wilson loop.

- For example, one operator in the straight line

$$
\begin{aligned}
W & =\operatorname{Tr} \mathcal{P}\left[\mathcal{O}(0) \exp \left(\int\left(i A_{\mu} \dot{x}^{\mu}+\Phi^{I} n^{I}|\dot{x}|\right) d s\right)\right] \\
& =\operatorname{Tr}\left[\mathcal{P} \exp \left(\int_{-\infty}^{0}\left(i A_{\mu} \dot{x}^{\mu}+\Phi^{I} n^{I}|\dot{x}|\right) d s\right) \mathcal{O}(0) \mathcal{P} \exp \left(\int_{0}^{\infty}\left(i A_{\mu} \dot{x}^{\mu}+\Phi^{I} n^{I}|\dot{x}|\right) d s\right)\right]
\end{aligned}
$$

- \mathcal{O} is any adjoint operator, e.g., F_{23}, Z^{L}, etc.
- In a conformal theory, a Wilson loop with two operator insertions at a distance d will have a VEV

$$
\langle W\rangle \sim \frac{1}{d^{2 \Delta}}
$$

- Δ is the coefficient of the log divergences - the conformal dimension of the insertions.
- Starting with and insertion of Z^{J} and replacing some of the Z by other fields, we will find a spin-chain model.

string picture

- The string dual of a Wilson loop with an insertion is an excited state of the open string describing the Wilson loop.

string picture

- The string dual of a Wilson loop with an insertion is an excited state of the open string describing the Wilson loop.

string picture

- The string dual of a Wilson loop with an insertion is an excited state of the open string describing the Wilson loop.

string picture

- The string dual of a Wilson loop with an insertion is an excited state of the open string describing the Wilson loop.

- Study the spectrum of open string states all satisfying the same boundary conditions.
- An insertion of Z^{J} is described by a string ending along the same curve on the boundary but in the bulk of space rotating around the equator of \mathbb{S}^{5} with momentum J.
- An excitation traveling along this string will not know that it's an open string and not the usual $\operatorname{Tr} Z^{J}$ vacuum.
- An insertion of Z^{J} is described by a string ending along the same curve on the boundary but in the bulk of space rotating around the equator of \mathbb{S}^{5} with momentum J.
- An excitation traveling along this string will not know that it's an open string and not the usual $\operatorname{Tr} Z^{J}$ vacuum.
- Once it gets to the end of the string we should impose boundary conditions.
- An insertion of Z^{J} is described by a string ending along the same curve on the boundary but in the bulk of space rotating around the equator of \mathbb{S}^{5} with momentum J.
- An excitation traveling along this string will not know that it's an open string and not the usual $\operatorname{Tr} Z^{J}$ vacuum.
- Once it gets to the end of the string we should impose boundary conditions.

Gauge theory picture

We take the cusped Wilson loop with an adjoint valued operator like Z^{J} at the cusp.

$\mathcal{O} \sim Z Y Z \cdots Z Z$

- It is clear how to see the appearance of the spin-chain by considering the compact operator in the gauge theory

- In this case the classical dimension is 5 .
- It is clear how to see the appearance of the spin-chain by considering the compact operator in the gauge theory

- In this case the classical dimension is 5 .
- The bulk hamiltonian is like the usual Minahan-Zarembo, Staudacher spin-chain (Beisert S-matrix $\mathbb{S}_{a b}^{c d}\left(p_{1}, p_{2}\right) \otimes \mathbb{S}_{\dot{a} \dot{b}}^{\dot{c} \dot{d}}\left(p_{1}, p_{2}\right)$).
- Boundary interaction has to be studied separately.
- It is clear how to see the appearance of the spin-chain by considering the compact operator in the gauge theory

- In this case the classical dimension is 5 .
- The bulk hamiltonian is like the usual Minahan-Zarembo, Staudacher spin-chain (Beisert S-matrix $\mathbb{S}_{a b}^{c d}\left(p_{1}, p_{2}\right) \otimes \mathbb{S}_{\dot{a} \dot{b}}^{\dot{c} \dot{d}}\left(p_{1}, p_{2}\right)$).
- Boundary interaction has to be studied separately.
- The two boundaries interact through wrapping effects at $O\left(g^{2(J+1)}\right)$.
- For $J=0$ this is at one-loop.

All loop reflection matrix and a twist

- The one loop bulk hamiltonian is the same as for closed spin-chains
- The boundary reflection matrix was calculated from Feynman graphs only in the $S U(2)$ sector.

All loop reflection matrix and a twist

- The one loop bulk hamiltonian is the same as for closed spin-chains
- The boundary reflection matrix was calculated from Feynman graphs only in the $S U(2)$ sector.
- To do it to all loops we should use the symmetry:

$$
\begin{array}{ccc}
\mathfrak{p s u}(2,2 \mid 4) & & Z^{J} \text { vacuum }
\end{array} c
$$

- A single boundary breaks the symmetry to a diagonal $\mathfrak{p s u}(2 \mid 2)$.

All loop reflection matrix and a twist

- The one loop bulk hamiltonian is the same as for closed spin-chains
- The boundary reflection matrix was calculated from Feynman graphs only in the $S U(2)$ sector.
- To do it to all loops we should use the symmetry:

$$
\begin{array}{ccc}
\mathfrak{p s u}(2,2 \mid 4) & & Z^{J} \text { vacuum }
\end{array} c
$$

- A single boundary breaks the symmetry to a diagonal $\mathfrak{p s u}(2 \mid 2)$.
- By the usual argument, the boundary reflection matrix should have the same matrix structure as the bulk one

$$
\mathbb{R}_{a \dot{a}}^{\dot{b} b}(p)=R_{0}(p) \hat{\mathbb{S}}_{a \dot{a}}^{\dot{b} b}(p,-p)
$$

- It replaces $\mathfrak{p s u}(2 \mid 2)_{L} \leftrightarrow \mathfrak{p s u}(2 \mid 2)_{R}$ labels.

- Need to determine
$R_{0}(p)=\sigma_{B}(p) / \sigma(p,-p)$.
- Like the crossing relation in the bulk, there is a boundary "crossing-unitarity equation"

$$
\mathbb{R}(p)=\mathbb{S}(p,-p) \mathbb{R}^{c}(\bar{p})
$$

- Need to determine
$R_{0}(p)=\sigma_{B}(p) / \sigma(p,-p)$.
- Like the crossing relation in the bulk, there is a boundary "crossing-unitarity equation"

$$
\mathbb{R}(p)=\mathbb{S}(p,-p) \mathbb{R}^{c}(\bar{p})
$$

- This translates to the conditions on σ_{B}

$$
\sigma_{B}(p) \sigma_{B}(\bar{p})=\frac{x^{-}+1 / x^{-}}{x^{+}+1 / x^{+}}, \quad \sigma_{B}(p) \sigma_{B}(\bar{p})=1
$$

where the Joukowsky variables are a solution of

$$
e^{i p}=\frac{x^{+}}{x^{-}}, \quad x^{+}+\frac{1}{x^{+}}-x^{-}-\frac{1}{x^{-}}=\frac{1}{g}
$$

- Need to determine
$R_{0}(p)=\sigma_{B}(p) / \sigma(p,-p)$.
- Like the crossing relation in the bulk, there is a boundary "crossing-unitarity equation"

$$
\mathbb{R}(p)=\mathbb{S}(p,-p) \mathbb{R}^{c}(\bar{p})
$$

- This translates to the conditions on σ_{B}

$$
\sigma_{B}(p) \sigma_{B}(\bar{p})=\frac{x^{-}+1 / x^{-}}{x^{+}+1 / x^{+}}, \quad \sigma_{B}(p) \sigma_{B}(\bar{p})=1
$$

where the Joukowsky variables are a solution of

$$
e^{i p}=\frac{x^{+}}{x^{-}}, \quad x^{+}+\frac{1}{x^{+}}-x^{-}-\frac{1}{x^{-}}=\frac{1}{g}
$$

- The solution which matches the all consistency requirements is

$$
\sigma_{B}(z)=\frac{1+1 /\left(x^{-}\right)^{2}}{1+1 /\left(x^{+}\right)^{2}} e^{-i \chi_{B}\left(x^{+}\right)+i \chi_{B}\left(x^{-}\right)}
$$

where

$$
\chi_{B}(x)=-i \oint \frac{d z}{2 \pi i} \frac{1}{x-z} \log \frac{\sinh 2 \pi g(z+1 / z)}{2 \pi g(z+1 / z)}
$$

- So far only right boundary. What about the left?
- So far only right boundary. What about the left?
- The left boundary is essentially the same.
- The choice of diagonal subgroup $\mathfrak{p s u}(2 \mid 2)_{L} \times \mathfrak{p s u}(2 \mid 2)_{R} \rightarrow \mathfrak{p s u}(2 \mid 2)_{D^{\prime}}$ may be different.
- Conjugate the reflection matrix by a twist matrix \mathbb{G} acting on the $\mathfrak{p s u}(2 \mid 2)_{L}$ labels

$$
\mathbb{G}=\operatorname{diag}\left(e^{i \theta / 2}, e^{-i \theta / 2}, e^{i \phi / 2}, e^{-i \phi / 2}\right)
$$

- So far only right boundary. What about the left?
- The left boundary is essentially the same.
- The choice of diagonal subgroup $\mathfrak{p s u}(2 \mid 2)_{L} \times \mathfrak{p s u}(2 \mid 2)_{R} \rightarrow \mathfrak{p s u}(2 \mid 2)_{D^{\prime}}$ may be different.
- Conjugate the reflection matrix by a twist matrix \mathbb{G} acting on the $\mathfrak{p s u}(2 \mid 2)_{L}$ labels

$$
\mathbb{G}=\operatorname{diag}\left(e^{i \theta / 2}, e^{-i \theta / 2}, e^{i \phi / 2}, e^{-i \phi / 2}\right)
$$

- This is all the information needed to understand the spectrum of asymptotically large insertions into the Wilson loop.

- So far only right boundary. What about the left?
- The left boundary is essentially the same.
- The choice of diagonal subgroup $\mathfrak{p s u}(2 \mid 2)_{L} \times \mathfrak{p s u}(2 \mid 2)_{R} \rightarrow \mathfrak{p s u}(2 \mid 2)_{D^{\prime}}$ may be different.
- Conjugate the reflection matrix by a twist matrix \mathbb{G} acting on the $\mathfrak{p s u}(2 \mid 2)_{L}$ labels

$$
\mathbb{G}=\operatorname{diag}\left(e^{i \theta / 2}, e^{-i \theta / 2}, e^{i \phi / 2}, e^{-i \phi / 2}\right)
$$

- This is all the information needed to understand the spectrum of asymptotically large insertions into the Wilson loop.

- But not the case $J=0$...

Wrapping effects and the quark-antiquark potential

- One can derive a set of boundary thermodynamic Bethe ansatz equations for this open spin-chain.
- This can be simplified in the small angle limit, where the full answer was reproduced. $\left[\begin{array}{c}\text { Correa, Maldacen, } \\ \text { Sever }\end{array}\right]\left[\begin{array}{c}\text { Gromov } \\ \text { Sever }\end{array}\right]$
- They are the same as the usual TBA equations with several small modifications:
- The Y functions are related by reflection $Y_{a, s}(-u)=Y_{a,-s}(u)$
- There are chemical potentials dependent on ϕ and θ.
- There is a complicated driving term for the massive $Y_{a, 0}$ nodes (aka Y_{Q}).
- The Y-system equations are unmodified.
- Analytic properties of the functions are different (determined by the asymptotic solution).
- To reproduce the one loop answer it is enough to consider Lüscher-like corrections.
- This requires to calculate the eigenvalues of the transfer matrix

- To reproduce the one loop answer it is enough to consider Lüscher-like corrections.
- This requires to calculate the eigenvalues of the transfer matrix

- by repeated use of the Yang-Baxter equation this simplifies to

- That is just the product of two twisted $\mathfrak{p s u}(2 \mid 2)$ transfer matrices.
- On the Z^{J} vacuum this is

$$
\begin{aligned}
T_{Q}^{\phi, \theta}(p) & =\mathrm{s} \operatorname{Tr}\left[\mathbb{R}^{(R)}(p) \mathbb{R}^{(L)^{c}}(\bar{p})\right]=\mathrm{s} \operatorname{Tr}\left[\mathbb{R}^{(R)}(p) \mathbb{G} \mathbb{R}^{(R)^{c}}(-\bar{p}) \mathbb{G}\right] \\
& =\sigma_{B}(p) \sigma_{B}(-\bar{p})\left(\frac{x^{-}}{x^{+}}\right)^{2}(\mathrm{~s} \operatorname{Tr} \mathbb{G})^{2}
\end{aligned}
$$

- On the Z^{J} vacuum this is

$$
\begin{aligned}
T_{Q}^{\phi, \theta}(p) & =\mathrm{s} \operatorname{Tr}\left[\mathbb{R}^{(R)}(p) \mathbb{R}^{(L)^{c}}(\bar{p})\right]=\mathrm{s} \operatorname{Tr}\left[\mathbb{R}^{(R)}(p) \mathbb{G} \mathbb{R}^{(R)^{c}}(-\bar{p}) \mathbb{G}\right] \\
& =\sigma_{B}(p) \sigma_{B}(-\bar{p})\left(\frac{x^{-}}{x^{+}}\right)^{2}(\mathrm{~s} \operatorname{Tr} \mathbb{G})^{2}
\end{aligned}
$$

- Simple group theory gives

$$
\left(\operatorname{sTr}_{Q} \mathbb{G}\right)^{2}=4(\cos \phi-\cos \theta)^{2} \frac{\sin ^{2} Q \phi}{\sin ^{2} \phi}
$$

And the Lüscher-Bajnok-Janik formula is

$$
\delta E \approx-\frac{1}{2 \pi} \sum_{Q=1}^{\infty} \int_{0}^{\infty} d \tilde{p} \log \left(1+T_{Q}^{(\phi, \theta)}(\tilde{p}) e^{-2 J \tilde{E}_{Q}}\right)
$$

- On the Z^{J} vacuum this is

$$
\begin{aligned}
T_{Q}^{\phi, \theta}(p) & =\mathrm{s} \operatorname{Tr}\left[\mathbb{R}^{(R)}(p) \mathbb{R}^{(L)^{c}}(\bar{p})\right]=\mathrm{s} \operatorname{Tr}\left[\mathbb{R}^{(R)}(p) \mathbb{G} \mathbb{R}^{(R)^{c}}(-\bar{p}) \mathbb{G}\right] \\
& =\sigma_{B}(p) \sigma_{B}(-\bar{p})\left(\frac{x^{-}}{x^{+}}\right)^{2}(\mathrm{~s} \operatorname{Tr} \mathbb{G})^{2}
\end{aligned}
$$

- Simple group theory gives

$$
\left(\operatorname{sTr}_{Q} \mathbb{G}\right)^{2}=4(\cos \phi-\cos \theta)^{2} \frac{\sin ^{2} Q \phi}{\sin ^{2} \phi}
$$

And the Lüscher-Bajnok-Janik formula is

$$
\delta E \approx-\frac{1}{2 \pi} \sum_{Q=1}^{\infty} \int_{0}^{\infty} d \tilde{p} \log \left(1+T_{Q}^{(\phi, \theta)}(\tilde{p}) e^{-2 J \tilde{E}_{Q}}\right)
$$

- Normally for small g (or large J) can expand the logarithm

$$
\delta E \approx \frac{1}{2 \pi} \sum_{Q=1}^{\infty} \int_{0}^{\infty} d \tilde{p} T_{Q}^{(\phi, \theta)}(\tilde{p}) e^{-2 J \tilde{E}_{Q}}
$$

For $J=0$ the answer will be proportional to $\frac{g^{4}(\cos \phi-\cos \theta)^{2}}{\sin ^{2} \phi} \ldots$

- Crucial fact is that the dressing factor has a double pole at $\tilde{p}=0$

$$
\begin{aligned}
\sigma_{B}(\tilde{p}) \sigma_{B}(-\overline{\tilde{p}}) & =e^{2 i\left(\chi_{B}\left(x^{+}\right)+\chi_{B}\left(x^{-}\right)\right)} \frac{(2 \pi g)^{2}\left(x^{+}+1 / x^{+}\right)\left(x^{-}+1 / x^{-}\right)}{\sinh \left(2 \pi g\left(x^{+}+1 / x^{+}\right)\right) \sinh \left(2 \pi g\left(x^{-}+1 / x^{-}\right)\right)} \\
& =e^{2 i\left(\chi_{B}\left(x^{+}\right)+\chi_{B}\left(x^{-}\right)\right)} \frac{(2 \pi)^{2}\left(u^{2}+Q^{2} / 4\right)}{\sinh ^{2}(2 \pi u)} \sim \frac{Q^{2}}{\tilde{p}^{2}}
\end{aligned}
$$

- Then using

$$
\int_{0}^{\infty} d \tilde{p} \log \left(1+\frac{c}{\tilde{p}^{2}}\right)=\pi \sqrt{c}
$$

- Crucial fact is that the dressing factor has a double pole at $\tilde{p}=0$

$$
\begin{aligned}
\sigma_{B}(\tilde{p}) \sigma_{B}(-\overline{\tilde{p}}) & =e^{2 i\left(\chi_{B}\left(x^{+}\right)+\chi_{B}\left(x^{-}\right)\right)} \frac{(2 \pi g)^{2}\left(x^{+}+1 / x^{+}\right)\left(x^{-}+1 / x^{-}\right)}{\sinh \left(2 \pi g\left(x^{+}+1 / x^{+}\right)\right) \sinh \left(2 \pi g\left(x^{-}+1 / x^{-}\right)\right)} \\
& =e^{2 i\left(\chi_{B}\left(x^{+}\right)+\chi_{B}\left(x^{-}\right)\right)} \frac{(2 \pi)^{2}\left(u^{2}+Q^{2} / 4\right)}{\sinh ^{2}(2 \pi u)} \sim \frac{Q^{2}}{\tilde{p}^{2}}
\end{aligned}
$$

- Then using

$$
\int_{0}^{\infty} d \tilde{p} \log \left(1+\frac{c}{\tilde{p}^{2}}\right)=\pi \sqrt{c}
$$

- The residue is

$$
\sqrt{T_{Q}^{\mathrm{res}} e^{-2 J \tilde{E}_{Q}}}=2 \frac{\cos \phi-\cos \theta}{\sin \phi} \sin Q \phi(-1)^{Q}\left[\frac{\left(4 g^{2}\right)^{J+1}}{Q^{2 J+1}}-2(J+2) \frac{\left(4 g^{2}\right)^{J+2}}{Q^{2 J+3}}+\cdots\right]
$$

- so

$$
\begin{aligned}
\delta E & \approx-\left(4 g^{2}\right)^{J+1} \frac{\cos \phi-\cos \theta}{\sin \phi} \sum_{Q=1}^{\infty} \frac{(-1)^{Q} \sin Q \phi}{Q^{2 J+1}} \\
& =-\frac{\left(4 g^{2}\right)^{J+1}}{2 i} \frac{\cos \phi-\cos \theta}{\sin \phi}\left(\operatorname{Li}_{2 J+1}\left(-e^{i \phi}\right)-\operatorname{Li}_{2 J+1}\left(-e^{-i \phi}\right)\right)
\end{aligned}
$$

For $J=0$

$$
\begin{aligned}
\delta E & \approx-\frac{4 g^{2}}{2 i} \frac{\cos \phi-\cos \theta}{\sin \phi}\left(\operatorname{Li}_{1}\left(-e^{i \phi}\right)-\operatorname{Li}_{1}\left(-e^{-i \phi}\right)\right) \\
& =2 g^{2} i \frac{\cos \phi-\cos \theta}{\sin \phi}\left(-\log \left(1+e^{i \phi}\right)+\log \left(1+e^{-i \phi}\right)\right) \\
& =2 g^{2} \frac{\cos \phi-\cos \theta}{\sin \phi} \phi+O\left(g^{4}\right)
\end{aligned}
$$

For $J=0$

$$
\begin{aligned}
\delta E & \approx-\frac{4 g^{2}}{2 i} \frac{\cos \phi-\cos \theta}{\sin \phi}\left(\operatorname{Li}_{1}\left(-e^{i \phi}\right)-\operatorname{Li}_{1}\left(-e^{-i \phi}\right)\right) \\
& =2 g^{2} i \frac{\cos \phi-\cos \theta}{\sin \phi}\left(-\log \left(1+e^{i \phi}\right)+\log \left(1+e^{-i \phi}\right)\right) \\
& =2 g^{2} \frac{\cos \phi-\cos \theta}{\sin \phi} \phi+O\left(g^{4}\right)
\end{aligned}
$$

- This integrability calculation is in exact agreement with the one loop perturbative calculation.

For $J=0$

$$
\begin{aligned}
\delta E & \approx-\frac{4 g^{2}}{2 i} \frac{\cos \phi-\cos \theta}{\sin \phi}\left(\operatorname{Li}_{1}\left(-e^{i \phi}\right)-\operatorname{Li}_{1}\left(-e^{-i \phi}\right)\right) \\
& =2 g^{2} i \frac{\cos \phi-\cos \theta}{\sin \phi}\left(-\log \left(1+e^{i \phi}\right)+\log \left(1+e^{-i \phi}\right)\right) \\
& =2 g^{2} \frac{\cos \phi-\cos \theta}{\sin \phi} \phi+O\left(g^{4}\right)
\end{aligned}
$$

- This integrability calculation is in exact agreement with the one loop perturbative calculation.
- For Konishi wrapping started at 4 loop order. The cusped Wilson loop is given purely by wrapping from one loop on.
- Is possible to solve iteratively to get higher orders.
- Numerics are hard, but people are working on it.
- Should also be possible to extract the strong coupling answer analytically.

Summary

When I talked about my paper with Valentina a year ago I would end with the question

Will there be a gauge theory derivation of the strong coupling potential:

$$
V(L, \lambda)=\frac{4 \pi^{2} \sqrt{\lambda}}{\Gamma\left(\frac{1}{4}\right)^{4} L}
$$

Summary

When I talked about my paper with Valentina a year ago I would end with the question

Will there be a gauge theory derivation of the strong coupling potential:

$$
V(L, \lambda)=\frac{4 \pi^{2} \sqrt{\lambda}}{\Gamma\left(\frac{1}{4}\right)^{4} L}
$$

We are very close to answering Yes!

The end

