
Singular
points and

confinement
in SQCD

Simone
Giacomelli

Scuola
Normale

Superiore,
INFN Pisa

Magnetic
monopoles

SW solution

Singular
points

The two
sectors

Effective
theory for
USp SQCD

SO(N) SQCD

Singular points and confinement in SQCD

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

IPMU, March 19 2013

Simone Giacomelli Scuola Normale Superiore, INFN Pisa Singular points and confinement in SQCD



Singular
points and

confinement
in SQCD

Simone
Giacomelli

Scuola
Normale

Superiore,
INFN Pisa

Magnetic
monopoles

SW solution

Singular
points

The two
sectors

Effective
theory for
USp SQCD

SO(N) SQCD

QCD and confinement

Strong interactions are described by an SU(3) gauge theory
(QCD). Its elementary fields are:

Gluons: Aa
µ, a = 1, . . . , 8.

Quarks: qai , a = 1, 2, 3, i = 1, . . . ,Nf .

This theory is confining: we see only gauge invariant objects.

Mesons: qai q̄
j
a; Baryons: εabcq

a
i q

b
j q

c
k .

We still don’t know the underlying mechanism!

’t Hooft-Mandelstam mechanism: the condensation of
monopoles leads to confinement (dual superconductor picture).
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’t Hooft-Polyakov monopoles

We consider an SO(3) gauge theory with a field φ in the
adjoint representation:

Wµ = W a
µTa; φ = φaTa; V (φ) =

λ

4
(φ2 − b2)2.

The space of vacua is a sphere of radius b and in each vacuum
the gauge group is broken to U(1) (electromagnetism).
The corresponding gauge field is Aµ = φavacWµa.

There are static, finite energy solutions of the EoM’s such that

Bi = εijk∂
jAk −→ ν

e

xi
r3

(for r →∞) =⇒ g =
4πν

e
.

ν is the winding number of the map φvac : S2
r→∞ → S2

vac .

’t Hooft-Polyakov solution: φa = b
xa

r
H(r).

Simone Giacomelli Scuola Normale Superiore, INFN Pisa Singular points and confinement in SQCD



Singular
points and

confinement
in SQCD

Simone
Giacomelli

Scuola
Normale

Superiore,
INFN Pisa

Magnetic
monopoles

SW solution

Singular
points

The two
sectors

Effective
theory for
USp SQCD

SO(N) SQCD

’t Hooft-Polyakov monopoles

We consider an SO(3) gauge theory with a field φ in the
adjoint representation:

Wµ = W a
µTa; φ = φaTa; V (φ) =

λ

4
(φ2 − b2)2.

The space of vacua is a sphere of radius b and in each vacuum
the gauge group is broken to U(1) (electromagnetism).
The corresponding gauge field is Aµ = φavacWµa.

There are static, finite energy solutions of the EoM’s such that

Bi = εijk∂
jAk −→ ν

e

xi
r3

(for r →∞) =⇒ g =
4πν

e
.

ν is the winding number of the map φvac : S2
r→∞ → S2

vac .

’t Hooft-Polyakov solution: φa = b
xa

r
H(r).

Simone Giacomelli Scuola Normale Superiore, INFN Pisa Singular points and confinement in SQCD



Singular
points and

confinement
in SQCD

Simone
Giacomelli

Scuola
Normale

Superiore,
INFN Pisa

Magnetic
monopoles

SW solution

Singular
points

The two
sectors

Effective
theory for
USp SQCD

SO(N) SQCD

’t Hooft-Polyakov monopoles

We consider an SO(3) gauge theory with a field φ in the
adjoint representation:

Wµ = W a
µTa; φ = φaTa; V (φ) =

λ

4
(φ2 − b2)2.

The space of vacua is a sphere of radius b and in each vacuum
the gauge group is broken to U(1) (electromagnetism).
The corresponding gauge field is Aµ = φavacWµa.

There are static, finite energy solutions of the EoM’s such that

Bi = εijk∂
jAk −→ ν

e

xi
r3

(for r →∞) =⇒ g =
4πν

e
.

ν is the winding number of the map φvac : S2
r→∞ → S2

vac .

’t Hooft-Polyakov solution: φa = b
xa

r
H(r).

Simone Giacomelli Scuola Normale Superiore, INFN Pisa Singular points and confinement in SQCD



Singular
points and

confinement
in SQCD

Simone
Giacomelli

Scuola
Normale

Superiore,
INFN Pisa

Magnetic
monopoles

SW solution

Singular
points

The two
sectors

Effective
theory for
USp SQCD

SO(N) SQCD

’t Hooft-Polyakov monopoles

We consider an SO(3) gauge theory with a field φ in the
adjoint representation:

Wµ = W a
µTa; φ = φaTa; V (φ) =

λ

4
(φ2 − b2)2.

The space of vacua is a sphere of radius b and in each vacuum
the gauge group is broken to U(1) (electromagnetism).
The corresponding gauge field is Aµ = φavacWµa.

There are static, finite energy solutions of the EoM’s such that

Bi = εijk∂
jAk −→ ν

e

xi
r3

(for r →∞) =⇒ g =
4πν

e
.

ν is the winding number of the map φvac : S2
r→∞ → S2

vac .

’t Hooft-Polyakov solution: φa = b
xa

r
H(r).

Simone Giacomelli Scuola Normale Superiore, INFN Pisa Singular points and confinement in SQCD



Singular
points and

confinement
in SQCD

Simone
Giacomelli

Scuola
Normale

Superiore,
INFN Pisa

Magnetic
monopoles

SW solution

Singular
points

The two
sectors

Effective
theory for
USp SQCD

SO(N) SQCD

The dual superconductor picture

In a superconductor the condensation of Cooper pairs
(electron-electron boundstates) breaks the U(1) gauge
symmetry leading to confinement of magnetic charge.

Dual superconductor: In non-abelian gauge theories (with a
Higgs field) the condensation of monopoles leads to
confinement of “electric” charges.

Simone Giacomelli Scuola Normale Superiore, INFN Pisa Singular points and confinement in SQCD



Singular
points and

confinement
in SQCD

Simone
Giacomelli

Scuola
Normale

Superiore,
INFN Pisa

Magnetic
monopoles

SW solution

Singular
points

The two
sectors

Effective
theory for
USp SQCD

SO(N) SQCD

The dual superconductor picture

In a superconductor the condensation of Cooper pairs
(electron-electron boundstates) breaks the U(1) gauge
symmetry leading to confinement of magnetic charge.

Dual superconductor: In non-abelian gauge theories (with a
Higgs field) the condensation of monopoles leads to
confinement of “electric” charges.

Simone Giacomelli Scuola Normale Superiore, INFN Pisa Singular points and confinement in SQCD



Singular
points and

confinement
in SQCD

Simone
Giacomelli

Scuola
Normale

Superiore,
INFN Pisa

Magnetic
monopoles

SW solution

Singular
points

The two
sectors

Effective
theory for
USp SQCD

SO(N) SQCD

N = 2 gauge theories in four dimensions

The N = 2 vectormultiplet describes the fields (φ, ψ, λ,Aµ).

The lagrangian contains the scalar potential

V = − 1

2g2
Tr([φ, φ†]2).

The vacuum solutions are φvac = Diag(a1, . . . , an) (
∑

i ai = 0).

The set of vacua in this theory is called moduli space and at
each point the gauge group is broken to U(1)n−1.

These models have ’t Hooft-Polyakov magnetic monopoles in
their spectrum.
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Effective action for SU(2) SYM

The moduli space is parametrized by u = 〈Tr φ2〉.
N = 2 susy imposes strong constraints on the effective action:

L =
1

8π
Im

(∫
d2θF ′′(Φ)W αWα + 2

∫
d4θΦ†F ′(Φ)

)
.

The holomorphic function F is called prepotential.

Seiberg-Witten solution: N. Seiberg, E. Witten ’94.

a =

√
2

π

∫ 1

−1

√
x − u√
x2 − 1

dx ,
∂F
∂a

= aD =

√
2

π

∫ u

1

√
x − u√
x2 − 1

dx .

The prepotential is enceded in a family of elliptic curves:

y2 = (x − 1)(x + 1)(x − u).
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Confinement in Seiberg-Witten model

At u = ±1 monopoles become massless due to strong quantum
effects. If I give mass µ to (φ, ψ) only these two vacua remain.

The low energy effective action has the superpotential

W =
√

2M̃ADM + µU, U = 〈Tr Φ2〉.

From the equations of motion we find

〈M̃M〉 =
µ√
2

∂U

∂AD
6= 0.

The monopole condensate breaks U(1), giving mass gap and
confinement via the ’t Hooft-Mandelstam mechanism.

This theory admits vortex-like solitons, labelled by∏
1(U(1)) = Z. These are the analog of the QCD string.
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Outlook of Part 2

The SW solution alone is not always enough to understand
the dynamics (e.g. SO(N), USp(2N) N = 2 SQCD).

This problem can be approached using the recent
developments in N = 2 theories (Argyres-Seiberg duality,
6d constructions...).

I will explain how one can understand confinement and
chiral symmetry breaking (for particular choices of Nf ),
finding an “unusual” realization of ’t Hooft-mandelstam
mechanism.
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PART 2

Based on: SG and K. Konishi, arXiv:1301.0420 [hep-th];

SG, arXiv:1207.4037 [hep-th].
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Scale invariance and infinite coupling

SU(2) SQCD with Nf = 4 has SL(2,Z) S-duality:

τ → τ + 1; τ → −1

τ
; τ =

θ

2π
+

4πi

g2

Higher rank scale invariant SQCD has Γ0(2) S-duality:

τ̃ → τ̃ + 2; τ̃ → −1

τ̃
; (τ̃ = 2τ)
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New perspective: Argyres-Seiberg duality

Scale invariant N = 2 SU(N) SQCD admits in the infinite
coupling limit a dual description involving two sectors (weakly)
coupled by a gauge multiplet: P. Argyres, N. Seiberg ’07.

One sector is free and describes two massless
hypermultiplets. It has SU(2) flavor symmetry.

The other sector is a SCFT with (at least)
SU(2)× SU(Nf ) flavor symmetry.

These two sectors are coupled promoting the diagonal
SU(2) to a gauge symmetry.

One can analyze this duality realizing the four dimensional
theory as the compactification of 6d N = (2, 0) (An or Dn)
theory on a surface with punctures. D. Gaiotto ’09; Y. Tachikawa ’09.
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Softly broken SU(Nc) N = 2 SQCD

In the vacua surviving the N = 1 perturbation the SW curve

y2 = P2
Nc

(x , ui )− Λ2Nc−Nf
∏
i

(x + mi ).

factorizes as follows: P. Argyres, R. Plesser, N. Seiberg ’96.

y2 = (x + m)2r (x − a)(x − b)Q2(x), r ≤ Nf /2.

At each r vacuum the effective theory has U(r)× U(1)Nc−r−1

gauge group and Nf (magnetic) multiplets qαi of U(r).

After the N = 1 perturbation, the pattern of flavor symmetry
breaking is U(Nf )→ U(r)× U(Nf − r) ∀r .

G. Carlino, K. Konishi, H. Murayama ’00.

〈Q̃iQj〉 =

(
c1r 0
0 c ′1Nf−r

)
; 〈qαi 〉 ∝

(
1r 0

)
.

〈qαi 〉 6= 0 induces confinement and dynamical SB!
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Fixed points in SQCD

In SU(N) SQCD there are singular points (r vacua) where the
SW curve becomes y2 ≈ x2r (r ≤ Nf /2).
The IR theory is an U(r) SQCD with Nf flavors.

P. Argyres, R. Plesser, N. Seiberg ’96.

The study of SO(N) or USp(2N) gauge theories reveals the
same structure, as long as m 6= 0!

For m = 0 the global symmetry is enhanced from U(Nf ) to
USp(2Nf ) and SO(2Nf ) respectively. All the r vacua merge in
this limit, giving an interacting fixed point (Chebyshev point).

G. Carlino, K. Konishi, H. Murayama ’00; G. Carlino, K. Konishi, P. Kumar, H. Murayama ’01.

After the N = 1 perturbation the flavor group is broken to
U(Nf ):

〈Mij〉 ∝ 1Nf
⊗
(

0 1
−1 0

)
.
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Singular points in USp(2N) theory

The SW curve for the USp(2N) theory is

xy2 = [xPN(x)+2Λ2N−Nf +2
∏
i

mi ]
2−4Λ4N−2Nf +4

∏
i

(x−m2
i ).

In the limit m→ 0 the effective theory at the r = Nf /2
vacuum goes to infinite coupling!

The collision of r vacua (Chebyshev point) produces a
singularity of the form

y2 = xNf (x − Λ)Q2(x) ≈ xNf ; λ =
y

xNf /2
dx .

The low-energy theory depends only on Nf !
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Scaling dimensions of chiral operators

Let us analyze a “neighbourhood” of the fixed point in the
moduli space:

y2 = xk +
∑
i

uix
k−i , λ ≈ y

xNf /2
dx .

One can determine the scaling dimensions of chiral operators
imposing T. Eguchi, K. Hori, K. Ito, S. Yang ’96.

[λ] = 1 (2[y ] = 2 + (Nf − 2)[x ]); 2[y ] = k[x ].

When the theory has a nonAbelian global symmetry there is
another constraint: P. Argyres, M. Douglas, N. Seiberg, E. Witten ’96.∏

i

(x −m2
i ) = xNf +

∑
i

c2ix
Nf−i ; [ci ] = 2i .

This condition requires [x ] = 2.
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Maximally singular point

Starting from the previous curve

xy2 = [xPN(x)+2Λ2N−Nf +2
∏
i

mi ]
2−4Λ4N−2Nf +4

∏
i

(x−m2
i ).

We find the maximally singular point setting (for mi = 0)

PN(x) = xN + 2Λ2N−Nf +2xNf /2−1.

The SW curve at the singular point is

y2 ≈ xN+Nf /2; λ ≈ y

xNf /2
dx .

For Nf = 2N it coincides precisely with the Chebyshev point.
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Two sector proposal

A possible solution is to introduce two sectors, with a different
scaling of x . D. Gaiotto, N. Seiberg, Y. Tachikawa ’10.

Let us rewrite the curve as

ỹ2 =
y2

xNf −2
=

Nf∑
i=1

c2ix
1−i + (xN+2−Nf /2 +

N∑
i=1

uix
N+2−Nf /2−i )×

(xN+1−Nf /2 +
N∑
i=1

uix
N+1−Nf /2−i + 4Λ2N+2−Nf ); λ =

ỹ

x
dx .

We now introduce two scales εA, εB � 1.

In one sector (x ∼ εA) we impose [x ] = 2, so ỹ2 ∼ εA.

In the other sector (x ∼ εB) we get ỹ2 ∼ xN+2−Nf /2.
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Identifying the two sectors

In the B sector (x ∼ εB) the curve is

4Λ2N+2−Nf (xN+2−Nf /2 +

N+2−Nf /2∑
i=1

uix
N+2−Nf /2−i ) + c2.

This curve describes the DN+2−Nf /2 AD theory, which has
(at least) SU(2) flavor symmetry. S. Cecotti, C. Vafa ’11.

In the A sector (x ∼ εA) the curve is

Nf∑
i=1

c2ix
1−i +(

Nf /2+1∑
i=2

uN−Nf /2+i

x i−2
)(

Nf /2+1∑
i=2

uN−Nf /2+i

x i−1
+4Λ2N+2−Nf )

This theory has SU(2)× SO(2Nf ) flavor symmetry. It
arises as the 6d N = (2, 0) DNf

theory compactified on a
3 punctured sphere. Y. Tachikawa ’09.

A SECTOR⇐= SU(2) =⇒ B SECTOR
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Some special cases

For Nf = 6 the flavor symmetry of the A sector is
enhanced from SU(2)× SO(12) to E7. Y. Tachikawa ’09.

For Nf = 4 the A sector becomes free: it describes four
doublets of SU(2) and has SU(2)× SO(8) flavor
symmetry.

For Nf = 2N the B sector becomes free and describes 2
hypermultiplets. The same structure emerges at the fixed
point arising from the collision of r vacua.

For Nf = 2N + 2 the B sector becomes “trivial”
(y2 = x + a).

Simone Giacomelli Scuola Normale Superiore, INFN Pisa Singular points and confinement in SQCD



Singular
points and

confinement
in SQCD

Simone
Giacomelli

Scuola
Normale

Superiore,
INFN Pisa

Magnetic
monopoles

SW solution

Singular
points

The two
sectors

Effective
theory for
USp SQCD

SO(N) SQCD

Some special cases

For Nf = 6 the flavor symmetry of the A sector is
enhanced from SU(2)× SO(12) to E7. Y. Tachikawa ’09.

For Nf = 4 the A sector becomes free: it describes four
doublets of SU(2) and has SU(2)× SO(8) flavor
symmetry.

For Nf = 2N the B sector becomes free and describes 2
hypermultiplets. The same structure emerges at the fixed
point arising from the collision of r vacua.

For Nf = 2N + 2 the B sector becomes “trivial”
(y2 = x + a).

Simone Giacomelli Scuola Normale Superiore, INFN Pisa Singular points and confinement in SQCD



Singular
points and

confinement
in SQCD

Simone
Giacomelli

Scuola
Normale

Superiore,
INFN Pisa

Magnetic
monopoles

SW solution

Singular
points

The two
sectors

Effective
theory for
USp SQCD

SO(N) SQCD

Some special cases

For Nf = 6 the flavor symmetry of the A sector is
enhanced from SU(2)× SO(12) to E7. Y. Tachikawa ’09.

For Nf = 4 the A sector becomes free: it describes four
doublets of SU(2) and has SU(2)× SO(8) flavor
symmetry.

For Nf = 2N the B sector becomes free and describes 2
hypermultiplets. The same structure emerges at the fixed
point arising from the collision of r vacua.

For Nf = 2N + 2 the B sector becomes “trivial”
(y2 = x + a).

Simone Giacomelli Scuola Normale Superiore, INFN Pisa Singular points and confinement in SQCD



Singular
points and

confinement
in SQCD

Simone
Giacomelli

Scuola
Normale

Superiore,
INFN Pisa

Magnetic
monopoles

SW solution

Singular
points

The two
sectors

Effective
theory for
USp SQCD

SO(N) SQCD

Some special cases

For Nf = 6 the flavor symmetry of the A sector is
enhanced from SU(2)× SO(12) to E7. Y. Tachikawa ’09.

For Nf = 4 the A sector becomes free: it describes four
doublets of SU(2) and has SU(2)× SO(8) flavor
symmetry.

For Nf = 2N the B sector becomes free and describes 2
hypermultiplets. The same structure emerges at the fixed
point arising from the collision of r vacua.

For Nf = 2N + 2 the B sector becomes “trivial”
(y2 = x + a).

Simone Giacomelli Scuola Normale Superiore, INFN Pisa Singular points and confinement in SQCD



Singular
points and

confinement
in SQCD

Simone
Giacomelli

Scuola
Normale

Superiore,
INFN Pisa

Magnetic
monopoles

SW solution

Singular
points

The two
sectors

Effective
theory for
USp SQCD

SO(N) SQCD

Collision of r vacua: the Nf = 4 case

When Nf = 4 the effective action at the singular point includes
the superpotential

W = Q̃0ADQ
0 + Q̃0φQ

0 +
4∑

i=1

Q̃iφQ
i .

This effective theory has to reproduce the semiclassical results:

The pattern of flavor SB after the N = 1 perturbation is

SO(8)→ U(4).

If we then turn on the masses mi ’s for the flavors the
singular point splits in 2Nf−1 = 8 vacua.
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Breaking to N = 1 in the effective theory

Adding the N = 1 perturbation P. Argyres, R. Plesser, N. Seiberg ’96.

Q̃0ADQ
0 + Q̃0φQ

0 +
4∑

i=1

Q̃iφQ
i + µADΛ + µTr φ2.

The equations of motion become:

Q̃0Q0 + µΛ = 0, AD = φ = 0,

4∑
i=1

Q̃ iτ3Qi = −Q̃0τ3Q0 =
µΛ

2
.

Q̃1τ3Q1 =
µΛ

2
, Qi = Q̃i = 0, i = 2, 3, 4.

SO(8) breaks to U(1)× SO(6) ' U(4)!
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Confinement and low energy excitations

The Q0 and Q1 condensates break the SU(2)× U(1) gauge
symmetry and induce confinement.

The remaining massless fields are

Q̃i , Qi , i = 2, 3, 4.

These match precisely the expected 12 Goldstone multiplets
from the breaking SO(8)→ U(4). These fields are the SUSY
analog of pions.

This model has vortex solitons analogous to those of SU(2)
SYM:

Q1
0 → e iϕ〈Q1

0 〉.
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The massive case

Including the mass parameters mi ’s the superpotential becomes

Q̃0ADQ
0 + Q̃0φQ

0 +
4∑

i=1

Q̃i (φ+mi )Q
i + µADΛ + µTr φ2.

The F-term equations imply

Q̃0Q0 + µΛ = 0, AD = −φ3,(
φ3/2 + mi 0

0 mi − φ3/2

)(
Q1

i

Q2
i

)
= 0,

Q̃ iτ3Qi = −Q̃0τ3Q0 − 2µφ3 =
µΛ

2
± 4mi .

We find eight solutions as expected.
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SO(N) SQCD

We can repeat this analysis for SO(N) gauge theories.

We find again at the Chebyshev vacua the effective description

1 ⇐= SU(2) =⇒ SCFT SECTOR .

For SO(2N) theory the SCFT sector can be constructed
compactifying on a three-punctured sphere the DN 6d
theory.

For SO(2N + 1) SQCD it is related to that of USp(2N)
theory with Nf + 3 flavors (same curve, same Coulomb
branch but different Higgs branch).

We expect 2Nf vacua (with nonvanishing masses mi ’s) and the
symmetry breaking USp(2Nf )→ U(Nf ).

G. Carlino, K. Konishi, P. Kumar, H. Murayama ’01.

Simone Giacomelli Scuola Normale Superiore, INFN Pisa Singular points and confinement in SQCD



Singular
points and

confinement
in SQCD

Simone
Giacomelli

Scuola
Normale

Superiore,
INFN Pisa

Magnetic
monopoles

SW solution

Singular
points

The two
sectors

Effective
theory for
USp SQCD

SO(N) SQCD

SO(N) SQCD

We can repeat this analysis for SO(N) gauge theories.

We find again at the Chebyshev vacua the effective description

1 ⇐= SU(2) =⇒ SCFT SECTOR .

For SO(2N) theory the SCFT sector can be constructed
compactifying on a three-punctured sphere the DN 6d
theory.

For SO(2N + 1) SQCD it is related to that of USp(2N)
theory with Nf + 3 flavors (same curve, same Coulomb
branch but different Higgs branch).

We expect 2Nf vacua (with nonvanishing masses mi ’s) and the
symmetry breaking USp(2Nf )→ U(Nf ).

G. Carlino, K. Konishi, P. Kumar, H. Murayama ’01.

Simone Giacomelli Scuola Normale Superiore, INFN Pisa Singular points and confinement in SQCD



Singular
points and

confinement
in SQCD

Simone
Giacomelli

Scuola
Normale

Superiore,
INFN Pisa

Magnetic
monopoles

SW solution

Singular
points

The two
sectors

Effective
theory for
USp SQCD

SO(N) SQCD

SO(N) SQCD

We can repeat this analysis for SO(N) gauge theories.

We find again at the Chebyshev vacua the effective description

1 ⇐= SU(2) =⇒ SCFT SECTOR .

For SO(2N) theory the SCFT sector can be constructed
compactifying on a three-punctured sphere the DN 6d
theory.

For SO(2N + 1) SQCD it is related to that of USp(2N)
theory with Nf + 3 flavors (same curve, same Coulomb
branch but different Higgs branch).

We expect 2Nf vacua (with nonvanishing masses mi ’s) and the
symmetry breaking USp(2Nf )→ U(Nf ).

G. Carlino, K. Konishi, P. Kumar, H. Murayama ’01.

Simone Giacomelli Scuola Normale Superiore, INFN Pisa Singular points and confinement in SQCD



Singular
points and

confinement
in SQCD

Simone
Giacomelli

Scuola
Normale

Superiore,
INFN Pisa

Magnetic
monopoles

SW solution

Singular
points

The two
sectors

Effective
theory for
USp SQCD

SO(N) SQCD

SO(2N + 1) theory with 1 flavor

SO(2N + 1) SQCD with Nf = 1: The SW curve is y2 ≈ x4.
The low energy theory is a SU(2)× U(1) model with one
fundamental and one adjoint.

W = Q̃ADQ + Q̃ΦQ + i Tr(Φ[X1,X2]) + mTr(X1X2).

There are two solutions for m 6= 0 (Φ = aτ3 with a = im/
√

2).

For m = 0 a diagonal combination of the cartans of

SU(2)c × SU(2)F

leaves the vevs invariant.
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SO(2N) theory with 2 flavors

SO(2N) SQCD with Nf = 2: The SW curve is y2 ≈ x6. The
IR description a U(1)× SU(2)× SU(2) theory with two
bifundamentals.

1
Q
−SU(2)

Mi= SU(2)

W = Q̃ADQ+Q̃ΦQ+mi Tr(M̃iM
i )+Tr(M̃iΦM i )+Tr(M iΨM̃i ).

From the equations of motion we find

Q̃Q = −µΛ; Φ = Φ3τ3; Ψ = Ψ3τ3.(
(mi + Φ3√

2
+ Ψ3√

2
)ai (mi + Φ3√

2
− Ψ3√

2
)bi

(mi − Φ3√
2

+ Ψ3√
2

)ci (mi − Φ3√
2
− Ψ3√

2
)di

)
= 0

If M1 is diagonal, M2 is off-diagonal. We then have 4 solutions
(the others are gauge equivalent).
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Summary

In supersymmetric QCD confinement and “chiral”
symmetry breaking have the same origin: the condensation
of magnetic monopoles (’t Hooft-Mandelstam
mechanism).

There are singular points in the moduli space where the
low energy physics can be described in terms of two
scale-invariant sectors, coupled together by a gauge
multiplet. The UV and IR Dofs are different.

In special cases both sectors are free (or at least
lagrangian) and we find an effective description which
reproduces the expected pattern of symmetry breaking and
multiplicity of vacua. This model includes NA monopoles
and abelian confining strings.
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Thank you for your attention!
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The A sector

λ2N =
N∑

k=1

λ2N−2kφ2k(z); λ = xdz .

The order of the poles at the punctures are:

{1, 2, . . . , 2; 1}; {1, . . . , 2N − 3;N − 1}.
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