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Physical Origins of CFT

RG Flows:

CFTUV CFTIR

Fixed points = CFT

[Rough argument:                                     when                 ]T µ
µ = β(g)O → 0 β(g) → 0

1

T µ
µ = β(g)O → 0 β(g) → 0

1
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3D Example CFTUV = free scalar

Z2-preserving perturbation: T µ
µ = β(g)O → 0 β(g) → 0
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Phase diagram:
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Universality

 Near Tc the spin-spin correlation length ξ(T)→ ∞
⇒ lattice artifacts go away

Continuum limit @ T=Tc is the same CFTIR as on the previous slide

- Any same-symmetry Lagrangian (e.g. k≠0) can flow to the same CFTIR

- Can even start from a lattice model e.g. 3D Ising model:

Friday, January 11, 2013
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Beyond Lagrangians
Strongly coupled CFTs can usually be realized as endpoints of RG flows 
from weakly coupled, Lagrangian theories 

By itself, a CFT generically cannot be described by a Lagrangian
Strongly coupled Lagrangian ≈ No Lagrangian  

Exception: N=(2,0) 6D theory of multiple M5 branes

Exceptions: 
a) Weakly coupled CFTs, like λφ4 in D=4-ε (WF fixed point) CFTUV CFTIR

b) Theories a la N=4 SYM

One parameter family of CFTs:

free weakly coupled strongly coupled,
defined by analytic continuation

g

Friday, January 11, 2013
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Beyond AdS

6

For many people, CFT in D>=3 has become inseparable from AdS/CFT

Does any CFT has an AdS dual (string σ -model with AdS factor in the 
target space)?

Is duality practical away from the large N limit?

Effective holography:

Put any field content in the AdS bulk, compute correlators on the boundary

Theory in the bulk is only effective (e.g. includes gravity) 
⇒ 

defines only an `effective CFT’, to first order in 1/N expansion

Friday, January 11, 2013
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CFT - intrinsic definition
I. Basis of local operators Oi with scaling dimensions Δi

[including stress tensor Tμν of ΔT=4; conserved currents Jμ of ΔJ=3]   

derivative operators (descendants)

In unitary theories dimensions have lower bounds:

So each multiplet must contain the lowest-dimension operator:

(primary)

Kμ = special conformal transformation generator, [K]=-1
cf.

Friday, January 11, 2013
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At x≠ 0:

The generators act on the primary fields (not necessarily scalars) by

[Pµ,φ(x)] = −i∂µφ(x)

[D,φ(x)] = −i(∆ + xµ∂µ)φ(x) (A.2)

[Mµν ,φ(x)] = {Σµν − i(xµ∂ν − xν∂µ)}φ(x)

[Kµ,φ(x)] = (−i2xµ∆− 2xλΣλµ − i2xµx
ρ∂ρ + ix2∂µ)φ(x),

where the finite-dimensional matrices Σ act in the space of φ’s Lorentz indices; they have

to satisfy the commutation relation (notice the sign difference from the first equation in

(A.1))

[Σµν ,Σρσ] = +i(ηµρΣνσ ± perms) .

The algebra (A.1) corresponds to the mostly minus Minkowski signature. Beware that

the literature uses inconsistent sign conventions for various generators, in particular Mµν

and D (our conventions are those of [24]). Also, the generator action is usually given with

relative sign errors among various terms; this is not surprising because in practice these

expressions are actually rarely used. However, we will need them, so we re-checked from

scratch by using the original method of Mack and Salam [25].

As is well known, the algebra (A.1) is isomorphic to SO(d, 2). The isomorphism is

exhibited by identifying

Jµν = Mµν , Jd,d+1 = D

Jd,µ =
1

2
(Pµ −Kµ), Jd+1,µ =

1

2
(Pµ +Kµ) ,

and then Jαβ (α, β = 0 . . . d+ 1) satisfy the SO(d, 2) commutation relations

[Jαβ , Jγδ] = −i(ηαγJβδ ± perms) , ηαβ = diag(+,−, . . . ,−;−,+) .

B Unitarity bound for vectors

Metsaev [16] and Minwalla [17] have shown that in any number of spacetime dimensions d

a unitary primary vector must have dimension ∆ ≥ d−1. We will give here an independent

derivation of this result (see [26], [4] for similar arguments) based on the fact that conformal

invariance fixes the primary vector two-point function to have the (Euclidean) form:

〈Yµ(x)Yν(0)〉 =
1

(x2)∆

(

δµν − 2
xµxν

x2

)

.

17

Ward identities for correlation functions:

T µ
µ = β(g)O → 0 β(g) → 0

m
2
IR = m

2
UV +O

�
λ2

16π2

�

m
2
IR > 0 m

2
IR < 0

X · �. . .� = 0 X = (D,Pµ,Mµν , Kµ)

1

For 2- and 3-point functions suffice to solve the x-dependence:
normalization

2. “coupling constants”

= OPE coefficients
= structure constants of the operator algebra

Friday, January 11, 2013
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Operator Product Expansion

can be determined by plugging OPE into 3-point 
function and matching on the exact expression

Friday, January 11, 2013
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Four point function
Ward identity constrains it to have the form:

Demanding that the two expressions agree, the coefficient function P can be fixed unam-
biguously. Here are the first few terms in the expansion:

P (x, ∂y) = |x|∆−2∆φ

�
1 +

1

2
xµ∂µ + αxµxν∂µ∂ν + βx2∂2 + . . .

�
, (1.7)

α =
∆+ 2

8(∆+ 1)
, β = − ∆

16(∆−D/2 + 1)(∆+ 1)
.

For the OPE of two identical scalars considered here the coefficients depend on ∆ ≡ ∆O

but not on ∆φ; in general they would also depend on ∆φ1 − ∆φ2 . Such expansions have
been worked out to all orders (and also for O of nonzero spin) in the 1970’s [1–3] and show
interesting structure visible already in (1.7). For example, the D dependence appears only
in the terms multiplied by x2, and would therefore be subleading on the light cone. Notice
also that the D-dependent term becomes singular when ∆O hits the scalar field unitarity
bound D/2− 1. This is not a problem since such an O is necessarily free and so fφφO = 0.

Once the OPE structure is determined, we can use it to express any n-point function as
a sum of (n− 1)-functions. Schematically:

�φ(x)φ(y)
�

ψi(zi)� =
�

O

fφφOP (x− y, ∂y)�O(y)
�

ψi(zi)� . (1.8)

For n = 3 there is a single exchanged primary O = ψ1, and we go back to Eq. (1.5), but
for n � 4 the sum will be infinite. Actually, it will be doubly infinite since P ’s are infinite
series in ∂y.

And here comes the third special property of the conformal OPE: it converges. By this
we mean that the representations (1.8) are actually absolutely convergent at finite separation
x− y, rather than being just asymptotic expansions in the limit x → y.

This property has two important applications:

• Correlation functions of arbitrarily high order can be computed by applying the OPE
recursively. Of course, to do this we must know all primary operator dimensions ∆i

and all OPE coefficients fijk (collectively known as the CFT data).

• Eq. (1.8) can also be used to constrain the CFT data itself, by means of an old
idea known as the conformal bootstrap [4–6]. The point is that a conformal four
point function can be computed using the OPE in three different channels: (12)(34),
(13)(24), and (14)(23). That the results agree is a constraint on the CFT data.

To explain how this works in the simplest setting, consider the correlator of four identical
scalars

�φ(x1)φ(x2)φ(x3)φ(x4)� =
g(u, v)

x
2∆φ

12 x
2∆φ

34

(xij ≡ xi − xj) , (1.9)

constrained by the conformal symmetry to have this form with g(u, v) a function of the
cross ratios

u =
x2
12x

2
34

x2
13x

2
24

, v =
x2
14x

2
23

x2
13x

2
24

. (1.10)

4

Using OPE can say more:

=

conformal blocks

Friday, January 11, 2013
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Crossing symmetry

But:

This is a consistency condition for the CFT data

[Nontrivial because not satisfied term by term]

Friday, January 11, 2013



/33

  

12

/3921 7/15

Crossing symmetry

φφφφφφφφφφφφφφφφ< > = !

1

2 3

4

O

1

2 3

4

O=!

Can pull out something?

‘Bootstrap equation’ Polyakov 1974
Belavin Polyakov Zamolodchikov 1984

9/15

Preparation 2:
Conformal Block Decomposition

1 2 3 4 2 2

12 34

( , )

( ) ( )d d

G u v

x x
φ φ φ φφ φ φ φφ φ φ φφ φ φ φ< > =

dimd φφφφ=

,

2

,( , ) ( ) ( , )llG u v c u v∆∆=! !"

2
,

( ) ( ) ( )
(0, ,1, ) l l

l

z z z z
z

z

k k

z
∆+ ∆− −

∆

− ↔
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−
!" /2 1

2 1( ) ( 2 , 2 , , )k Fz z zββββ
ββββ β β ββ β ββ β ββ β β+=

Dolan, Osborn 2001

Obtained by a) summing the OPE power series
or b) as spherical harmonics of the conformal group + OPE boundary conditions

2x z=

1 0x = 3 1x =

real analytic away from the cut

4x → ∞

10/15

Crossing + CB = Sum rule

( , ) ( , )d dv G u v u G v u= 2

, ,( , ) 1 ( ) ( , )l lG u u vcv ∆∆= +! !"

Sum rule: 

,

2
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Functional equation involving squares of OPE coefficients

10/15

Crossing + CB = Sum rule

( , ) ( , )d dv G u v u G v u= 2

, ,( , ) 1 ( ) ( , )l lG u u vcv ∆∆= +! !"
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,
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d d
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−

!" !"

Functional equation involving squares of OPE coefficients

⇒ 

(and don’t forget                             )

‘s-channel’ ‘t-channel’

Tuesday, January 18, 2011

Conformal bootstrap Ferrara,Gatto,Grillo 1973
Polyakov 1974

Do solutions of this equation, 
imposed on all four point 

functions, provide a classification 
of CFTs?

A bit like classifying Lie algebras...

Friday, January 11, 2013
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D=2 success story

- In D=2  (Pμ ,Kμ ,Mμν ,D)→ Virasoro algebra
⇒ New lowering operators L-n,  n=2,3,...

Virasoro multiplet =            (Conformal multiplets)

- Central charge c<1 + unitarity ⇒ 

[Friedan,Qiu, Shenker]

- Primary dimensions in these “minimal models” are also fixed:

0.0 0.1 0.2 0.3 0.4
d0.0

0.5

1.0

1.5

2.0
f2
�2�D��d�

Ising

Ψ,Ψ2 �m�3�

Φ,Φ2 �m�3�
Free

Figure 15: The solid (blue) line represents the simplest upper bound, in an arbitrary

2D CFT, on the dimension ∆min of the first scalar in the OPE O ×O of a dimension

d scalar with itself. The dots show the position of the minimal model OPEs φ×φ and

ψ×ψ (see the text) in this plane. The dashed line corresponds to the free theory OPE

(6.14). The bound is respected in all cases.

The basic OPE of Vα with itself has the form:

Vα × Vα = V2α .

Thus we have d = α2, ∆ = 4α2, which gives the dashed line in Fig. 15,25 below the bound.

A more interesting example involves the minimal model family of exactly solvable 2D CFT.

The unitary minimal models (see [15],[34]) are numbered by an integer m = 3, 4, . . ., and describe

the universality class of the multicritical Ginzburg-Landau model:

L ∼ (∂φ)
2
+ λφ2m−2

. (6.15)

For m = 3, the Ising model is in the same universality class. The central charge of the model,

c = 1− 6

m(m− 1)
,

monotonically approaches the free scalar value cfree = 1 as m→∞. Intuitively, as m increases, the

potential becomes more and more flat, allows more states near the origin (c grows), and disappears

as m→∞ (free theory).

Minimal models are called so because they have finitely many Virasoro primary fields (the

number of SL(2, C) primaries is infinite). All Virasoro primaries are scalar fields Or,s numbered

by two integers 1 ≤ s ≤ r ≤ m− 1, whose dimension is

∆r,s =
(r + m(r − s))2 − 1

2m(m + 1)
. (6.16)

25Strictly speaking the bound in Fig. 15 was derived for real fields. However, we can apply it to the real parts
which satisfy the OPE Re Vα × Re Vα ∼ 1 + Re V2α.
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2D CFT, on the dimension ∆min of the first scalar in the OPE O ×O of a dimension

d scalar with itself. The dots show the position of the minimal model OPEs φ×φ and

ψ×ψ (see the text) in this plane. The dashed line corresponds to the free theory OPE

(6.14). The bound is respected in all cases.

The basic OPE of Vα with itself has the form:

Vα × Vα = V2α .

Thus we have d = α2, ∆ = 4α2, which gives the dashed line in Fig. 15,25 below the bound.

A more interesting example involves the minimal model family of exactly solvable 2D CFT.

The unitary minimal models (see [15],[34]) are numbered by an integer m = 3, 4, . . ., and describe

the universality class of the multicritical Ginzburg-Landau model:

L ∼ (∂φ)
2
+ λφ2m−2

. (6.15)

For m = 3, the Ising model is in the same universality class. The central charge of the model,

c = 1− 6

m(m− 1)
,

monotonically approaches the free scalar value cfree = 1 as m→∞. Intuitively, as m increases, the

potential becomes more and more flat, allows more states near the origin (c grows), and disappears

as m→∞ (free theory).

Minimal models are called so because they have finitely many Virasoro primary fields (the

number of SL(2, C) primaries is infinite). All Virasoro primaries are scalar fields Or,s numbered

by two integers 1 ≤ s ≤ r ≤ m− 1, whose dimension is

∆r,s =
(r + m(r − s))2 − 1

2m(m + 1)
. (6.16)

25Strictly speaking the bound in Fig. 15 was derived for real fields. However, we can apply it to the real parts
which satisfy the OPE Re Vα × Re Vα ∼ 1 + Re V2α.

36

[Belavin, Polyakov, Zamolodchikov], ...

-Finally, knowing dimensions, OPE coefficients can be determined 
by bootstrap

Friday, January 11, 2013
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D>=3 always looked a bit hopeless...

- Infinite system for infinite # of unknowns

- # of primaries grows exponentially with dimension:

Expansion parameter? Convergence?

Friday, January 11, 2013
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Convergence of OPE decomposition

Friday, January 11, 2013
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Convergence of the OPE (1.8) now follows from a basic theorem about Hilbert spaces:
the scalar product of two states converges when one of the two states is expanded into an
orthonormal basis. Q.E.D.

The above argument will provide a starting point for our discussion. Our goal will be to
make it more explicit and quantitative, in particular by determining the rate of convergence.

3 Operator formalism exemplified

The purpose of this section is to provide some background material about the radial quanti-
zation and the state-operator correspondence. This is pretty standard and may be skipped
by the experts.

3.1 Map to the cylinder

One way to think about the radial quantization is by mapping the CFT from the Euclidean
flat D-dimensional space to the cylinder R × SD−1 (Fig. 3). In the 2D case this is usually
carried out by means of the logarithmic coordinate transformation. However, the map exists
in any D because the cylinder is conformally flat:

ds2cyl = dτ 2 + dn2 = r−2(dr2 + r2dn2) ≡ r−2ds2RD (τ = log r ,n2 = 1) . (3.1)

On the cylinder we have time translation invariance and the usual Hamiltonian quantization.

y

x

z1

z2

z3

Figure 3: The map between RD and the cylinder.

Going back to the flat space the cylinder time slicing is mapped onto the slicing by spheres,
and we recover the radial quantization.

It is a basic property of CFT that correlation functions on conformally flat backgrounds

8

16

Mapping to the cylinder (Radial quantization)

Friday, January 11, 2013
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States on the cylinder are in  one-to-one correspondence with 
CFT local operators (State-operator correspondence)

Convergence of the OPE (1.8) now follows from a basic theorem about Hilbert spaces:
the scalar product of two states converges when one of the two states is expanded into an
orthonormal basis. Q.E.D.

The above argument will provide a starting point for our discussion. Our goal will be to
make it more explicit and quantitative, in particular by determining the rate of convergence.

3 Operator formalism exemplified

The purpose of this section is to provide some background material about the radial quanti-
zation and the state-operator correspondence. This is pretty standard and may be skipped
by the experts.

3.1 Map to the cylinder

One way to think about the radial quantization is by mapping the CFT from the Euclidean
flat D-dimensional space to the cylinder R × SD−1 (Fig. 3). In the 2D case this is usually
carried out by means of the logarithmic coordinate transformation. However, the map exists
in any D because the cylinder is conformally flat:

ds2cyl = dτ 2 + dn2 = r−2(dr2 + r2dn2) ≡ r−2ds2RD (τ = log r ,n2 = 1) . (3.1)

On the cylinder we have time translation invariance and the usual Hamiltonian quantization.

y

x

z1

z2

z3

Figure 3: The map between RD and the cylinder.

Going back to the flat space the cylinder time slicing is mapped onto the slicing by spheres,
and we recover the radial quantization.

It is a basic property of CFT that correlation functions on conformally flat backgrounds

8

τ

{conformal blockOPE coefficient

Friday, January 11, 2013
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Convergence of the OPE (1.8) now follows from a basic theorem about Hilbert spaces:
the scalar product of two states converges when one of the two states is expanded into an
orthonormal basis. Q.E.D.

The above argument will provide a starting point for our discussion. Our goal will be to
make it more explicit and quantitative, in particular by determining the rate of convergence.

3 Operator formalism exemplified

The purpose of this section is to provide some background material about the radial quanti-
zation and the state-operator correspondence. This is pretty standard and may be skipped
by the experts.

3.1 Map to the cylinder

One way to think about the radial quantization is by mapping the CFT from the Euclidean
flat D-dimensional space to the cylinder R × SD−1 (Fig. 3). In the 2D case this is usually
carried out by means of the logarithmic coordinate transformation. However, the map exists
in any D because the cylinder is conformally flat:

ds2cyl = dτ 2 + dn2 = r−2(dr2 + r2dn2) ≡ r−2ds2RD (τ = log r ,n2 = 1) . (3.1)

On the cylinder we have time translation invariance and the usual Hamiltonian quantization.

y

x

z1

z2

z3

Figure 3: The map between RD and the cylinder.

Going back to the flat space the cylinder time slicing is mapped onto the slicing by spheres,
and we recover the radial quantization.

It is a basic property of CFT that correlation functions on conformally flat backgrounds

8

τ

In the limit τ→0: 

⇒ OPE coefficient asymptotics:

⇒ At any finite τ>0 the series converges exponentially fast: 

[Pappadopulo, S.R., Espin, Rattazzi]
Friday, January 11, 2013



/33

  

19

Convergence of the OPE (1.8) now follows from a basic theorem about Hilbert spaces:
the scalar product of two states converges when one of the two states is expanded into an
orthonormal basis. Q.E.D.

The above argument will provide a starting point for our discussion. Our goal will be to
make it more explicit and quantitative, in particular by determining the rate of convergence.

3 Operator formalism exemplified

The purpose of this section is to provide some background material about the radial quanti-
zation and the state-operator correspondence. This is pretty standard and may be skipped
by the experts.

3.1 Map to the cylinder

One way to think about the radial quantization is by mapping the CFT from the Euclidean
flat D-dimensional space to the cylinder R × SD−1 (Fig. 3). In the 2D case this is usually
carried out by means of the logarithmic coordinate transformation. However, the map exists
in any D because the cylinder is conformally flat:

ds2cyl = dτ 2 + dn2 = r−2(dr2 + r2dn2) ≡ r−2ds2RD (τ = log r ,n2 = 1) . (3.1)

On the cylinder we have time translation invariance and the usual Hamiltonian quantization.

y

x

z1

z2

z3

Figure 3: The map between RD and the cylinder.

Going back to the flat space the cylinder time slicing is mapped onto the slicing by spheres,
and we recover the radial quantization.

It is a basic property of CFT that correlation functions on conformally flat backgrounds

8

Convergence of the OPE (1.8) now follows from a basic theorem about Hilbert spaces:
the scalar product of two states converges when one of the two states is expanded into an
orthonormal basis. Q.E.D.

The above argument will provide a starting point for our discussion. Our goal will be to
make it more explicit and quantitative, in particular by determining the rate of convergence.

3 Operator formalism exemplified

The purpose of this section is to provide some background material about the radial quanti-
zation and the state-operator correspondence. This is pretty standard and may be skipped
by the experts.

3.1 Map to the cylinder

One way to think about the radial quantization is by mapping the CFT from the Euclidean
flat D-dimensional space to the cylinder R × SD−1 (Fig. 3). In the 2D case this is usually
carried out by means of the logarithmic coordinate transformation. However, the map exists
in any D because the cylinder is conformally flat:

ds2cyl = dτ 2 + dn2 = r−2(dr2 + r2dn2) ≡ r−2ds2RD (τ = log r ,n2 = 1) . (3.1)

On the cylinder we have time translation invariance and the usual Hamiltonian quantization.

y

x

z1

z2

z3

Figure 3: The map between RD and the cylinder.

Going back to the flat space the cylinder time slicing is mapped onto the slicing by spheres,
and we recover the radial quantization.

It is a basic property of CFT that correlation functions on conformally flat backgrounds

8

small parameter!

[Pappadopulo, S.R., Espin, Rattazzi]
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Still the full bootstrap system looks difficult...

Focus on the 4-point function of the lowest dimension scalar:

spin 0
spin 2

+ spins 4,6,...

lowest dimension scalar in this OPE

Allowed spectrum: 

Friday, January 11, 2013
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unknowns

(square of a real OPE coefficient)

Bootstrap equation:

E.g. free scalar field is a solution:

(one field per spin in the OPE)

The first term shown in (4.8) is traceless by φ’s equation of motion, but it is not conserved. The

extra bilinear in φ terms denoted by . . . make the operator conserved for l > 0 (in accord with

the unitarity bounds (3.3)), without disturbing the tracelessness. Their exact form can be found

e.g. in [23].

In particular, there is of course the dimension 2 scalar

O2,0 =
1√
2
φ2 ,

where the constant factor is needed for the proper normalization. At spin 2 we have the energy-

momentum tensor:

O4,2 ∝ φ∂µ∂νφ− 2

�
∂µφ∂νφ−

1

4
δµν(∂φ)

2

�
.

The operators with l > 2 are the conserved higher spin currents of the free scalar theory.

The OPE coefficients of all these operators (or rather their squares) can be found by decom-

posing the free scalar 4-point function into the corresponding conformal blocks, Eq. (4.4). We

have [25],[24]:

pl+2,l = 2
l+1 (l!)2

(2l)!
(l = 2n) . (4.9)

Using these coefficients, we show in Fig. 3 how the sum rule (4.5), summed over the first

few terms, converges on the diagonal z = z̄ of the spacelike diamond. Several facts are worth

noticing. First, notice that the convergence is monotonic, i.e. all Fd,∆,l entering the infinite series

are positive. This feature is not limited to the free scalar case and remains true for a wide range

of d, ∆, l; it could be used to limit the maximal size of allowed OPE coefficients (see footnote 16).

Second, the convergence is uniform on any subinterval z ∈ [ε, 1 − ε], ε > 0, but not on the

full interval [0, 1], because all the sum rule functions vanish at its ends, see Eq. (4.7). Finally, the

convergence is fastest near the middle point z = 1/2, corresponding to the center a = b = 0 of the

spacelike diamond. Below, when we apply the sum rule to the general case d > 1, we will focus

our attention on a neighborhood of this point.

5 Main results

In this section we will present a derivation of the bound (1.4), based on the sum rule (4.5). We

assume that we are given a unitary CFT with a primary scalar operator φ of dimension d > 1.
We consider the 4-point function �φφφφ� and derive the sum rule (4.5), where the sum is over all

primary operators appearing in the OPE φ × φ. We will use only the most general information

about these operators, such as13:

13The energy-momentum tensor Tµν , which is a spin-2 primary of dimension 4, has to appear in the OPE, with
a known coefficient [25] p4,2 = 4d/(3

√
cT ) depending on the central charge cT of the theory. However, we are not

making any assumptions about the central charge and will not take this constraint into account. It may be worth
incorporating such a constraint in the future, since it could make the bound stronger. From the point of view of
phenomenology, estimates of the electroweak S-parameter prefer models with small number of degree of freedom,
hence small cT .

17
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Upper bound on dim(φ2)
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Figure 2: An upper bound on the dimension of φ2, the lowest dimension scalar appearing in φ× φ.
Curves for k = 2, . . . , 11 are shown, with the k = 11 bound being the strongest.

SU(N) turn out to be identical to those for singlets of SO(2N). Hence, we will present all
SU and SO singlet bounds together, with even values of N standing for both SO(N) and
SU(N/2).

Previous attempts to compute bounds for theories with global symmetries have been
somewhat hindered by the need to optimize over very high-dimensional spaces. Since the
vectorial sum rule Eq. (2.14) has three components, a given k corresponds to

k(k + 1)

2
× 3 (3.2)

different linear functionals. The linear programming methods implemented so far are essen-
tially limited to a search space dimension that is not much larger than ∼ 50, or k ∼ 5 for
SO(N). Worse, SU(N) vectorial sum rules have six components, making them even harder
to explore. However, our semidefinite programming algorithm appears to have few problems
with large search spaces, and we will present most of our bounds up to k = 11, regardless of
the type of global symmetry group.

As an example, figure 3 shows a bound on the lowest dimension singlet in theories with
an SU(2) or SO(4) global symmetry.9 This bound is particularly interesting for conformal

9Note that to compute the SO(4) bound, we have only used the triple sum rule of Eq. (2.14). It

20

Upper bound on the dimension of “φ2”

excluded

Rattazzi, S.R., Tonni, Vichi 2008
S.R., Vichi 2009

…, Poland,Simmons-Duffin,Vichi 
2011

free scalar

D=4
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Δi: put an upper cutoff and discretize - get a finite system

Expand the bootstrap equation around the square 
configuration up to a fixed order:

O(100) components

Some methods avoid discretization and upper cutoff on Δ 
(only on spin) Poland, Simmons-Duffin, Vichi 2011

No solutions without low-dimension scalars 
in the spectrum Rattazzi, S.R., Tonni, Vichi 2008
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Direction 1. “Carving out the space of CFTs”

- Bounds on the OPE scalar spectrum in presence of global 
symmetry of supersymmetry Poland, Simmons-Duffin 2010,

Rattazzi, S.R., Vichi 2010
Vichi 2011

Poland, Simmons-Duffin, Vichi 2011

- Bounds on the OPE coefficients and central charges (as 
functions of operator dimensions) Caracciolo, S.R 2009,

Poland, Simmons-Duffin 2010,
Rattazzi, S.R., Vichi 2010

- Bounds on the CFT data in presence of a boundary
Liendo, Rastelli, van Rees 2012
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Direction 2. “Looking for kinks”
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Figure 1. The plot above depicts a crossing symmetry bounds plot. The shaded blue region corre-
sponds to values of (∆σ,∆�) consistent with crossing symmetry. Note here ∆� is defined as the first
scalar appearing in the σ σ OPE. Note the kink at the value ∆� ≈ 1.000003 corresponding to the
two-dimensional Ising model. Some other minimal models are marked with crosses (in red).

where we have selected out the contribution of the conformal block of the identity (i.e. one)

and left it on the RHS. It is useful to think of the F (σ)
∆,L(u, v) as a continuous set of vectors

labelled by ∆, L (but depending also on ∆σ which is kept fixed). These functions are vectors

in the formal sense of being elements of the infinite dimensional vector space of functions

(on the plane) but in practice we expand these functions in a power series around a point to

some finite order reducing the problem to a finite dimensional one. For more details on this

procedure, and a more complete exposition of other points above, such as the definitions of

conformal blocks in diverse dimensions, the reader is referred to [17, 25].

Unitarity immediately reduces the size of our vector space as not all possible values of

∆, L are allowed. Rather, only ∆ satisfying

∆ ≥ D − 2

2
, L = 0; (1.6)

∆ ≥ D − L+ 2, L > 0, (1.7)

are compatible with unitarity. Other than this requirement, a given crossing symmetric

function could include any number of operators with arbitrary spin and dimension, and the

sum above should really be understood as an integral in the generic case. What really matters

is the set of OPE coefficients, which can of course contain zeroes meaning certain operators

do not appear in the correlator.

The crucial handle into attacking the problem is to notice the positivity of the coefficients

λ2
O∆,L

(following from unitarity), which leads us to consider all possible positive linear com-

binations of the vectors F (σ)
∆,L. These combinations form a semi-polyhedral cone, i.e. roughly

– 3 –

excluded

free scalar

D=2
S.R., Vichi 2009

El-Showk, Paulos 2012

It could be that some special theories saturate bounds 
and/or live at corner points
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∆0

∆0 = 2d

d

Upper bound on dim(Φ†Φ)

1 1.2 1.4 1.6 1.8

2.5
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5.5

Figure 7: An upper bound on the dimension of Φ†Φ, where Φ is a chiral primary scalar of dimension
d in an SCFT. The dashed line is the factorization value ∆ = 2d. Here we show k = 2, . . . , 11.

γΦ†Φ = dim(Φ†Φ)−2 dim(Φ) is always non-positive. This possibility was investigated recently
for theories with a weakly-coupled gravity dual in [56], with inconclusive results; effective
field theories in AdS5 allow for both positive and negative contributions to γΦ†Φ. However,
it’s possible that additional constraints might be present in those theories which admit a
consistent UV completion.

Another possibility is that the bound converges above the factorization line, with a shape
similar to the k = 11 curve in figure 7. In that case, one might wonder about the significance
of the cusp near d = 1.4, which appears to be a common feature of each curve with k ≥ 4. A
previous example of a dimension bound with a cusp is the 2D real scalar dimension bound,
presented in [50] (building on the first 2D results of [49]). There, an actual theory, the 2D
Ising model, exists very near the cusp, so that the bound is close to the best possible at that
value of d. By analogy, one might speculate that an N = 1 SUSY ‘minimal model’ exists in
the cusp in figure 7.

3.4.1 Phenomenological Applications

Our bound on dim(Φ†Φ) has implications for several models that use strong superconformal
dynamics to tailor soft parameters in the MSSM. One example is the solution to the µ/Bµ

27

Poland, Simmons-Duffin, Vichi 2011

D=4 SCFT

What is this theory?

SUSY kink

first scalar
superprimary in

OPE

chiral primary;
uncharged under global symmetry[Conjecturally, 

Φ2=0 in its 
chiral ring]
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Ising

0.50 0.55 0.60 0.65 0.70 0.75 0.80 �Σ1.0

1.2

1.4

1.6
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�Ε

Figure 3: Shaded: the part of the (∆σ,∆ε) plane allowed by the crossing symmetry constraint
(5.3). The boundary of this region has a kink remarkably close to the known 3D Ising model
operator dimensions (the tip of the arrow). The zoom of the dashed rectangle area is shown in
Fig. 4. This plot was obtained with the algorithm described in Appendix D with nmax = 11.

end of this interval is fixed by the unitarity bound, while the upper end has been chosen
arbitrarily. For each ∆σ in this range, we ask: What is the maximal ∆ε allowed by (5.3)?

The result is plotted in Fig. 3: only the points (∆σ,∆ε) in the shaded region are allowed.4

Just like similar plots in 4D and 2D [16, 17, 23] the curve bounding the allowed region starts
at the free theory point and rises steadily. Moreover, just like in 2D [17] the curve shows a
kink whose position looks remarkably close to the Ising model point.5 This is better seen in
Fig. 4 where we zoom in on the kink region. The boundary of the allowed region intersects
the red rectangle drawn using the ∆σ and ∆ε error bands given in Table 1.

Ising

0.510 0.515 0.520 0.525 0.530�Σ1.38

1.39

1.40

1.41

1.42

1.43

1.44
�Ε

Figure 4: The zoom of the dashed rectangle area from Fig. 3. The small red rectangle is
drawn using the ∆σ and ∆ε error bands given in Table 1.

From this comparison, we can draw two solid conclusions. First of all, the old results
for the allowed dimensions are not inconsistent with conformal invariance, though they are

4To avoid possible confusion: we show only the upper boundary of the allowed region. 0.5 ≤ ∆ε ≤ 1 is
also a priori allowed.

5In contrast, the 4D dimension bounds do not show kinks, except in supersymmetric theories [23].

12

excluded

free scalar

In D=3 the kink is still there:

?

[El-Showk, Paulos, Poland, Simmons-Duffin, S.R,, Vichi‘2012]
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Figure 3: Shaded: the part of the (∆σ,∆ε) plane allowed by the crossing symmetry constraint
(5.3). The boundary of this region has a kink remarkably close to the known 3D Ising model
operator dimensions (the tip of the arrow). The zoom of the dashed rectangle area is shown in
Fig. 4. This plot was obtained with the algorithm described in Appendix D with nmax = 11.

end of this interval is fixed by the unitarity bound, while the upper end has been chosen
arbitrarily. For each ∆σ in this range, we ask: What is the maximal ∆ε allowed by (5.3)?

The result is plotted in Fig. 3: only the points (∆σ,∆ε) in the shaded region are allowed.4

Just like similar plots in 4D and 2D [16, 17, 23] the curve bounding the allowed region starts
at the free theory point and rises steadily. Moreover, just like in 2D [17] the curve shows a
kink whose position looks remarkably close to the Ising model point.5 This is better seen in
Fig. 4 where we zoom in on the kink region. The boundary of the allowed region intersects
the red rectangle drawn using the ∆σ and ∆ε error bands given in Table 1.
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drawn using the ∆σ and ∆ε error bands given in Table 1.

From this comparison, we can draw two solid conclusions. First of all, the old results
for the allowed dimensions are not inconsistent with conformal invariance, though they are

4To avoid possible confusion: we show only the upper boundary of the allowed region. 0.5 ≤ ∆ε ≤ 1 is
also a priori allowed.

5In contrast, the 4D dimension bounds do not show kinks, except in supersymmetric theories [23].
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Interesting things happen near 3D Ising kink:

Ising

0.50 0.52 0.54 0.56 0.58 0.60 �Σ3.0

3.5

4.0

4.5

5.0

5.5

6.0
�T '

Figure 7: Upper bound on the dimension of the second spin 2 operator T �
µν from the crossing

symmetry constraint (5.3). The algorithm from Appendix D was used with nmax = 10. The
3D Ising vertical red line is five times wider than the error band in Table 1. We do not show
the region of ∆σ close to the unitarity bound, which is subject to numerical instabilities.

which has dimension 6. To be more precise, in the free scalar theory this operator is

decoupled from the φ×φ OPE, but we expect it to couple in the Wilson-Fischer fixed point

in 4− � dimensions.

In the 2D Ising model the first such quasiprimary operator is

T �
= (L−4 − 5

3L
2
−2)L̄−21 (2D) , (5.6)

again of dimension 6. Notice that another 2D candidate spin 2 quasiprimary, (L−2− 3
4L

2
−1)ε

of dimension 3, is a null state since the field ε = φ2,1 is degenerate on level 2 in the 2D Ising

model.

Assuming as usual that the 2D Ising and the 4D free scalar are continuously connected

by the line of Wilson-Fischer fixed points to which the 3D Ising model also belongs, we

expect by interpolation that ∆T � ≈ 6 in 3D, not far from the upper end of the range allowed

by the rigorous bound (5.4).

5.4 Bounds on Higher Spin Primaries

In addition to bounding operators in the scalar and spin 2 sectors, we can also attempt to

place bounds on higher spin primaries in the σ× σ OPE. The first such operator in the 3D

Ising model is the spin 4 operator Cµνκλ. This operator is interesting because it controls

the leading effects of rotational symmetry breaking when the 3D Ising model is placed on a

cubic lattice. The corresponding perturbation of the CFT Lagrangian can be written as

δLCFT ∝ C1111 + C2222 + C3333 . (5.7)

Because of this connection with phenomenology, the dimension of C has been computed

rather precisely: ∆C � 5.0208(12) ([47], Eq. (4.9)).

16

[El-Showk, Paulos, Poland, Simmons-Duffin, S.R,, Vichi‘2012]
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Figure 6: The bound on ∆ε� under the condition that ∆ε has already been fixed to the

maximal value allowed by Fig. 3. Here nmax = 10 (see Appendix D). The width of the vertical

red line marking the 3D Ising value of ∆σ is about five times the error band in Table 1.

the renormalization group point of view. For instance, when using the �-expansion, each of
the operator dimensions listed in Table 1 requires an independent computation.

5.3 Bounds on the Gap in the Spin 2 Sector

The above discussion concerned the scalar sector of the 3D Ising model, but eventually we
would like to also constrain operators with nonvanishing spin. For a first try, let’s study
here the gap in the spin 2 sector. The first spin 2 operator in the σ × σ OPE is the stress
tensor Tµν , and we will be interested in the dimension of the second one, call it T �

µν .

In Fig. 7 we give a rigorous upper bound on ∆T � following from the crossing symmetry
constraint (5.3). The bound is shown as a function of ∆σ only, and is in this sense analogous
to our first bound in Fig. 3. Unlike for the case of ε� studied in the previous section, we
found that the bound on T � is only very weakly correlated with the value of ∆ε, and so we
do not show separately the allowed regions in the (∆σ,∆ε) plane.

The ∆T � bound shows fascinating behavior which is the opposite to that of Fig. 6. It
has a plateau at ∆T � ∼ 5.7 for low ∆σ and suddenly drops to much lower values ∆T � ∼ 3.5
as the dimension of σ is increased. To begin with, this implies that any moderate gap in
the T � dimension, e.g. ∆T � ≥ 4, leads to a sharp upper bound on ∆σ. Taken together with
the plots in Fig. 5, one then obtains very small closed regions in the (∆σ,∆ε) plane.

Moreover, the sudden drop in the ∆T � bound happens precisely when ∆σ passes the 3D
Ising value. The actual bound there is:

∆σ ≈ 0.518 =⇒ ∆T � � 5.6 . (5.4)

Unfortunately, Table 1 is mute about ∆T � as we are not aware of any prior studies. However,
we can get a rough estimate of this dimension by interpolating between 2D and 4D. In the
4D free scalar theory the first Z2-even spin 2 operator after the stress tensor is

T �
µν = :φ2 Tµν : (4D) , (5.5)
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fix to maximally 
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Future Directions & Open problems  

1. Extend the crossing symmetry analysis to different external states
- stress tensor and currents
- fermions 

2. Look at several correlation functions simultaneously, e.g.

Friday, January 11, 2013



/33

  

30

3. Full spectrum extraction at the boundary and the kinks
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Figure 3: Shaded: the part of the (∆σ,∆ε) plane allowed by the crossing symmetry constraint
(5.3). The boundary of this region has a kink remarkably close to the known 3D Ising model
operator dimensions (the tip of the arrow). The zoom of the dashed rectangle area is shown in
Fig. 4. This plot was obtained with the algorithm described in Appendix D with nmax = 11.

end of this interval is fixed by the unitarity bound, while the upper end has been chosen
arbitrarily. For each ∆σ in this range, we ask: What is the maximal ∆ε allowed by (5.3)?

The result is plotted in Fig. 3: only the points (∆σ,∆ε) in the shaded region are allowed.4

Just like similar plots in 4D and 2D [16, 17, 23] the curve bounding the allowed region starts
at the free theory point and rises steadily. Moreover, just like in 2D [17] the curve shows a
kink whose position looks remarkably close to the Ising model point.5 This is better seen in
Fig. 4 where we zoom in on the kink region. The boundary of the allowed region intersects
the red rectangle drawn using the ∆σ and ∆ε error bands given in Table 1.
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Figure 4: The zoom of the dashed rectangle area from Fig. 3. The small red rectangle is
drawn using the ∆σ and ∆ε error bands given in Table 1.

From this comparison, we can draw two solid conclusions. First of all, the old results
for the allowed dimensions are not inconsistent with conformal invariance, though they are

4To avoid possible confusion: we show only the upper boundary of the allowed region. 0.5 ≤ ∆ε ≤ 1 is
also a priori allowed.

5In contrast, the 4D dimension bounds do not show kinks, except in supersymmetric theories [23].
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when moving to the boundary 
spectrum & OPE coeffs become uniquely determined

x   In the bulk of allowed region 
many solutions to crossing
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Exact 2D Ising spectrum: 
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Input exact Δσ and Δε and 
allow all integer dimensions 
for others:
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For 2D Ising done systematically by El-Showk & Paulos‘2012 

Table 2. Spectrum obtained with N = 60. Below are operators with L ≤ 6. The last column gives the

OPE error estimate derived from examining OPE coefficient convergence. Recall that this estimate is

derived by comparing the variation of the OPE coefficient at the last jump, δλO ≡ |λON=60 −λON=58 |,
to the coefficient itself (see main text for more details). N/A indicates that the corresponding operator

hasn’t converged enough for an OPE error estimate to be available.

L ∆EFM ∆ Err∆ (%) OPEEFM OPE ErrOPE (%) Err. Est. (%)

0

1.000003 1 0.00025 0.4999997 0.5 6.98E-05 1.1087E-05

4.0003 4 0.0076 1.56241E-02 0.015625 0.0059 0.003

8.0817 8 1.0 2.17003E-04 0.00021973 1.2 2.8

30.2000 29 4.1 2.46649E-07 0.0017688 100.0 N/A

2

2.0000 2 0 1.76777E-01 0.176777 0.0001 0.00070

5.9979 6 0.035 2.61754E-03 0.00262039 0.1 0.02

7.8600 6 31 8.66110E-05 0.00262039 96.7 N/A

10.6200 11 3.5 4.11441E-05 9.6505E-06 326.3 N/A

14.3267 14 2.3 8.60258E-07 1.9167E-06 55.1 N/A

4

4.0000 4 0 2.09627E-02 0.0209631 0.0021 0.005

5.0003 5 0.0063 5.52411E-03 0.00552427 0.0030 0.04

7.9920 8 0.1 4.63914E-04 0.00046138 0.5 0.8

11.4067 12 4.9 1.26831E-05 1.0886E-05 16.5 21.9

15.2600 16 4.6 2.07807E-06 4.0479E-07 413.4 N/A

6

6.0000 6 0 3.69140E-03 0.00369106 0.0092 0.0006

6.9978 7 0.031 1.23528E-03 0.00123526 0.0013 0.2

10.0009 10 0.0089 9.15865E-05 9.1798E-05 0.2 2.3

– 24 –

Trying to do the same for 3D Ising (+Δσ determination using kinks)  
[El-Showk, Paulos, Poland, Simmons-Duffin, S.R,, Vichi ‘work in progress]
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So far numerical approach was most successful in getting concrete results...

Can one get an analytic understanding of the resurrected 
bootstrap?

See e.g. [Fitzpatrick, Kaplan, Poland, Simmons-Duffin ’12]
[Komargodski, Zhiboedov’12] for analytic bootstrap 

results on large spin spectrum 

If you want to learn more about CTFs in D>=3 and bootstrap:
See recent lecture notes at my homepage.
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