$\mathcal{N}=2$ S-dualities from M5-branes

Yuji Tachikawa

based on works in collaboration with

L. F. Alday, B. Wecht, F. Benini, S. Benvenuti, D. Gaiotto

October 2009

1. Introduction

2. SU(3) and SU(N)

3. SU(2) and Liouville

Montonen-Olive duality

- $\mathcal{N} = 4$ SU(N) SYM at coupling $\tau = \theta/(2\pi) + (4\pi i)/g^2$ equivalent to the same theory coupling $\tau' = -1/\tau$
- One way to 'understand' it: start from 6d $\mathcal{N} = (2, 0)$ theory, i.e. the theory on N M5-branes, put on a torus

Low energy physics depends only on the complex structure
 S-duality!

- You can wrap N M5-branes on a more general Riemann surface, possibly with punctures, to get $\mathcal{N} = 2$ superconformal field theories
- Different limits of the shape of the Riemann surface gives different weakly-coupled descriptions, giving S-dualities among them
- Anticipated by [Witten,9703166], but not well-appreciated until [Gaiotto,0904.2715]

1. Introduction

2. $\mathrm{SU}(3)$ and $\mathrm{SU}(N)$

3. SU(2) and Liouville

1. Introduction

2. $\mathrm{SU}(3)$ and $\mathrm{SU}(N)$

3. SU(2) and Liouville

$$egin{aligned} \mathrm{SU(2)} ext{ with } N_f &= 4 \ && au &= rac{ heta}{\pi} + rac{8\pi i}{g^2} \ && au o au + 1, \qquad au o -rac{1}{ au} \end{aligned}$$

- Exchanges monopoles and quarks
- Comes from S-duality of Type IIB

SU(3) with
$$N_f=6$$

 $au=rac{ heta}{\pi}+rac{8\pi i}{g^2}$
 $au o au+2, au o -rac{1}{ au}$

- Exchanges monopoles and quarks
- Infinitely Strongly coupled at au = 1

[Argyres-Seiberg,0711.0054]

[Argyres-Seiberg,0711.0054]

What??? Huh???

Consider the quiver

[Witten,hep-th/9703166] solved this using M-theory:

4

2

[Gaiotto,0904.2715] rewrote it further, when the quiver is conformal:

3-3-3-2-1

3-3-3-2-1

333321

 ${
m SU}(3)$ with $N_f=6$

is S-dual to SU(2) with $N_f = 1$,

coupled to a strange theory with $SU(3)^3$ flavor symmetry

 $SU(3) \times SU(3)$ enhances to SU(6);

 ${
m SU}(3)$ with $N_f=6$

is S-dual to SU(2) with $N_f = 1$,

coupled to a strange theory with $SU(3)^3$ flavor symmetry

 $SU(3) \times SU(3)$ enhances to SU(6); three SU(3)s on the same footing

 ${
m SU}(3)$ with $N_f=6$

is S-dual to SU(2) with $N_f = 1$,

coupled to a strange theory with $SU(3)^3$ flavor symmetry

 $SU(3) \times SU(3)$ enhances to SU(6); three SU(3)s on the same footing $\rightarrow E_6$ flavor symmetry!

Effective number of multiplets

- Basic quantities for CFT: central charges
- a and c in 4d $\sim n_v$ and n_h if $\mathcal{N}=2$
- SU(3) with $N_f = 6$:

$$n_v = 8, \qquad n_h = 18$$

• SU(2) with $N_f = 1$ and $SCFT[E_6]$

$$n_v = 3 + ??, \qquad n_h = 2 + ??$$

Effective number of multiplets

- Basic quantities for CFT: central charges
- a and c in 4d $\sim n_v$ and n_h if $\mathcal{N}=2$
- SU(3) with $N_f = 6$:

$$n_v = 8, \qquad n_h = 18$$

• SU(2) with $N_f = 1$ and $SCFT[E_6]$

 $n_v = 3 + ??, \qquad n_h = 2 + ??$

• SCFT[E_6] has

$$n_v = 5, \qquad n_h = 16$$

agrees with other independent calculations [Aharony-YT]

• the bifundamental, $SU(N) \times SU(N) \times U(1)$

• the T_N theory, $SU(N) \times SU(N) \times SU(N)$

Fun with T_N

2(g − 1) copies of T_N, 3(g − 1) copies of SU(N)
 → 3(g − 1) marginal couplings!

2(g − 1) copies of T_N, 3(g − 1) copies of SU(N)
 → 3(g − 1) marginal couplings!

•
$$n_v = (g-1) \left[\frac{4}{3} N^3 - \frac{N}{3} - 1 \right],$$

• $n_h = (g-1) \left[\frac{4}{3} N^3 - \frac{4N}{3} \right].$

2(g − 1) copies of T_N, 3(g − 1) copies of SU(N)
 → 3(g − 1) marginal couplings!

•
$$n_v = (g-1) \left[\frac{4}{3} N^3 - \frac{N}{3} - 1 \right],$$

• $n_h = (g-1) \left[\frac{4}{3} N^3 - \frac{4N}{3} \right].$

- agree with the central charge of the gravity sol'n found in [Maldacena-Nuñez,hep-th/0007018]
- also agree with the info contained in the 6d anomaly [Harvey-Minasian-Moore,hep-th/9808060]

Gaiotto called these theories "generalized quiver theories," but we [Benini-YT-Wecht] didn't like it.

Gaiotto called these theories "generalized quiver theories," but we [Benini-YT-Wecht] didn't like it. Siciliy's flag

has in it a triskelion: tri+ skelios (Gk. leg). We adopted the terminology "Sicilian gauge theories." Please do. **1. Introduction**

2. SU(3) and SU(N)

3. SU(2) and Liouville

The bifundamental,

naively has ${
m SU}(2) imes {
m SU}(2) imes {
m U}(1)$

The bifundamental,

naively has $SU(2) \times SU(2) \times U(1)$ $\rightarrow SU(2) \times SU(2) \times SU(2)$ because $2 \otimes 2$ is strictly real. (cf. [Bagger-Lambert-Gustavsson-van Raamsdonk])

The bifundamental,

naively has $SU(2) \times SU(2) \times U(1)$

 \longrightarrow SU(2) × SU(2) × SU(2) because **2** \otimes **2** is strictly real.

(cf. [Bagger-Lambert-Gustavsson-van Raamsdonk])

= the T_2 theory with $SU(2)^3$ symmetry

No distinction between \bullet and \odot .

- two quark pairs = two (doublets + anti-doublets) = four doublets
 SO(4) flavor symmetry + SU(2) gauge symmetry
- Consider SU(2) with four quark pairs

• SO(8) \longrightarrow SO(4) × SO(4) = SU(2)_a × SU(2)_b × SU(2)_c × SU(2)_d

 $\mathbf{8}_V \to \mathbf{2}_a \otimes \mathbf{2}_b \quad \oplus \quad \mathbf{2}_c \otimes \mathbf{2}_d$

- two quark pairs = two (doublets + anti-doublets) = four doublets
 SO(4) flavor symmetry + SU(2) gauge symmetry
- Consider SU(2) with four quark pairs

• SO(8) \longrightarrow SO(4) × SO(4) = SU(2)_a × SU(2)_b × SU(2)_c × SU(2)_d

 $\mathbf{8}_S \to \mathbf{2}_a \otimes \mathbf{2}_c \quad \oplus \quad \mathbf{2}_b \otimes \mathbf{2}_d$

- two quark pairs = two (doublets + anti-doublets) = four doublets
 SO(4) flavor symmetry + SU(2) gauge symmetry
- Consider SU(2) with four quark pairs

• SO(8) \longrightarrow SO(4) × SO(4) = SU(2)_a × SU(2)_b × SU(2)_c × SU(2)_d

 $\mathbf{8}_C \to \mathbf{2}_a \otimes \mathbf{2}_d \quad \oplus \quad \mathbf{2}_b \otimes \mathbf{2}_c$

- two quark pairs = two (doublets + anti-doublets) = four doublets
 SO(4) flavor symmetry + SU(2) gauge symmetry
- Consider SU(2) with four quark pairs

• SO(8) \longrightarrow SO(4) × SO(4) = SU(2)_a × SU(2)_b × SU(2)_c × SU(2)_d

 $\mathbf{8}_C \to \mathbf{2}_a \otimes \mathbf{2}_d \quad \oplus \quad \mathbf{2}_b \otimes \mathbf{2}_c$

• S-duality induces triality of SO(8) ! [Seiberg-Witten]

S-duality with T_2

S-duality with T_2

• N quark pairs $Q_i, \tilde{Q}^j \longrightarrow$ Mass terms $m_j^i Q_i \tilde{Q}^j \longrightarrow \sum_i m_i Q_i \tilde{Q}^i$.

Mass parameters \sim (Cartan part of) the flavor symmetry.

• ${
m SU}(2)$ with four quark pairs with mass $m_{1,2,3,4}$

•
$$SO(8) \rightarrow SU(2)^4$$
 symmetry:
 $m_a = (m_1 + m_2)/2, \quad m_b = (m_1 - m_2)/2,$
 $m_c = (m_3 + m_4)/2, \quad m_d = (m_3 - m_4)/2.$

Seiberg-Witten curve

• SU(2) with four quark pairs with mass parameters $m_{a,b,c,d}$

- The SW curve is $y^2 = \phi_2(z)$ where
 - z is the coordinate of the base sphere
 - SW differential is ydz
 - $\phi_2(z)(dz)^2$ is a quadratic differential with (for i = a, b, c, d)

$$\phi_2(z)(dz)^2\sim m_i^2dz^2/(z-z_i)^2$$

- $\exp(-2\pi i \tau_{UV})$ is the cross-ratio of $z_{a,b,c,d}$ Mass of the W-boson is $\int_C y dz$

Seiberg-Witten curve

- SW curve $y^2 = \phi_2(z), \phi_2(dz)^2$, with double poles $\sim m^2$ for each of the SU(2) flavor symmetry
- UV couplings $q_i = \exp(-2\pi i au_i) = t_i/t_{i-1}$

• W-boson masses
$$a_i = \int_{C_i} y dx$$

• Any calculation on the 4d side gives something about punctured Riemann surface.

- Any calculation on the 4d side gives something about punctured Riemann surface.
- Nekrasov's instanton partition function = the Virasoro conformal block.
- Full partition function = the Liouville correlation function.

Nekrasov's partition function

- Start from 5d, take 4d limit keeping Ω/β fixed, call two angular velocities ε_{1,2}
- Angular rotation generates potential. Take partition function $Z(\epsilon_1, \epsilon_2)$.

$$\log Z(\epsilon_1,\epsilon_2;a_i) \sim rac{F(a_i)}{\epsilon_1\epsilon_2} + \cdots$$

- $F(a_i)$ is the prepotential: $S = \int d^4x d^4\theta F(a) + c.c.$
- $Z = Z_{1-loop}Z_{inst}$
- Explicit formula known, as a summation over pairs of Young tableaux.

Yuji Tachikawa (IAS)

Nekrasov vs. Conformal block

Nekrasov partition function $Z_{\text{inst}}(\epsilon_1, \epsilon_2)$ of this theory

computes the conformal block ${\cal F}$

where

with Q d

$$c = 1 + 6Q^2,$$
 $\Delta(\alpha) = (rac{Q}{2})^2 - rac{lpha^2}{\epsilon_1\epsilon_2}$
etermined via $Q = b + 1/b,$ $(b^2 = \epsilon_1/\epsilon_2).$

Yuji Tachikawa (IAS)

Nekrasov vs. Conformal block

• Both are power series in q_i , coefficients rational in m_i , a_i and ϵ_i :

 $\sum q_1^{n_1} q_2^{n_2} q_3^{n_3} \dots$

Nekrasov's side:

 n_i is the instanton number for the *i*-th $\mathrm{SU}(2)$ gauge group

• Conformal block's side:

 n_i is the level of the descendant on the primary with dimension $\Delta(a_i)$

Nekrasov vs. Conformal block

- Both depend on the decomposition of the Riemann surface into pairs of pants
- Nekrasov's side: decomposition determines the S-duality frame
- Conformal block's side: decomposition determines the channel
- S-duality is the s-t channel duality!

Duality invariant objects

• Correlation functions of Liouville theory

$$S=rac{1}{\pi}\int d^2x\left(|\partial_\mu \phi|^2+\mu e^{2b\phi}
ight)$$

are duality invariant:

$$egin{aligned} \langle V_{m_1}V_{m_2}\cdots
angle &=\int da_1\cdots da_n\ & imes C_{m_1,m_2,a_1}C_{a_1,m_3,a_2}\cdots C_{a_3,m_5,m_6}|\mathcal{F}|^2 \end{aligned}$$

where

•
$$V_a(z) = e^{2a\phi(z)}$$
 and $C_{\alpha_1,\alpha_2,\alpha_3}$: DOZZ 3pt functions

Yuji Tachikawa (IAS)

$$egin{aligned} \langle V_{m_1}V_{m_2}\cdots
angle &=\int \prod da_i\ & imes C_{m_1,m_2,a_1}C_{a_1,m_3,a_2}\cdots C_{a_3,m_5,m_6}|\mathcal{F}|^2 \end{aligned}$$

- Conformal block ${\cal F}$ is Nekrasov's instanton partition function $Z_{
 m inst}$
- Product of C's happens to be $|Z_{1-\text{loop}}|^2$

$$\langle V_{m_1}V_{m_2}\cdots
angle = \int \prod (a_i^2 da_i) |Z_{ ext{1-loop}} Z_{ ext{inst}}|^2$$

• When
$$b = 1$$
 (i.e. $\epsilon_1 = \epsilon_2, c = 25$)
the RHS is the partition function on S^4 . [Pestun]

WHY???

 M5-branes provides a systematic understanding of S-duality of N = 2 superconformal theories first found by Argyres-Seiberg. [Gaiotto]

• Constructed theories with *E*_{6,7,8} flavor symmetry. [Benini-Benvenuti-YT]

• Reviewed the T_N theory. [Gaiotto-Maldacena]

• SU(2) and Liouville. [Alday-Gaiotto-YT]