The quark-antiquark potential in $\mathcal{N} = 4$ SYM from an open spin-chain

Nadav Drukker

Based on arXiv:1105.5144 - N.D. and V. Forini
arXiv:1203.1617 - N.D.
See also arXiv:1203.1913 - D. Correa, J. Maldacena and A. Sever

Kavli IPMU
Introduction and motivation

- One of the most fundamental quantities in a quantum field theory is the potential between charged particles.
- In gauge theories this is captured by a long rectangular Wilson loop, or a pair of antiparallel lines.
Introduction and motivation

- One of the most fundamental quantities in a quantum field theory is the potential between charged particles.
- In gauge theories this is captured by a long rectangular Wilson loop, or a pair of antiparallel lines.
- Such an object exists also in $\mathcal{N} = 4$ SYM.
 - The Wilson loop calculates the potential between two W-bosons arising from a Higgs mechanism.
Introduction and motivation

• One of the most fundamental quantities in a quantum field theory is the potential between charged particles.

• In gauge theories this is captured by a long rectangular Wilson loop, or a pair of antiparallel lines.

• Such an object exists also in $\mathcal{N} = 4$ SYM.
 – The Wilson loop calculates the potential between two W-bosons arising from a Higgs mechanism.

• Explicit calculations at weak and at strong coupling:

$$V(L, \lambda) = \begin{cases}
-\frac{\lambda}{4\pi L} + \frac{\lambda^2}{8\pi^2 L} \ln \frac{T}{L} + \cdots & \lambda \ll 1 \\
\frac{4\pi^2 \sqrt{\lambda}}{\Gamma\left(\frac{1}{4}\right)^4 L} \left(1 - \frac{1.3359 \ldots}{\sqrt{\lambda}} + \cdots\right) & \lambda \gg 1
\end{cases}$$
Introduction and motivation

• One of the most fundamental quantities in a quantum field theory is the potential between charged particles.

• In gauge theories this is captured by a long rectangular Wilson loop, or a pair of antiparallel lines.

• Such an object exists also in $\mathcal{N} = 4$ SYM.
 – The Wilson loop calculates the potential between two W-bosons arising from a Higgs mechanism.

• Explicit calculations at weak and at strong coupling:

$$V(L, \lambda) = \begin{cases}
 -\frac{\lambda}{4\pi L} + \frac{\lambda^2}{8\pi^2 L} \ln \frac{1}{\lambda} + \cdots & \lambda \ll 1 \\
 \frac{4\pi^2 \sqrt{\lambda}}{\Gamma(\frac{1}{4})^4 L} \left(1 - \frac{1.3359 \ldots}{\sqrt{\lambda}} + \cdots \right) & \lambda \gg 1
\end{cases}$$
Introduction and motivation

• One of the most fundamental quantities in a quantum field theory is the potential between charged particles.

• In gauge theories this is captured by a long rectangular Wilson loop, or a pair of antiparallel lines.

• Such an object exists also in $\mathcal{N} = 4$ SYM.
 – The Wilson loop calculates the potential between two W-bosons arising from a Higgs mechanism.

• Explicit calculations at weak and at strong coupling:

\[
V(L, \lambda) = \begin{cases}
-\frac{\lambda}{4\pi L} + \frac{\lambda^2}{8\pi^2 L} \ln \frac{1}{\lambda} + \cdots & \lambda \ll 1 \\
\frac{4\pi^2 \sqrt{\lambda}}{\Gamma(\frac{1}{4})^4 L} \left(1 - \frac{1.3359 \ldots}{\sqrt{\lambda}} + \cdots \right) & \lambda \gg 1
\end{cases}
\]

• Recently $O(\lambda^3)$ was calculated. \[\text{[Correa, Henn, Maldacena, Sever]}\]

• Hard to guess how to connect these two regimes.
Introduction and motivation

- One of the most fundamental quantities in a quantum field theory is the potential between charged particles.

- In gauge theories this is captured by a long rectangular Wilson loop, or a pair of antiparallel lines.

- Such an object exists also in $\mathcal{N} = 4$ SYM.
 - The Wilson loop calculates the potential between two W-bosons arising from a Higgs mechanism.

- Explicit calculations at weak and at strong coupling:

 \[
 V(L, \lambda) = \begin{cases}
 -\frac{\lambda}{4\pi L} + \frac{\lambda^2}{8\pi^2 L} \ln \frac{1}{\lambda} + \cdots & \lambda \ll 1 \\
 \frac{4\pi^2 \sqrt{\lambda}}{\Gamma(\frac{1}{4})^4 L} \left(1 - \frac{1.3359 \ldots}{\sqrt{\lambda}} + \cdots \right) & \lambda \gg 1
 \end{cases}
 \]

- Recently $O(\lambda^3)$ was calculated.

- Hard to guess how to connect these two regimes.

- Can we do any better?
Introduction and motivation

• One of the most fundamental quantities in a quantum field theory is the potential between charged particles.

• In gauge theories this is captured by a long rectangular Wilson loop, or a pair of antiparallel lines.

• Such an object exists also in $\mathcal{N} = 4$ SYM.
 – The Wilson loop calculates the potential between two W-bosons arising from a Higgs mechanism.

• Explicit calculations at weak and at strong coupling:

$$V(L, \lambda) = \begin{cases} \displaystyle -\frac{\lambda}{4\pi L} + \frac{\lambda^2}{8\pi^2 L} \ln \frac{1}{\lambda} + \cdots & \lambda \ll 1 \\ \frac{4\pi^2 \sqrt{\lambda}}{\Gamma(\frac{1}{4})^4 L} \left(1 - \frac{1.3359 \ldots}{\sqrt{\lambda}} + \cdots\right) & \lambda \gg 1 \end{cases}$$

• Recently $O(\lambda^3)$ was calculated. [Correa, Henn, Maldacena, Sever]

• Hard to guess how to connect these two regimes.

• Can we do any better?

• Shouldn’t integrability allow us to calculate this for all values of the coupling (in the planar approximation)?
Outline

• Introduction and motivation

• Wilson loops
 – Cusp anomalous dimensions and the quark-antiquark potential
 – Local operator insertions

• Generalize quark-antiquark potential in $\mathcal{N} = 4$ SYM
 – Perturbative calculation
 – String calculation
 – Expansions in small angles

• Wilson loops and integrability
 – Operator insertions and open spin–chains
 – All loop reflection matrix and a twist
 – Wrapping effects and the quark-antiquark potential
Wilson loops

- In any gauge theory one can define Wilson loop operators
 \[W = \text{Tr} \mathcal{P} \exp \left[\oint iA_\mu \dot{x}^\mu \, ds \right] \]

- Can be defined for an arbitrary curve in spacetime.
Wilson loops

- In any gauge theory one can define Wilson loop operators

\[W = \text{Tr} \mathcal{P} \exp \left[\oint iA_\mu \dot{x}^\mu \, ds \right] \]

- Can be defined for an arbitrary curve in spacetime.

- For a pair of antiparallel lines

\[\langle W \rangle \approx \exp \left[-TV(L, \lambda) \right] \]

- The potential behaves like

\[V(L, \lambda) = \begin{cases}
 g(\lambda) & \text{screening} \\
 \frac{f(\lambda)}{L} & \text{conformal} \\
 \alpha' L & \text{confining}
\end{cases} \]
Wilson loops

• In any gauge theory one can define Wilson loop operators

\[W = \text{Tr} \mathcal{P} \exp \left[\oint i A_\mu \dot{x}^\mu \, ds \right] \]

• Can be defined for an arbitrary curve in spacetime.

• For a pair of antiparallel lines

\[\langle W \rangle \approx \exp \left[-TV(L, \lambda) \right] \]

• The potential behaves like

\[V(L, \lambda) = \begin{cases}
 g(\lambda) & \text{screening} \\
 f(\lambda) / L & \text{conformal} \\
 \alpha' L & \text{confining}
\end{cases} \]

• In \(\mathcal{N} = 4 \) SYM the most natural Wilson loops includes a coupling to the scalar fields

\[W = \text{Tr} \mathcal{P} \exp \left[\oint (i A_\mu \dot{x}^\mu + |\dot{x}| n^I \Phi_I) \, ds \right] \]

\(n^I \) do not have to be constant.

• For a smooth loop and continuous \(|n^I| = 1 \), these are finite observables.
Cusp anomalous dimensions and quark-antiquark potential

- The antiparallel lines suffer also from a subtle linear IR divergence.
Cusp anomalous dimensions and quark-antiquark potential

- The antiparallel lines suffer also from a subtle linear IR divergence.
- It is simpler to control logarithmic divergences.
Cusp anomalous dimensions and quark-antiquark potential

- The antiparallel lines suffer also from a subtle linear IR divergence.
- It is simpler to control \textit{logarithmic divergences}.
- Consider Wilson loops with cusps

\begin{center}
\begin{tikzpicture}
\draw[thick,-] (0,0) -- (4,0);
\draw[thick,dashed,blue] (-2,0) -- (0,0);
\draw[thick,dashed,red] (0,0) -- (2,0);
\draw[thick,dashed,green] (0,0) -- (3,0);
\end{tikzpicture}
\end{center}

- All but the black line will suffer from logarithmic divergences.
- Taking $\phi = i\varphi$ and $\varphi \to \infty$ gives the Lorenzian null cusp.
• A compact versions of cusped loops.
• No gauge-invariance subtleties!
• A compact versions of cusped loops.
• No gauge-invariance subtleties!
• Same divergences.
• Completely equivalent, in conformal theories.
• A compact versions of cusped loops.
• No gauge-invariance subtleties!
• Same divergences.
• Completely equivalent, in conformal theories.

• I label the opening angle $\pi - \phi$.
• $\phi = 0$ is the circle.
• $\phi \rightarrow \pi$ gives the antiparallel lines.
• A compact version of cusped loops.
• No gauge-invariance subtleties!
• Same divergences.
• Completely equivalent, in conformal theories.
• I label the opening angle $\pi - \phi$.
• $\phi = 0$ is the circle.
• $\phi \rightarrow \pi$ gives the antiparallel lines.
• Can couple the two arcs to two different scalar fields

$$\Phi_1 \quad \text{and} \quad \Phi_1 \cos \theta + \Phi_2 \sin \theta$$
• A compact versions of cusped loops.
• No gauge-invariance subtleties!
• Same divergences.
• Completely equivalent, in conformal theories.

• I label the opening angle $\pi - \phi$.
• $\phi = 0$ is the circle.
• $\phi \to \pi$ gives the antiparallel lines.

• Can couple the two arcs to two different scalar fields

$$\Phi_1 \quad \text{and} \quad \Phi_1 \cos \theta + \Phi_2 \sin \theta$$

• In a conformal theory, by the usual conformal Ward identity

$$\langle W \rangle \sim \frac{1}{d^2 \Delta}, \quad d = r \frac{\cos \frac{\phi}{2}}{1 - \sin \frac{\phi}{2}}$$

• Δ is the coefficient of the log divergence.
• By the inverse exponential map we get the gauge theory on $S^3 \times \mathbb{R}$.
• These are parallel lines on $S^3 \times \mathbb{R}$.
• By the inverse exponential map we get the gauge theory on $S^3 \times \mathbb{R}$
• These are parallel lines on $S^3 \times \mathbb{R}$.
• From this last picture we expect

$$\langle W \rangle \approx \exp \left[-TV(\phi, \theta, \lambda) \right]$$

• In a conformal theory T is related to divergence at the cusp by the exponential map

$$T = \log \frac{\Lambda_{\text{IR}}}{\Lambda_{\text{UV}}}$$

• Therefore $V(\phi, \theta, \lambda)$ is the same as Δ, the coefficient of the log divergence.
• By the inverse exponential map we get the gauge theory on $S^3 \times \mathbb{R}$.
• These are parallel lines on $S^3 \times \mathbb{R}$.
• From this last picture we expect
 \[
 \langle W \rangle \approx \exp \left[-TV(\phi, \theta, \lambda) \right]
 \]
• In a conformal theory T is related to divergence at the cusp by the exponential map
 \[
 T = \log \frac{\Lambda_{\text{IR}}}{\Lambda_{\text{UV}}}
 \]
 Therefore $V(\phi, \theta, \lambda)$ is the same as Δ, the coefficient of the log divergence.
• This $V(\phi, \theta, \lambda)$ is the generalization of $V(L, \lambda)$ — the quark-antiquark potential.
• For a conformal theory it has a pole at $\phi \to \pi$ and the residue is $LV(L, \lambda)$.
• More generally controls all log divergences of all Wilson loops.
• Needed for a proper renormalization program of Wilson loop operators (and to derive regularized loop equations).
Generalized quark-antiquark potential in $\mathcal{N} = 4$ SYM

- Crucial point: Calculations of $V(\phi, \theta, \lambda)$ are no harder than for the antiparallel case!
Generalized quark-antiquark potential in $\mathcal{N} = 4$ SYM

- Crucial point: Calculations of $V(\phi, \theta, \lambda)$ are no harder than for the antiparallel case!

- Expanding at weak coupling

$$V(\phi, \theta, \lambda) = \sum_{n=1}^{\infty} \left(\frac{\lambda}{16\pi^2} \right)^n V^{(n)}(\phi, \theta)$$

- And at strong coupling

$$V(\phi, \theta, \lambda) = \sqrt{\frac{\lambda}{4\pi}} \sum_{l=0}^{\infty} \left(\frac{4\pi}{\sqrt{\lambda}} \right)^l V_{AdS}^{(l)}(\phi, \theta)$$
Perturbative calculation

1–loop

- Just the exchange of a gluon and scalar field

- This graph is given by the integral

\[
\partial_\lambda \langle W \rangle \bigg|_{\lambda=0} = \int_{s<t} ds \, dt \langle (iA_\mu \dot{x}^\mu(s) + |\dot{x}| \Phi^I n^I(s)) (iA_\nu \dot{x}^\nu(t) + |\dot{x}| \Phi^J n^J(t)) \rangle
\]

\[
= \frac{\lambda}{8\pi^2} \int ds \, dt \frac{-\dot{x}_\mu(s) \dot{x}^\mu(t) + n^I(s) n^J(t)}{|x(s) - x(t)|^2}
\]

\[
= \frac{\lambda}{8\pi^2} \int ds \, dt \frac{-\cos \phi + \cos \theta}{s^2 + t^2 + 2st \cos \phi} = -\frac{\lambda}{8\pi^2} \frac{\cos \phi - \cos \theta}{\sin \phi} \phi \log \frac{R}{\epsilon}
\]

- Therefore

\[
V^{(1)}(\phi, \theta) = 2 \frac{\cos \phi - \cos \theta}{\sin \phi} \phi
\]
Higher order graphs

- Ladder graphs are relatively easy.
- They dominate a funny double-scaled limit where $\theta \to i\infty$ with $\lambda \theta$ fixed. \cite{Correa, Henn, Maldacena, Sever}
- They are given by harmonic polylogs apparently to all orders. \cite{Henn, Huber}
- Results at weak and strong coupling match.
Higher order graphs

- Ladder graphs are relatively easy.
- They dominate a funny double-scaled limit where $\theta \to i\infty$ with $\lambda \theta$ fixed. [Correa, Henn Maldacena, Sever]
- They are given by harmonic polylogs apparently to all orders. [Henn, Huber]
- Results at weak and strong coupling match.
- Interacting graphs are a bit more complicated.
- At two loops there are bubble graphs and the single cubic vertex graphs.
- they give
 \[
 V^{(2)}_{\text{int}}(\phi, \theta) = -\frac{2}{3}(\pi^2 - \phi^2)V^{(1)}(\phi, \theta)
 \]
- Full 3 loop answer was also calculated. [Correa, Henn Maldacena, Sever]
String calculation

- Within the AdS/CFT correspondence Wilson loops are calculated by an infinite open string extending to the boundary of AdS.
String calculation

- Within the AdS/CFT correspondence Wilson loops are calculated by an infinite open string extending to the boundary of AdS.
- At the leading order we should find the minimal surface ending on lines separated by $\pi - \phi$ on the boundary of AdS and θ on S^5.
- All the string solutions fit inside $AdS_3 \times S^1$

\[ds^2 = \sqrt{\lambda} \left(- \cosh^2 \rho dt^2 + d\rho^2 + \sinh^2 \rho \, d\varphi^2 + d\theta^2 \right) \]
String calculation

- Within the AdS/CFT correspondence Wilson loops are calculated by an infinite open string extending to the boundary of AdS.

- At the leading order we should find the minimal surface ending on lines separated by $\pi - \phi$ on the boundary of AdS and θ on S^5.

- All the string solutions fit inside $AdS_3 \times S^1$

$$ds^2 = \sqrt{\lambda} \left(- \cosh^2 \rho \, dt^2 + d\rho^2 + \sinh^2 \rho \, d\varphi^2 + d\theta^2 \right)$$

- The equations of motion and classical action can be solved by elliptic integrals.

- $V_{AdS}^{(0)}$ given by a solution of a transcendental equation
String calculation

- Within the AdS/CFT correspondence Wilson loops are calculated by an infinite open string extending to the boundary of AdS.

- At the leading order we should find the minimal surface ending on lines separated by $\pi - \phi$ on the boundary of AdS and θ on S^5.

- All the string solutions fit inside $AdS_3 \times S^1$

\[ds^2 = \sqrt{\lambda} \left(- \cosh^2 \rho \, dt^2 + d\rho^2 + \sinh^2 \rho \, d\varphi^2 + d\theta^2 \right) \]

- The equations of motion and classical action can be solved by elliptic integrals.

- $V_{AdS}^{(0)}$ given by a solution of a transcendental equation

- Expand around $\phi = \theta = 0$ the answer is

\[
V_{AdS}^{(0)}(\phi, \theta) = \frac{1}{\pi} (\theta^2 - \phi^2) - \frac{1}{8\pi^3} (\theta^2 - \phi^2)(\theta^2 - 5\phi^2) \\
\quad + \frac{1}{64\pi^5} (\theta^2 - \phi^2)(\theta^4 - 14\theta^2\phi^2 + 37\phi^4) \\
\quad - \frac{1}{2048\pi^7} (\theta^2 - \phi^2)(\theta^6 - 27\theta^4\phi^2 + 291\theta^2\phi^4 - 585\phi^6) + O((\phi, \theta)^{10})
\]
1–loop determinant

- Complicated fluctuation problem.
- Can be done analytically (implicitly) for either $\phi = 0$ or $\theta = 0$.
- For $\theta = 0$ and small ϕ we can expand

$$
V^{(1)}_{AdS}(\phi, 0) = \frac{3}{2} \frac{\phi^2}{4\pi^2} + \left(\frac{53}{8} - 3 \zeta(3) \right) \frac{\phi^4}{16\pi^4} + \left(\frac{223}{8} - \frac{15}{2} \zeta(3) - \frac{15}{2} \zeta(5) \right) \frac{\phi^6}{64\pi^6}
+ \left(\frac{14645}{128} - \frac{229}{8} \zeta(3) - \frac{55}{4} \zeta(5) - \frac{315}{16} \zeta(7) \right) \frac{\phi^8}{256\pi^8} + O(\phi^{10})
$$
\(\phi \to \pi \) limit

- \(V^{(1)}, V^{(2)}, V_{AdS}^{(0)} \) and \(V_{AdS}^{(1)} \) all have poles at \(\phi = \pi \)
- In perturbation theory

\[
V(\phi, \theta) \to -\frac{\lambda}{8\pi} \frac{1 + \cos \theta}{\pi - \phi} + \frac{\lambda^2}{32\pi^3} \frac{(1 + \cos \theta)^2}{\pi - \phi} \log \frac{e}{2(\pi - \phi)} + O(\lambda^3)
\]
\[\phi \to \pi \text{ limit} \]

- \(V^{(1)}, V^{(2)}, V_{AdS}^{(0)} \) and \(V_{AdS}^{(1)} \) all have poles at \(\phi = \pi \)

- In perturbation theory

\[
V(\phi, \theta) \to -\frac{\lambda}{8\pi} \frac{1 + \cos \theta}{\pi - \phi} + \frac{\lambda^2}{32\pi^3} \frac{(1 + \cos \theta)^2}{\pi - \phi} \log \frac{e}{2(\pi - \phi)} + O(\lambda^3)
\]

- In the case of \(\theta = 0 \) we get essentially the same as the antiparallel lines with \(L \to \pi - \phi \)

\[
V(L, \lambda) = \begin{cases}
-\frac{\lambda}{4\pi L} + \frac{\lambda^2}{8\pi^2 L} \ln \frac{T}{L} + \cdots & \lambda \ll 1 \\
\frac{4\pi^2 \sqrt{\lambda}}{\Gamma(\frac{1}{4})^4 L} \left(1 - \frac{1.3359 \ldots}{\sqrt{\lambda}} + \cdots \right) & \lambda \gg 1
\end{cases}
\]

- The strong coupling calculations also agree in the limit.
Expansions in small angles

- Consider the expansion of $V(\phi, \theta, \lambda)$ at small ϕ or θ

$$
\frac{1}{2} \frac{\partial^2}{\partial \theta^2} V(\phi, \theta, \lambda) \bigg|_{\phi=\theta=0} = -\frac{1}{2} \frac{\partial^2}{\partial \phi^2} V(\phi, \theta, \lambda) \bigg|_{\phi=\theta=0} = \begin{cases}
\frac{\lambda}{16\pi^2} - \frac{\lambda^2}{384\pi^2} + \cdots & \lambda \ll 1 \\
\sqrt{\lambda} - \frac{3}{8\pi^2} + \cdots & \lambda \gg 1
\end{cases}
$$
Expansions in small angles

• Consider the expansion of $V(\phi, \theta, \lambda)$ at small ϕ or θ

\[\frac{1}{2} \frac{\partial^2}{\partial \theta^2} V(\phi, \theta, \lambda) \bigg|_{\phi=\theta=0} = -\frac{1}{2} \frac{\partial^2}{\partial \phi^2} V(\phi, \theta, \lambda) \bigg|_{\phi=\theta=0} = \begin{cases} \frac{\lambda}{16 \pi^2} - \frac{\lambda^2}{384 \pi^2} + \cdots & \lambda \ll 1 \\ \frac{\sqrt{\lambda}}{4 \pi^2} - \frac{3}{8 \pi^2} + \cdots & \lambda \gg 1 \end{cases} \]

• This quantity was named the bremsstrahlung function $B(\lambda)$

[Correa, Henn Maldacena, Sever]

• Calculates the radiation of an accelerated quark.

• Is related to small deformations of BPS Wilson loops and can be calculated exactly

\[B = \frac{1}{2 \pi^2} \lambda \partial_\lambda \langle W_\circ \rangle \]

\[\langle W_\circ \rangle = \frac{1}{N} L_{N-1}^{1} \left(-\frac{\lambda}{4N} \right) e^{\frac{-\lambda}{8N}} \]
Result so far:

Explicit expressions for these families of Wilson loops at weak and strong coupling.
Wilson loops and integrability

- We want to apply the tools of integrability to the case of Wilson loops:
 - Find a spin-chain model.
 - Find the all loop scattering (and reflection) matrix
 - Try to solve it exactly.
- This will allow to derive the gauge theory perturbative results from world-sheet techniques.
Wilson loops and integrability

- We want to apply the tools of integrability to the case of Wilson loops:
 - Find a spin–chain model.
 - Find the all loop scattering (and reflection) matrix
 - Try to solve it exactly.

- This will allow to derive the gauge theory perturbative results from world-sheet techniques.

- Main trick will be to start with the Wilson loop with an arbitrary insertion in it, which will simplify the steps above and at the end remove the insertion.

- In the case of the straight line, after removing the insertion, the operator is $1/2$ BPS, so no anomalous dimension. So need to know how to treat the cusp.
Local operator insertions

- There is another source of log divergences in Wilson loops:
 Adjoint valued operators inserted into the Wilson loop.
Local operator insertions

- There is another source of log divergences in Wilson loops: Adjoint valued operators inserted into the Wilson loop.

- For example, one operator in the straight line

\[W = \text{Tr} \mathcal{P} \left[\mathcal{O}(0) \exp \left(\int (iA_\mu \dot{x}^\mu + \Phi^I n^I |\dot{x}|) \, ds \right) \right] \]

\[= \text{Tr} \left[\mathcal{P} \exp \left(\int_{-\infty}^{0} (iA_\mu \dot{x}^\mu + \Phi^I n^I |\dot{x}|) \, ds \right) \mathcal{O}(0) \mathcal{P} \exp \left(\int_{0}^{\infty} (iA_\mu \dot{x}^\mu + \Phi^I n^I |\dot{x}|) \, ds \right) \right] \]

- \(\mathcal{O} \) is any adjoint operator, e.g., \(F_{23}, Z^L \), etc.
Local operator insertions

- There is another source of log divergences in Wilson loops: Adjoint valued operators inserted into the Wilson loop.

- For example, one operator in the straight line

\[
W = \text{Tr} \mathcal{P} \left[\mathcal{O}(0) \exp \left(\int (iA_\mu \dot{x}^\mu + \Phi I n^I |\dot{x}|) ds \right) \right]
\]

\[
= \text{Tr} \left[\mathcal{P} \exp \left(\int_0^0 (iA_\mu \dot{x}^\mu + \Phi I n^I |\dot{x}|) ds \right) \mathcal{O}(0) \mathcal{P} \exp \left(\int_0^\infty (iA_\mu \dot{x}^\mu + \Phi I n^I |\dot{x}|) ds \right) \right]
\]

- \(\mathcal{O}\) is any adjoint operator, e.g., \(F_{23}\), \(Z^L\), etc.

- In a conformal theory, a Wilson loop with two operator insertions at a distance \(d\) will have a VEV

\[
\langle W \rangle \sim \frac{1}{d^{2\Delta}}
\]

- \(\Delta\) is the coefficient of the log divergences — the conformal dimension of the insertions.
Local operator insertions

- There is another source of log divergences in Wilson loops: Adjoint valued operators inserted into the Wilson loop.

- For example, one operator in the straight line

\[
W = \text{Tr} \mathcal{P} \left[\mathcal{O}(0) \exp \left(\int (iA_\mu \dot{x}^\mu + \Phi^I n^I |\dot{x}|)ds \right) \right]
\]

\[
= \text{Tr} \left[\mathcal{P} \exp \left(\int_{-\infty}^{0} (iA_\mu \dot{x}^\mu + \Phi^I n^I |\dot{x}|)ds \right) \mathcal{O}(0) \mathcal{P} \exp \left(\int_{0}^{\infty} (iA_\mu \dot{x}^\mu + \Phi^I n^I |\dot{x}|)ds \right) \right]
\]

- \(\mathcal{O} \) is any adjoint operator, e.g., \(F_{23}, Z^L \), etc.

- In a conformal theory, a Wilson loop with two operator insertions at a distance \(d \) will have a VEV

\[
\langle W \rangle \sim \frac{1}{d^{2\Delta}}
\]

- \(\Delta \) is the coefficient of the log divergences — the conformal dimension of the insertions.

- Starting with and insertion of \(Z^J \) and replacing some of the \(Z \) by other fields, we will find a spin-chain model.
string picture

- The string dual of a Wilson loop with an insertion is an excited state of the open string describing the Wilson loop.
string picture

- The string dual of a Wilson loop with an insertion is an excited state of the open string describing the Wilson loop.
The string dual of a Wilson loop with an insertion is an excited state of the open string describing the Wilson loop.
string picture

- The string dual of a Wilson loop with an insertion is an excited state of the open string describing the Wilson loop.

- Study the spectrum of open string states all satisfying the same boundary conditions.
• An insertion of Z^J is described by a string ending along the same curve on the boundary but in the bulk of space rotating around the equator of S^5 with momentum J.

• An excitation traveling along this string will not know that it’s an open string and not the usual $\text{Tr} Z^J$ vacuum.
• An insertion of Z^J is described by a string ending along the same curve on the boundary but in the bulk of space rotating around the equator of S^5 with momentum J.

• An excitation traveling along this string will not know that it’s an open string and not the usual $\text{Tr } Z^J$ vacuum.

• Once it gets to the end of the string we should impose boundary conditions.
• An insertion of Z^J is described by a string ending along the same curve on the boundary but in the bulk of space rotating around the equator of S^5 with momentum J.

• An excitation traveling along this string will not know that it’s an open string and not the usual $\text{Tr} Z^J$ vacuum.

• Once it gets to the end of the string we should impose boundary conditions.

Gauge theory picture

We take the cusped Wilson loop with an adjoint valued operator like Z^J at the cusp.

\[\mathcal{O} \sim ZYZ \cdots ZZ \]
• It is clear how to see the appearance of the spin–chain by considering the compact operator in the gauge theory

• In this case the classical dimension is 5.
• It is clear how to see the appearance of the spin–chain by considering the compact operator in the gauge theory.

• In this case the classical dimension is 5.

• The bulk hamiltonian is like the usual Minahan-Zarembo, Staudacher spin–chain (Beisert S-matrix $S_{ab}^{cd}(p_1, p_2) \otimes S_{\dot{a}\dot{b}}(p_1, p_2)$).

• Boundary interaction has to be studied separately.
• It is clear how to see the appearance of the spin–chain by considering the compact operator in the gauge theory.

• In this case the classical dimension is 5.

• The bulk Hamiltonian is like the usual Minahan-Zarembo, Staudacher spin–chain (Beisert S-matrix $S_{ab}^{cd}(p_1, p_2) \otimes \hat{S}_{\hat{a}\hat{b}}^{\hat{c}\hat{d}}(p_1, p_2)$).

• Boundary interaction has to be studied separately.

• The two boundaries interact through wrapping effects at $O(g^{2(J+1)})$.

• For $J = 0$ this is at one-loop.
All loop reflection matrix and a twist

- The one loop bulk hamiltonian is the same as for closed spin–chains
- The boundary reflection matrix was calculated from Feynman graphs only in the $SU(2)$ sector.
All loop reflection matrix and a twist

- The one loop bulk hamiltonian is the same as for closed spin–chains.
- The boundary reflection matrix was calculated from Feynman graphs only in the $SU(2)$ sector.
- To do it to all loops we should use the symmetry:

\[
\begin{align*}
\text{psu}(2, 2|4) & \quad \longrightarrow \quad \text{psu}(2|2)_L \times \text{psu}(2|2)_R \\
\text{boundary} & \quad \downarrow \quad \downarrow \\
\text{osp}(4^*|4) & \quad \longrightarrow \quad \text{psu}(2|2)_D
\end{align*}
\]

- A single boundary breaks the symmetry to a diagonal $\text{psu}(2|2)$.
All loop reflection matrix and a twist

- The one loop bulk hamiltonian is the same as for closed spin–chains
- The boundary reflection matrix was calculated from Feynman graphs only in the $SU(2)$ sector.
- To do it to all loops we should use the symmetry:

$$\begin{align*}
\text{psu}(2, 2|4) & \xrightarrow{Z^J \text{ vacuum}} \text{psu}(2|2)_L \times \text{psu}(2|2)_R \\
\text{boundary} & \downarrow \\
\text{osp}(4^*|4) & \xrightarrow{} \text{psu}(2|2)_D
\end{align*}$$

- A single boundary breaks the symmetry to a diagonal $\text{psu}(2|2)$.
- By the usual argument, the boundary reflection matrix should have the same matrix structure as the bulk one

$$\mathbb{R}_{a\dot{a}}^{bb}(p) = R_0(p)\hat{S}_{a\dot{a}}^{bb}(p, -p)$$

- It replaces $\text{psu}(2|2)_L \leftrightarrow \text{psu}(2|2)_R$ labels.
• Need to determine
 \[R_0(p) = \frac{\sigma_B(p)}{\sigma(p, -p)}. \]

• Like the crossing relation in the bulk, there is a boundary “crossing-unitarity equation”
 \[\mathbb{R}(p) = S(p, -p)\mathbb{R}^c(p) \]
• Need to determine
 \[R_0(p) = \sigma_B(p)/\sigma(p, -p). \]

• Like the crossing relation in the bulk, there is a boundary “crossing-unitarity equation”
 \[\mathbb{R}(p) = S(p, -p)\mathbb{R}^c(p) \]

• This translates to the conditions on \(\sigma_B \)
 \[\sigma_B(p)\sigma_B(\bar{p}) = \frac{x^- + 1/x^-}{x^+ + 1/x^+}, \quad \sigma_B(p)\sigma_B(\bar{p}) = 1. \]

where the Joukowsky variables are a solution of
\[e^{ip} = \frac{x^+}{x^-}, \quad x^+ + \frac{1}{x^+} - x^- - \frac{1}{x^-} = \frac{1}{g}. \]
• Need to determine
\[R_0(p) = \sigma_B(p)/\sigma(p,-p). \]

• Like the crossing relation in the bulk, there is a boundary “crossing-unitarity equation”
\[\mathbb{R}(p) = \mathbb{S}(p,-p)\mathbb{R}^c(p) \]

• This translates to the conditions on \(\sigma_B \)
\[\sigma_B(p)\sigma_B(\bar{p}) = \frac{x^- + 1/x^-}{x^+ + 1/x^+}, \quad \sigma_B(p)\sigma_B(\bar{p}) = 1. \]

where the Joukowsky variables are a solution of
\[e^{ip} = \frac{x^+}{x^-}, \quad x^+ + \frac{1}{x^+} - x^- - \frac{1}{x^-} = \frac{1}{g}. \]

• The solution which matches the all consistency requirements is
\[\sigma_B(z) = \frac{1 + 1/(x^-)^2}{1 + 1/(x^+)^2} e^{-i\chi_B(x^+) + i\chi_B(x^-)} \]

where
\[\chi_B(x) = -i \int \frac{dz}{2\pi i} \frac{1}{x-z} \log \frac{\sinh 2\pi g(z+1/z)}{2\pi g(z+1/z)}. \]
• So far only right boundary. What about the left?
• So far only right boundary. What about the left?

• The left boundary is essentially the same.

• The choice of diagonal subgroup $\text{psu}(2|2)_L \times \text{psu}(2|2)_R \to \text{psu}(2|2)_{D'}$ may be different.

• Conjugate the reflection matrix by a twist matrix G acting on the $\text{psu}(2|2)_L$ labels

$$G = \text{diag}(e^{i\theta/2}, e^{-i\theta/2}, e^{i\phi/2}, e^{-i\phi/2})$$
- So far only right boundary. What about the left?
- The left boundary is essentially the same.
- The choice of diagonal subgroup $\mathfrak{psu}(2|2)_L \times \mathfrak{psu}(2|2)_R \rightarrow \mathfrak{psu}(2|2)_{D'}$ may be different.
- Conjugate the reflection matrix by a twist matrix G acting on the $\mathfrak{psu}(2|2)_L$ labels

$$G = \text{diag}(e^{i\theta/2}, e^{-i\theta/2}, e^{i\phi/2}, e^{-i\phi/2})$$

- This is all the information needed to understand the spectrum of asymptotically large insertions into the Wilson loop.
• So far only right boundary. What about the left?

• The left boundary is essentially the same.

• The choice of diagonal subgroup $\text{psu}(2|2)_L \times \text{psu}(2|2)_R \rightarrow \text{psu}(2|2)_{D'}$ may be different.

• Conjugate the reflection matrix by a twist matrix \mathcal{G} acting on the $\text{psu}(2|2)_L$ labels

$$\mathcal{G} = \text{diag}(e^{i\theta/2}, e^{-i\theta/2}, e^{i\phi/2}, e^{-i\phi/2})$$

• This is all the information needed to understand the spectrum of asymptotically large insertions into the Wilson loop.

• But not the case $J = 0 \ldots$
Wrapping effects and the quark-antiquark potential

- One can derive a set of boundary thermodynamic Bethe ansatz equations for this open spin-chain.

- This can be simplified in the small angle limit, where the full answer was reproduced.
 \[\text{Correa, Maldacen, Sev, Gromov} \]

- They are the same as the usual TBA equations with several small modifications:
 - The Y functions are related by reflection $Y_{a,s}(-u) = Y_{a,-s}(u)$
 - There are chemical potentials dependent on ϕ and θ.
 - There is a complicated driving term for the massive $Y_{a,0}$ nodes (aka Y_Q).

- The Y-system equations are unmodified.
 - Analytic properties of the functions are different (determined by the asymptotic solution).
• To reproduce the one loop answer it is enough to consider Lüscher-like corrections.
• This requires to calculate the eigenvalues of the transfer matrix
• To reproduce the one loop answer it is enough to consider Lüscher-like corrections.

• This requires to calculate the eigenvalues of the transfer matrix

by repeated use of the Yang-Baxter equation this simplifies to

• That is just the product of two twisted $\text{psu}(2|2)$ transfer matrices.
On the Z^J vacuum this is

\[
T_Q^{\phi,\theta}(p) = s\text{Tr} \left[R^{(R)}(p) R^{(L)}(\bar{p}) \right] = s\text{Tr} \left[R^{(R)}(p) G R^{(R)}(-\bar{p}) G \right]
\]

\[
= \sigma_B(p) \sigma_B(-\bar{p}) \left(\frac{x^-}{x^+} \right)^2 \left(s\text{Tr} \ G \right)^2
\]
• On the Z^J vacuum this is
\[
T_{Q}^{\phi,\theta}(p) = s\text{Tr} \left[\mathbb{R}^{(R)}(p) \mathbb{R}^{(L)}(\bar{p}) \right] = s\text{Tr} \left[\mathbb{R}^{(R)}(p) \mathbb{G} \mathbb{R}^{(R)}(\bar{p}) \right]
\]
\[
= \sigma_B(p) \sigma_B(-\bar{p}) \left(\frac{x^-}{x^+} \right)^2 (s\text{Tr} \mathbb{G})^2
\]

• Simple group theory gives
\[
(s\text{Tr} Q \mathbb{G})^2 = 4(\cos \phi - \cos \theta)^2 \frac{\sin^2 Q\phi}{\sin^2 \phi}
\]

And the Lüscher-Bajnok-Janik formula is
\[
\delta E \approx -\frac{1}{2\pi} \sum_{Q=1}^{\infty} \int_{0}^{\infty} d\bar{p} \log \left(1 + T_{Q}^{(\phi,\theta)}(\bar{p}) e^{-2J \hat{E}_Q} \right)
\]
• On the Z^J vacuum this is

$$T_Q^\phi,\theta(p) = s\text{Tr} \left[R^R(p) R^L(p) \right] = s\text{Tr} \left[R^R(p) G R^R(-\bar{p}) G \right]$$

$$= \sigma_B(p) \sigma_B(-\bar{p}) \left(\frac{x^-}{x^+} \right)^2 (s\text{Tr} G)^2$$

• Simple group theory gives

$$(s\text{Tr}_Q G)^2 = 4(\cos \phi - \cos \theta)^2 \frac{\sin^2 Q\phi}{\sin^2 \phi}$$

And the Lüscher-Bajnok-Janik formula is

$$\delta E \approx -\frac{1}{2\pi} \sum_{Q=1}^\infty \int_0^\infty d\tilde{p} \log \left(1 + T_Q^{(\phi,\theta)}(\tilde{p}) e^{-2J\tilde{E}_Q} \right)$$

• Normally for small g (or large J) can expand the logarithm

$$\delta E \approx \frac{1}{2\pi} \sum_{Q=1}^\infty \int_0^\infty d\tilde{p} \ T_Q^{(\phi,\theta)}(\tilde{p}) e^{-2J\tilde{E}_Q}$$

For $J = 0$ the answer will be proportional to $\frac{g^4(\cos \phi - \cos \theta)^2}{\sin^2 \phi} \ldots$
• Crucial fact is that the dressing factor has a double pole at $\tilde{p} = 0$

$$\sigma_B(\tilde{p})\sigma_B(-\tilde{p}) = e^{2i(\chi_B(x^+)+\chi_B(x^-))} \frac{(2\pi g)^2(x^+ + 1/x^+)(x^- + 1/x^-)}{\sinh(2\pi g(x^+ + 1/x^+))\sinh(2\pi g(x^- + 1/x^-))}$$

$$= e^{2i(\chi_B(x^+)+\chi_B(x^-))} \frac{(2\pi)^2(u^2 + Q^2/4)}{\sinh^2(2\pi u)} \sim \frac{Q^2}{\tilde{p}^2}$$

• Then using

$$\int_0^\infty d\tilde{p} \log \left(1 + \frac{c}{\tilde{p}^2} \right) = \pi \sqrt{c},$$
• Crucial fact is that the dressing factor has a double pole at \(\tilde{p} = 0 \)

\[
\sigma_B(\tilde{p})\sigma_B(-\tilde{p}) = e^{2i(\chi_B(x^+) + \chi_B(x^-))} \frac{(2\pi g)^2(x^+ + 1/x^+)(x^- + 1/x^-)}{\sinh(2\pi g(x^+ + 1/x^+)) \sinh(2\pi g(x^- + 1/x^-))} \\
= e^{2i(\chi_B(x^+) + \chi_B(x^-))} \left(\frac{2\pi}{\sinh(2\pi u)}\right)^2 \sim \frac{Q^2}{\tilde{p}^2}
\]

• Then using

\[
\int_0^\infty d\tilde{p} \log \left(1 + \frac{c}{\tilde{p}^2}\right) = \pi \sqrt{c},
\]

• The residue is

\[
\sqrt{T_Q^{\text{res}} e^{-2J\tilde{E}_Q}} = 2 \frac{\cos \phi - \cos \theta}{\sin \phi} \sin Q\phi (-1)^Q \left[\frac{(4g^2)^{J+1}}{Q^{2J+1}} - 2(J + 2) \frac{(4g^2)^{J+2}}{Q^{2J+3}} + \cdots \right]
\]

• so

\[
\delta E \approx -(4g^2)^{J+1} \frac{\cos \phi - \cos \theta}{\sin \phi} \sum_{Q=1}^{\infty} \frac{(-1)^Q \sin Q\phi}{Q^{2J+1}} \\
= -(4g^2)^{J+1} \frac{\cos \phi - \cos \theta}{2i} \frac{1}{\sin \phi} \left(\text{Li}_{2J+1}(-e^{i\phi}) - \text{Li}_{2J+1}(-e^{-i\phi}) \right)
\]
For $J = 0$

\[
\delta E \approx -\frac{4g^2}{2i} \frac{\cos \phi - \cos \theta}{\sin \phi} \left(\text{Li}_1(-e^{i\phi}) - \text{Li}_1(-e^{-i\phi}) \right)
\]

\[
= 2g^2 i \frac{\cos \phi - \cos \theta}{\sin \phi} \left(-\log(1 + e^{i\phi}) + \log(1 + e^{-i\phi}) \right)
\]

\[
= 2g^2 \frac{\cos \phi - \cos \theta}{\sin \phi} \phi + O(g^4)
\]
For $J = 0$

$$\delta E \approx -\frac{4g^2}{2i} \frac{\cos \phi - \cos \theta}{\sin \phi} \left(\text{Li}_1(-e^{i\phi}) - \text{Li}_1(-e^{-i\phi}) \right)$$

$$= 2g^2 i \frac{\cos \phi - \cos \theta}{\sin \phi} \left(-\log(1 + e^{i\phi}) + \log(1 + e^{-i\phi}) \right)$$

$$= 2g^2 \frac{\cos \phi - \cos \theta}{\sin \phi} \phi + O(g^4)$$

- This integrability calculation is in exact agreement with the one loop perturbative calculation.
For $J = 0$

$$\delta E \approx -\frac{4g^2}{2i} \frac{\cos \phi - \cos \theta}{\sin \phi} (\text{Li}_1(-e^{i\phi}) - \text{Li}_1(-e^{-i\phi}))$$

$$= 2g^2 i \frac{\cos \phi - \cos \theta}{\sin \phi} (-\log(1 + e^{i\phi}) + \log(1 + e^{-i\phi}))$$

$$= 2g^2 \frac{\cos \phi - \cos \theta}{\sin \phi} \phi + O(g^4)$$

- This integrability calculation is in exact agreement with the one loop perturbative calculation.

- For Konishi wrapping started at 4 loop order. The cusped Wilson loop is given purely by wrapping from one loop on.

- Is possible to solve iteratively to get higher orders.

- Numerics are hard, but people are working on it.

- Should also be possible to extract the strong coupling answer analytically.
Summary

When I talked about my paper with Valentina a year ago I would end with the question

Will there be a gauge theory derivation of the strong coupling potential:

\[V(L, \lambda) = \frac{4\pi^2 \sqrt{\lambda}}{\Gamma(\frac{1}{4})^4 L} \]
Summary

When I talked about my paper with Valentina a year ago I would end with the question

Will there be a gauge theory derivation of the strong coupling potential:

$$V(L, \lambda) = \frac{4\pi^2 \sqrt{\lambda}}{\Gamma(\frac{1}{4})^4 L}$$

We are very close to answering Yes!
The end