Bootstrap Program for CFT in D>=3

Slava Rychkov

ENS Paris \& CERN

Physical Origins of CFT

RG Flows:

Fixed points $=$ CFT
[Rough argument: $T_{\mu}^{\mu}=\beta(g) \mathcal{O} \rightarrow 0 \quad$ when $\beta(g) \rightarrow 0$]

3D Example

CFTuv $=$ free scalar $(\partial \phi)^{2}$

Z2-preserving perturbation: $\quad m^{2} \phi^{2}+\lambda \phi^{4}\left[+\kappa \phi^{6}\right] \quad m, \lambda \ll \Lambda_{U V}$

$$
m_{I R}^{2}=m_{U V}^{2}+O\left(\frac{\lambda^{2}}{16 \pi^{2}}\right)
$$

Phase diagram:
strong coupling

massive theories in IR

Universality

- Any same-symmetry Lagrangian (e.g. $\mathrm{k} \neq 0$) can flow to the same $\mathrm{CFT}_{\mathrm{IR}}$
- Can even start from a lattice model e.g. 3D Ising model:

$$
Z=\exp \left[-\frac{1}{T} \sum_{\langle i j\rangle} \sigma_{i} \cdot \sigma_{j}\right]
$$

Near T_{c} the spin-spin correlation length $\xi(T) \rightarrow \infty$ \Rightarrow lattice artifacts go away

Continuum limit @ $T=T_{c}$ is the same $C F T_{I R}$ as on the previous slide

Beyond Lagrangians

Strongly coupled CFTs can usually be realized as endpoints of RG flows from weakly coupled, Lagrangian theories

Exception: $N=(2,0) 6 D$ theory of multiple M5 branes
By itself, a CFT generically cannot be described by a Lagrangian Strongly coupled Lagrangian \approx No Lagrangian

Exceptions:
a) Weakly coupled CFTs, like $\lambda \varphi^{4}$ in $D=4-\varepsilon$ (WF fixed point) CFTUV $\longrightarrow \mathrm{CFT}_{I R}$
b) Theories a la $N=4$ SYM $\quad \mathcal{L}=\frac{1}{g^{2}}[\ldots] \quad \beta(g) \equiv 0 \forall g$

One parameter family of CFTs:

Beyond AdS

For many people, CFT in $\mathrm{D}>=3$ has become inseparable from AdS/CFT

Does any CFT has an AdS dual (string σ-model with AdS factor in the target space)?

Is duality practical away from the large N limit?

Effective holography:

Put any field content in the AdS bulk, compute correlators on the boundary
Theory in the bulk is only effective (e.g. includes gravity)
\Rightarrow
defines only an `effective CFT', to first order in I/N expansion

$$
N \sim R_{A d S} / L_{P l}
$$

CFT - intrinsic definition

I. Basis of local operators $\mathbf{O}_{\boldsymbol{i}}$ with scaling dimensions $\boldsymbol{\Delta}_{\boldsymbol{i}}$

[including stress tensor $T_{\mu \nu}$ of $\Delta_{T}=4$; conserved currents $]_{\mu}$ of $\Delta_{J}=3$]

$$
O_{\Delta} \xrightarrow{P} O_{\Delta+1} \xrightarrow{P} O_{\Delta+2} \xrightarrow{\stackrel{P}{\text { derivative operators (descendants) }} \text { (d) }}
$$

$$
\mathrm{K}_{\mu}=\text { special conformal transformation generator, }[\mathrm{K}]=-1
$$

$$
\begin{aligned}
& K_{\mu} \leftrightarrow 2 x_{\mu}(x \cdot \partial)-x^{2} \partial_{\mu} \quad \text { cf. } P_{\mu} \leftrightarrow \partial_{\mu} \\
O_{\Delta} & \stackrel{K}{\leftarrow} O_{\Delta+1} \stackrel{K}{\leftarrow} O_{\Delta+2} \stackrel{K}{\leftarrow} \ldots
\end{aligned}
$$

In unitary theories dimensions have lower bounds:

$$
\Delta \geq \ell+D-2(\geq D / 2-1 \text { for } \ell=0)
$$

So each multiplet must contain the lowest-dimension operator:

$$
K \mu \cdot O_{\Delta}(0)=0
$$

At $\mathrm{x} \neq 0: \quad\left[K_{\mu}, \phi(x)\right]=\left(-i 2 x_{\mu} \Delta-2 x^{\lambda} \Sigma_{\lambda \mu}-i 2 x_{\mu} x^{\rho} \partial_{\rho}+i x^{2} \partial_{\mu}\right) \phi(x)$
Ward identities for correlation functions:

$$
X \cdot\langle\ldots\rangle=0 \quad X=\left(D, P_{\mu}, M_{\mu \nu}, K_{\mu}\right)
$$

For 2- and 3-point functions suffice to solve the x-dependence:

$$
\left\langle O_{i}(x) O_{j}(0)\right\rangle=\frac{\delta_{i j} \longleftarrow}{\left(x^{2}\right)^{\Delta_{i}}} \text { normalization }
$$

$$
\left\langle O_{i}\left(x_{1}\right) O_{j}\left(x_{2}\right) O_{k}\left(x_{3}\right)\right\rangle=\frac{\lambda^{\lambda_{i j k}}}{\left.\left|x_{12}\right|^{\Delta_{i}+\Delta_{j}-\Delta_{k}}| |_{13}\right|^{\Delta_{i}+\Delta_{k}-\Delta_{j}}\left|x_{23}\right|^{\Delta_{j}+\Delta_{k}-\Delta_{i}}}
$$

2. "coupling constants"
= OPE coefficients
= structure constants of the operator algebra

Operator Product Expansion

$O_{i}(x) O_{j}(0)=\lambda_{i j k}|x|^{\Delta_{k}-\Delta_{i}-\Delta_{j}}\left\{O_{k}(0)+\ldots\right\}$
can be determined by plugging OPE into 3-point function and matching on the exact expression

$$
\frac{1}{2} x^{\mu} \partial_{\mu} O_{k}+\alpha x^{\mu} x^{\nu} \partial_{\mu} \partial_{\nu} O_{k}+\beta x^{2} \partial^{2} O_{k}+\ldots
$$

Four point function

Ward identity constrains it to have the form:

$$
\langle\phi \phi \phi \phi\rangle=\frac{g(u, v)}{\left|x_{12}\right|^{2 \Delta}\left|x_{34}\right|^{2 \Delta}} \quad u=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, \quad v=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}
$$

Using OPE can say more:
$\begin{aligned}\left\langle\begin{array}{l}\phi\left(x_{1}\right) \phi\left(x_{3}\right) \\ \phi\left(x_{2}\right) \phi\left(x_{4}\right)\end{array}\right\rangle & =\sum \lambda_{\phi \phi i}^{2}\left|x_{12}\right|^{\Delta_{i}-2 \Delta_{\phi}}\left|x_{34}\right|^{\Delta_{i}-2 \Delta_{\phi}}\left\langle\left\{O_{i}\left(x_{2}\right)+\cdots\right\}\left\{O_{i}\left(x_{4}\right)+\cdots\right\}\right\rangle \\ & =\sum \lambda_{\phi \phi i}^{2} \frac{G_{\Delta_{i}, \ell_{i}}(u, v)}{\left|x_{12}\right|^{2 \Delta_{\phi}}\left|x_{34}\right|^{2 \Delta_{\phi}}}\end{aligned}$

$$
g(u, v)=\sum \lambda_{\phi \phi i}^{2} G_{\Delta_{i}, \ell_{i}}(u, v)
$$

Crossing symmetry

$$
\begin{gathered}
\langle\phi \phi \phi \phi\rangle=\frac{g_{s}(u, v)}{\left|x_{12}\right|^{2 \Delta}\left|x_{34}\right|^{2 \Delta}}=\frac{g_{t}(v, u)}{\left|x_{14}\right|^{2 \Delta}\left|x_{23}\right|^{2 \Delta}} \\
g_{s}(u, v)=\sum \lambda_{\phi \phi i}^{2} G_{\Delta_{i}, \ell_{i}}(u, v) \quad g_{t}(v, u)=\sum \lambda_{\phi \phi i}^{2} G_{\Delta_{i}, \ell_{i}}(v, u)
\end{gathered}
$$

But: $\quad g_{t}(v, u)=(v / u)^{\Delta_{\phi}} g_{s}(u, v)$

This is a consistency condition for the CFT data
[Nontrivial because not satisfied term by term]

Conformal bootstrap Ferrara,Gatto,Grillo 1973

Polyakov 1974

Do solutions of this equation, imposed on all four point functions, provide a classification of CFTs?

A bit like classifying Lie algebras...

D=2 success story

- In $D=2\left(P_{\mu}, K_{\mu}, M_{\mu \nu}, D\right) \rightarrow$ Virasoro algebra \Rightarrow New lowering operators $L_{-n}, n=2,3, \ldots$
Virasoro multiplet $=\oplus_{n=1}^{\infty}($ Conformal multiplets $)$
- Central charge $\mathrm{c}<1+$ unitarity \Rightarrow

$$
c=1-\frac{6}{m(m+1)}, \quad m=3,4, \ldots \quad \quad \text { [Friedan,Qiu, Shenker] }
$$

- Primary dimensions in these "minimal models" are also fixed:

$$
\Delta_{r, s}=\frac{(r+m(r-s))^{2}-1}{2 m(m+1)} \quad 1 \leq s \leq r \leq m-1
$$

-Finally, knowing dimensions, OPE coefficients can be determined by bootstrap

D>=3 always looked a bit hopeless...

$$
\sum_{i} \lambda_{12 i} \lambda_{34 i} G\left(\Delta_{i}, \Delta_{e x t} \mid u, v\right)=\sum_{i} \lambda_{14 i} \lambda_{23 i} G\left(\Delta_{j}, \Delta_{e x t} \mid v, u\right)
$$

- Infinite system for infinite \# of unknowns
- \# of primaries grows exponentially with dimension:

$$
\#(\Delta<E) \sim \exp \left(\text { Const. } E^{1-1 / D}\right)
$$

Expansion parameter? Convergence?

Convergence of OPE decomposition

Mapping to the cylinder (Radial quantization)

$$
\langle 0| \phi \phi \phi \phi|0\rangle=\sum_{E_{n}}\langle 0| \phi \phi|n\rangle e^{-E_{n} \tau}\langle n| \phi \phi|0\rangle
$$

States on the cylinder are in one-to-one correspondence with CFT local operators (State-operator correspondence)

$$
|\Delta\rangle \leftrightarrow O_{\Delta} \quad E_{n}=\Delta+n, \quad n=0,1,2, \ldots
$$

$$
\left.\langle 0| \phi \phi \phi \phi|0\rangle=\sum_{\Delta}|\langle 0| \phi \phi| \Delta\right\rangle\left.\right|^{2} e^{-\Delta \tau}(\underbrace{\left.1+\sum_{n=1}^{\infty} c_{n} e^{-n \tau}\right)}
$$

OPE coefficient

$$
\left.\langle 0| \phi \phi \phi \phi|0\rangle=\sum_{\Delta}|\langle 0| \phi \phi| \Delta\right\rangle\left.\right|^{2} e^{-\Delta \tau}\left(1+\sum_{n=1}^{\infty} c_{n} e^{-n \tau}\right)
$$

In the limit $\tau \rightarrow 0$:

$$
\langle 0| \phi \phi \phi \phi|0\rangle \sim \frac{1}{\tau^{2 \Delta_{\phi}}} \times \frac{1}{\tau^{2 \Delta_{\phi}}}
$$

\Rightarrow OPE coefficient asymptotics: $\quad|\langle 0| \phi \phi| \Delta\rangle\left.\right|^{2} \sim \frac{\Delta^{4 \Delta_{\phi}-1}}{\Gamma\left(4 \Delta_{\phi}\right)}$
\Rightarrow At any finite $T>0$ the series converges exponentially fast:

$$
\left.\langle 0| \phi \phi \phi \phi|0\rangle\right|_{\Delta \geq \Delta_{*}} \lesssim \frac{\Delta_{*}^{4 \Delta_{\phi}}}{\Gamma\left(4 \Delta_{\phi}+1\right)} e^{-\Delta_{*} \tau}
$$

[Pappadopulo, S.R., Espin, Rattazzi] 18/33
[Pappadopulo, S.R., Espin, Rattazzi]

Still the full bootstrap system looks difficult...
Focus on the 4-point function of the lowest dimension scalar:

$$
\begin{gathered}
\phi \times \phi=1+" \phi^{2} "+\ldots \quad \text { spin } 0 \\
\\
\hline+T_{\mu \nu}+\ldots \quad \text { spin } 2 \\
+ \text { spins } 4,6, \ldots
\end{gathered}
$$

lowest dimension scalar in this OPE

Allowed spectrum:

$$
\begin{aligned}
& \geq D \\
& \ell=0 \quad \ell=2 \quad \ell=4
\end{aligned}
$$

Bootstrap equation:

$$
v^{\Delta_{\phi}}+\sum_{l=0,2, \ldots} \sum_{i=1}^{\infty} X_{\ell, i} v^{\Delta_{\phi}} G_{\ell, \Delta_{i}}(u, v)=(u \leftrightarrow v)
$$

$X_{\ell, i} \geq 0 \quad$ (square of a real OPE coefficient)
E.g. free scalar field is a solution:

$$
\begin{aligned}
& \Delta_{\phi}=1 \quad(D=4) \\
& \Delta_{l}=l+D-2 \quad \text { (one field per spin in the OPE) } \\
& X_{l}=\frac{(l!)^{2}}{(2 l)!}
\end{aligned}
$$

Upper bound on the dimension of " φ^{2} "
Rattazzi, S.R.,Tonni, Vichi 2008 S.R.,Vichi 2009
..., Poland,Simmons-Duffin,Vichi 2011

free scalar

$$
v^{\Delta_{\phi}}+\sum_{l=0,2, \ldots} \sum_{i=1}^{\infty} X_{\ell, i} v^{\Delta_{\phi}} G_{\ell, \Delta_{i}}(u, v)=(u \leftrightarrow v)
$$

Expand the bootstrap equation around the square configuration up to a fixed order:

$$
\sum_{l=0,2, \ldots} \sum_{i=1}^{\infty} X_{\ell, i} \vec{V}_{\ell, \Delta_{i}}=\vec{V}_{0} \quad \begin{gathered}
X_{\ell, i} \geq 0 \\
\mathrm{O}(100) \text { components }
\end{gathered}
$$

$\Delta_{i}:$ put an upper cutoff and discretize - get a finite system
No solutions without low-dimension scalars in the spectrum Rattazzi, S.R.,Tonni,Vichi 2008

Some methods avoid discretization and upper cutoff on Δ (only on spin)

Poland, Simmons-Duffin,Vichi 201I

Direction I. "Carving out the space of CFTs"

- Bounds on the OPE scalar spectrum in presence of global

$$
\begin{aligned}
& \text { symmetry of supersymmetry Poland, Simmons-Duffin 2010, } \\
& \text { Rattazzi, S.R.,Vichi } 2010 \\
& \text { Vichi 201I } \\
& \text { Poland, Simmons-Duffin,Vichi 20II }
\end{aligned}
$$

- Bounds on the OPE coefficients and central charges (as functions of operator dimensions)

Caracciolo, S.R 2009,
Poland, Simmons-Duffin 20IO, Rattazzi, S.R.,Vichi 2010

- Bounds on the CFT data in presence of a boundary

Liendo, Rastelli, van Rees 2012

Direction 2. "Looking for kinks"

S.R.,Vichi 2009

It could be that some special theories saturate bounds and/or live at corner points

SUSY kink

In $\mathrm{D}=3$ the kink is still there:

[El-Showk, Paulos, Poland, Simmons-Duffin, S.R,,Vichi'20I 2]

Interesting things happen near 3D Ising kink:

[El-Showk, Paulos, Poland, Simmons-Duffin, S.R,,Vichi'2012]

fix to maximally allowed

Future Directions \& Open problems

I. Extend the crossing symmetry analysis to different external states

- stress tensor and currents
- fermions

2. Look at several correlation functions simultaneously, e.g.

$$
\langle\sigma \sigma \sigma \sigma\rangle \quad\langle\epsilon \epsilon \sigma \sigma\rangle \quad\langle\epsilon \epsilon \epsilon \epsilon\rangle
$$

3. Full spectrum extraction at the boundary and the kinks

Exact 2D Ising spectrum:

Input exact Δ_{σ} and Δ_{ε} and allow all integer dimensions for others:

For 2D Ising done systematically by El-Showk \& Paulos'2012

L	$\Delta_{\text {EFM }}$	Δ	$\operatorname{Err}_{\Delta}(\%)$	$\mathrm{OPE}_{\text {EFM }}$	OPE	$\operatorname{Err}_{\text {OPE }}(\%)$	Err. Est. (\%)
0	1.000003	1	0.00025	0.4999997	0.5	$6.98 \mathrm{E}-05$	$1.1087 \mathrm{E}-05$
	4.0003	4	0.0076	$1.56241 \mathrm{E}-02$	0.015625	0.0059	0.003
	8.0817	8	1.0	$2.17003 \mathrm{E}-04$	0.00021973	1.2	2.8
	30.2000	29	4.1	$2.46649 \mathrm{E}-07$	0.0017688	100.0	N/A
2	2.0000	2	0	$1.76777 \mathrm{E}-01$	0.176777	0.0001	0.00070
	5.9979	6	0.035	$2.61754 \mathrm{E}-03$	0.00262039	0.1	0.02
	7.8600	6	31	$8.66110 \mathrm{E}-05$	0.00262039	96.7	N/A
	10.6200	11	3.5	$4.11441 \mathrm{E}-05$	$9.6505 \mathrm{E}-06$	326.3	N/A
	14.3267	14	2.3	$8.60258 \mathrm{E}-07$	$1.9167 \mathrm{E}-06$	55.1	N/A
4	4.0000	4	0	$2.09627 \mathrm{E}-02$	0.0209631	0.0021	0.005
	5.0003	5	0.0063	$5.52411 \mathrm{E}-03$	0.00552427	0.0030	0.04
	7.9920	8	0.1	$4.63914 \mathrm{E}-04$	0.00046138	0.5	0.8
	11.4067	12	4.9	$1.26831 \mathrm{E}-05$	$1.0886 \mathrm{E}-05$	16.5	21.9
	15.2600	16	4.6	$2.07807 \mathrm{E}-06$	$4.0479 \mathrm{E}-07$	413.4	N/A
6	6.0000	6	0	$3.69140 \mathrm{E}-03$	0.00369106	0.0092	0.0006
	6.9978	7	0.031	$1.23528 \mathrm{E}-03$	0.00123526	0.0013	0.2
	10.0009	10	0.0089	$9.15865 \mathrm{E}-05$	$9.1798 \mathrm{E}-05$	0.2	2.3

Trying to do the same for 3D Ising ($+\Delta_{\sigma}$ determination using kinks)
[EI-Showk, Paulos, Poland, Simmons-Duffin, S.R,,Vichi 'work in progress]

So far numerical approach was most successful in getting concrete results...

Can one get an analytic understanding of the resurrected bootstrap?

See e.g. [Fitzpatrick, Kaplan, Poland, Simmons-Duffin '12]
[Komargodski, Zhiboedov' 12] for analytic bootstrap results on large spin spectrum

If you want to learn more about CTFs in D>=3 and bootstrap: See recent lecture notes at my homepage.

