Bootstrap Program for CFT in D>=3

Slava Rychkov

ENS Paris & CERN

Friday, January 11, 2013

Physical Origins of CFT

RG Flows:

Fixed points = CFT

[Rough argument: $T^{\mu}_{\mu} = \beta(g)\mathcal{O} \to 0$ when $\beta(g) \to 0$]

3D Example

$$CFT_{UV} = free \ scalar \ (\partial \phi)^2$$

Z₂-preserving perturbation: $m^2 \phi^2 + \lambda \phi^4 [+\kappa \phi^6]$ $m, \lambda \ll \Lambda_{UV}$

$$m_{IR}^2 = m_{UV}^2 + O\left(\frac{\lambda^2}{16\pi^2}\right)$$

Phase diagram:

Universality

- Any same-symmetry Lagrangian (e.g. $k \neq 0$) can flow to the same CFT_{IR}

- Can even start from a lattice model e.g. 3D Ising model:

$$Z = \exp\left[-rac{1}{T}\sum_{\langle ij
angle}\sigma_i\cdot\sigma_j
ight]$$

Near T_c the spin-spin correlation length $\xi(T) \rightarrow \infty$ \Rightarrow lattice artifacts go away

Continuum limit @ $T=T_c$ is the same CFT_{IR} as on the previous slide

Beyond Lagrangians

Strongly coupled CFTs can usually be realized as endpoints of RG flows from weakly coupled, Lagrangian theories

Exception: N=(2,0) 6D theory of multiple M5 branes

By itself, a CFT **generically** cannot be described by a Lagrangian **Strongly coupled Lagrangian** \approx **No Lagrangian**

Exceptions: a) Weakly coupled CFTs, like $\lambda \varphi^4$ in D=4- ϵ (WF fixed point) CFT_{UV} \longrightarrow CFT_{IR} b) Theories a la N=4 SYM $\mathcal{L} = \frac{1}{q^2} [\ldots]$ $\beta(g) \equiv 0 \ \forall g$

One parameter family of CFTs:

free weakly coupled strongly coupled, defined by analytic continuation 5 /33

Beyond AdS

For many people, CFT in D>=3 has become inseparable from AdS/CFT

Does any CFT has an AdS dual (string σ -model with AdS factor in the target space)?

Is duality practical away from the large N limit?

Effective holography:

Put any field content in the AdS bulk, compute correlators on the boundary

Theory in the bulk is only effective (e.g. includes gravity) \Rightarrow

defines only an `effective CFT', to first order in I/N expansion

 $N \sim R_{AdS}/L_{Pl}$

CFT - intrinsic definition

I. Basis of local operators O_i with scaling dimensions Δ_i

[including stress tensor $T_{\mu\nu}$ of Δ_T =4; conserved currents J_{μ} of Δ_J =3]

$$O_{\Delta} \xrightarrow{P} O_{\Delta+1} \xrightarrow{P} O_{\Delta+2} \xrightarrow{P} \dots$$

derivative operators (descendants)

$$\begin{aligned} \mathsf{K}_{\mu} &= \text{special conformal transformation generator, } [\mathsf{K}] = -1 \\ & K_{\mu} \leftrightarrow 2x_{\mu}(x \cdot \partial) - x^{2} \partial_{\mu} \quad \text{cf. } P_{\mu} \leftrightarrow \partial_{\mu} \\ & O_{\Delta} \stackrel{K}{\leftarrow} O_{\Delta+1} \stackrel{K}{\leftarrow} O_{\Delta+2} \stackrel{K}{\leftarrow} \dots \end{aligned}$$

In unitary theories dimensions have lower bounds:

 $\Delta \ge \ell + D - 2 \ (\ge D/2 - 1 \text{ for } \ell = 0)$

So each multiplet must contain the lowest-dimension operator:

$$K\mu \cdot O_{\Delta}(0) = 0$$

(primary)

At $x \neq 0$: $[K_{\mu}, \phi(x)] = (-i2x_{\mu}\Delta - 2x^{\lambda}\Sigma_{\lambda\mu} - i2x_{\mu}x^{\rho}\partial_{\rho} + ix^{2}\partial_{\mu})\phi(x)$ Ward identities for correlation functions:

$$X \cdot \langle \ldots \rangle = 0 \qquad X = (D, P_{\mu}, M_{\mu\nu}, K_{\mu})$$

For 2- and 3-point functions suffice to solve the x-dependence: $\langle O_i(x)O_j(0)\rangle = \frac{\delta_{ij}}{(x^2)^{\Delta_i}}$ normalization

 $\langle O_i(x_1)O_j(x_2)O_k(x_3)\rangle = \frac{\lambda_{ijk}}{|x_{12}|^{\Delta_i + \Delta_j - \Delta_k}|x_{13}|^{\Delta_i + \Delta_k - \Delta_j}|x_{23}|^{\Delta_j + \Delta_k - \Delta_i}}$

2. "coupling constants"

- = OPE coefficients
- = structure constants of the operator algebra

Operator Product Expansion

$$O_i(x)O_j(0) = \lambda_{ijk}|x|^{\Delta_k - \Delta_i - \Delta_j} \{O_k(0) + \ldots\}$$

can be determined by plugging OPE into 3-point function and matching on the exact expression

$$\frac{1}{2}x^{\mu}\partial_{\mu}O_{k} + \alpha x^{\mu}x^{\nu}\partial_{\mu}\partial_{\nu}O_{k} + \beta x^{2}\partial^{2}O_{k} + \dots$$

Four point function

Ward identity constrains it to have the form:

$$\langle \phi \phi \phi \phi \rangle = \frac{g(u,v)}{|x_{12}|^{2\Delta} |x_{34}|^{2\Delta}}$$

$$u = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}, \quad v = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}$$

Using OPE can say more:

$$\begin{pmatrix} \phi(x_1) \ \phi(x_3) \\ \phi(x_2) \ \phi(x_4) \end{pmatrix} = \sum \lambda_{\phi\phi i}^2 |x_{12}|^{\Delta_i - 2\Delta_\phi} |x_{34}|^{\Delta_i - 2\Delta_\phi} \langle \{O_i(x_2) + \cdots\} \{O_i(x_4) + \cdots\} \rangle$$

$$= \sum \lambda_{\phi\phi i}^2 \frac{G_{\Delta_i,\ell_i}(u,v)}{|x_{12}|^{2\Delta_\phi} |x_{34}|^{2\Delta_\phi}}$$
 conformal blocks

$$g(u,v) = \sum \lambda_{\phi\phi i}^2 G_{\Delta_i,\ell_i}(u,v)$$

Crossing symmetry

$$egin{aligned} &\langle \phi \phi \phi
angle &= rac{g_s(u,v)}{|x_{12}|^{2\Delta}|x_{34}|^{2\Delta}} = rac{g_t(v,u)}{|x_{14}|^{2\Delta}|x_{23}|^{2\Delta}} \ &g_s(u,v) = \sum \lambda_{\phi \phi i}^2 G_{\Delta_i,\ell_i}(u,v) \qquad g_t(v,u) = \sum \lambda_{\phi \phi i}^2 G_{\Delta_i,\ell_i}(v,u) \end{aligned}$$

D=2 success story

- In D=2 $(P_{\mu}, K_{\mu}, M_{\mu\nu}, D) \rightarrow$ Virasoro algebra \Rightarrow New lowering operators L_{-n}, n=2,3,... Virasoro multiplet = $\bigoplus_{n=1}^{\infty}$ (Conformal multiplets)

- Central charge c<1 + unitarity \Rightarrow

$$c=1-rac{6}{m(m+1)}, \hspace{1em} m=3,4,\ldots$$
 [Friedan,Qiu, Shenker]

- Primary dimensions in these "minimal models" are also fixed:

$$\Delta_{r,s} = \frac{(r+m(r-s))^2 - 1}{2m(m+1)} \qquad 1 \le s \le r \le m-1$$

-Finally, knowing dimensions, OPE coefficients can be determined by **bootstrap**

[Belavin, Polyakov, Zamolodchikov], ...

D>=3 always looked a bit hopeless...

$$\sum_{i} \lambda_{12i} \lambda_{34i} G(\Delta_i, \Delta_{ext} | u, v) = \sum_{i} \lambda_{14i} \lambda_{23i} G(\Delta_j, \Delta_{ext} | v, u)$$

- Infinite system for infinite # of unknowns

- # of primaries grows exponentially with dimension:

 $\#(\Delta < E) \sim \exp(Const.E^{1-1/D})$

Expansion parameter? Convergence?

Convergence of OPE decomposition

Mapping to the cylinder (Radial quantization)

$$\langle 0 | \phi \phi \phi \phi | 0
angle = \sum_{E_n} \langle 0 | \phi \phi | n
angle e^{-E_n au} \langle n | \phi \phi | 0
angle$$

States on the cylinder are in one-to-one correspondence with CFT local operators (State-operator correspondence) $|\Delta\rangle \leftrightarrow O_{\Delta}$ $E_n = \Delta + n, \quad n = 0, 1, 2, ...$

$$\langle 0 | \phi \phi \phi | 0 \rangle = \sum_{\Delta} | \langle 0 | \phi \phi | \Delta \rangle |^2 e^{-\Delta \tau} (1 + \sum_{n=1}^{\infty} c_n e^{-n\tau})$$

OPE coefficient Conformal block

 \Rightarrow At any finite τ >0 the series converges exponentially fast:

$$\begin{split} \langle 0 | \phi \phi \phi \phi | 0 \rangle |_{\Delta \ge \Delta_*} \lesssim \frac{\Delta_*^{4 \Delta_{\phi}}}{\Gamma(4 \Delta_{\phi} + 1)} e^{-\Delta_* \tau} \\ & \text{[Pappadopulo, S.R., Espin, Rattazzi]} \end{split}$$

18/33

[Pappadopulo, S.R., Espin, Rattazzi]

small parameter!

Still the full bootstrap system looks difficult...

Focus on the 4-point function of the lowest dimension scalar:

$$\phi \times \phi = 1 + "\phi^{2"} + \dots$$
 spin 0
 $f + T_{\mu\nu} + \dots$ spin 2
+ spins 4,6,...
lowest dimension scalar in this OPE

Allowed spectrum: $\geq D + 2$ $\geq D / 2 - 1$ $\ell = 0$ $\ell = 2$ $\ell = 4$

Bootstrap equation:

E.g. free scalar field is a solution:

$$\Delta_{\phi} = 1 \quad (D = 4)$$

$$\Delta_{l} = l + D - 2 \quad \text{(one field per spin in the OPE)}$$

$$X_{l} = \frac{(l!)^{2}}{(2l)!}$$

Upper bound on the dimension of " ϕ^2 "

$$v^{\Delta_{\phi}} + \sum_{l=0,2,\dots} \sum_{i=1}^{\infty} \underline{X_{\ell,i}} \ v^{\Delta_{\phi}} G_{\ell,\Delta_i}(u,v) = (u \leftrightarrow v)$$

Expand the bootstrap equation around the square configuration up to a fixed order:

$$\sum_{l=0,2,...}\sum_{i=1}^{\infty} X_{\ell,i} \vec{V}_{\ell,\Delta_i} = \vec{V}_0 \qquad X_{\ell,i} \ge 0$$

$$(100) \text{ components}$$

 Δ_i : put an upper cutoff and discretize - get a finite system

No solutions without low-dimension scalars in the spectrum Rattazzi, S.R., Tonni, Vichi 2008

Some methods avoid discretization and upper cutoff on Δ (only on spin) Poland, Simmons-Duffin, Vichi 2011

Direction I. "Carving out the space of CFTs"

- Bounds on the OPE scalar spectrum in presence of global

symmetry of supersymmetry

Poland, Simmons-Duffin 2010, Rattazzi, S.R.,Vichi 2010 Vichi 2011 Poland, Simmons-Duffin,Vichi 2011

- Bounds on the OPE coefficients and central charges (as functions of operator dimensions) Caracciolo, S.R 2009, Poland, Simmons-Duffin 2010, Rattazzi, S.R.,Vichi 2010

- Bounds on the CFT data in presence of a boundary

Liendo, Rastelli, van Rees 2012

Direction 2. "Looking for kinks"

It could be that some special theories saturate bounds and/or live at corner points

SUSY kink

Poland, Simmons-Duffin, Vichi 2011

In D=3 the kink is still there:

[El-Showk, Paulos, Poland, Simmons-Duffin, S.R,, Vichi'2012]

Interesting things happen near 3D Ising kink:

[El-Showk, Paulos, Poland, Simmons-Duffin, S.R., Vichi'2012]

Friday, January 11, 2013

28/33

Future Directions & Open problems

I. Extend the crossing symmetry analysis to different external states

- stress tensor and currents
- fermions

2. Look at several correlation functions simultaneously, e.g.

$$\langle \sigma \sigma \sigma \sigma \sigma \rangle \qquad \langle \epsilon \epsilon \sigma \sigma \rangle \qquad \langle \epsilon \epsilon \epsilon \epsilon \rangle$$

3. Full spectrum extraction at the boundary and the kinks

Input exact Δ_{σ} and Δ_{ϵ} and allow all integer dimensions for others:

For 2D Ising done systematically by EI-Showk & Paulos'2012

L	$\Delta_{ m EFM}$	Δ	$\operatorname{Err}_{\Delta}(\%)$	OPE_{EFM}	OPE	$\mathrm{Err}_{\mathrm{OPE}}$ (%)	Err. Est. (%)
0	1.000003	1	0.00025	0.4999997	0.5	6.98E-05	1.1087E-05
	4.0003	4	0.0076	1.56241E-02	0.015625	0.0059	0.003
	8.0817	8	1.0	2.17003E-04	0.00021973	1.2	2.8
	30.2000	29	4.1	2.46649E-07	0.0017688	100.0	N/A
2	2.0000	2	0	1.76777E-01	0.176777	0.0001	0.00070
	5.9979	6	0.035	2.61754E-03	0.00262039	0.1	0.02
	7.8600	6	31	8.66110E-05	0.00262039	96.7	N/A
	10.6200	11	3.5	4.11441E-05	9.6505E-06	326.3	N/A
	14.3267	14	2.3	8.60258E-07	1.9167E-06	55.1	N/A
4	4.0000	4	0	2.09627E-02	0.0209631	0.0021	0.005
	5.0003	5	0.0063	5.52411E-03	0.00552427	0.0030	0.04
	7.9920	8	0.1	4.63914E-04	0.00046138	0.5	0.8
	11.4067	12	4.9	1.26831E-05	1.0886E-05	16.5	21.9
	15.2600	16	4.6	2.07807E-06	4.0479E-07	413.4	N/A
6	6.0000	6	0	3.69140E-03	0.00369106	0.0092	0.0006
	6.9978	7	0.031	1.23528E-03	0.00123526	0.0013	0.2
	10.0009	10	0.0089	9.15865E-05	9.1798E-05	0.2	2.3

Trying to do the same for 3D Ising (+ Δ_{σ} determination using kinks)

[El-Showk, Paulos, Poland, Simmons-Duffin, S.R,, Vichi 'work in progress]

So far numerical approach was most successful in getting concrete results...

Can one get an analytic understanding of the resurrected bootstrap?

See e.g. [Fitzpatrick, Kaplan, Poland, Simmons-Duffin '12] [Komargodski, Zhiboedov'12] for analytic bootstrap results on large spin spectrum

If you want to learn more about CTFs in D>=3 and bootstrap: See recent lecture notes at my homepage.