Supersymmetric Boundary Conditions in Three Dimensional N=2 Theories

Satoshi Yamaguchi (Osaka U.)

Based on T. Okazaki, SY, arXiv:1302.6593

Quantum field theory on the spacetime with

QFT with boundary

Not often appear in particle physics

Ex. phenomenology of extra dimensions (boundary of internal space)

QFT with boundary

Worldsheet theory of open string 2D boundary CFT

Other dimensional spacetime?

Today's talk

3-dimensional QFT with boundary

"D-branes of membrane theory"

Boundary and symmetry

$\partial_{\mu}J^{\mu} = 0$

 $Q = \int_{\text{space}} J^0$ conserved Generator of the transformation

When boundary exists...

Symmetry is preserved

Example: Complex scalar

$$S = \int d^3x (-\partial_\mu \phi \partial^\mu \bar{\phi} - V(|\phi|))$$

U(1) symmetry $\phi \rightarrow e^{i\alpha} \phi$

Current
$$J^{\mu} = i \left(\bar{\phi} \partial^{\mu} \phi - \phi \partial^{\mu} \bar{\phi} \right)$$

Example: Complex scalar

$$S = \int d^{3}x (-\partial_{\mu}\phi \partial^{\mu}\bar{\phi} - V(|\phi|))$$

At the boundary

$$J^{\perp} = J^2 = i \left(\bar{\phi} \partial_2 \phi - \phi \partial_2 \bar{\phi} \right) = 0$$

Ex. 1 $\partial_2 \phi = 0$

Ex. 2 $\phi = 0$

Ex. 1
$$\partial_2 \phi = 0$$

(Neumann)

Ex. 2
$$\phi = 0$$

(Dirichlet)

Today's talk

Supersymmetry and bounday

What is 1/2 SUSY preserving boundary condition?

Motivation

"D-brane of membrane"

Duality with boundary

c.f. 2dim [Ooguri,Oz,Yin], [Hori,Iqbal,Vafa]

(2d SUSY)-(4d non-SUSY) relation

[Alday,Gaiotto,Tachikawa], [Terashima, Yamazaki], [Gaiotto,Gukov,Dimofte] Our result 1

N=2 SUSY Landau-Ginzburg model A-type: Lagrangian submanifold ImW = (constant)

B-type: Complex submanifold W = (constant)

Our result 2

N=2 Maxwell theory

Mapping of the "brane" under the abelian duality

Our result 3

N=2 SUSY QED

Mapping of the "brane" under the mirror symmetry (Conjecture)

Let us take a break

1/2 BPS boundary condition

3D N=2 SUSY similar to 4D N=1 SUSY

Real central charge
$$\{Q_{\alpha},\bar{Q}_{\beta}\}=2\sigma^{\mu}_{\alpha\beta}P_{\mu}+iC_{\alpha\beta}Z$$

No dotted spinor

Parameter ϵ^{α}

$$\delta_{\epsilon} = \epsilon Q - \bar{\epsilon} \bar{Q}$$

When boundary exists

It is impossible to preserve all the SUSY

because

- P_2 is not preserved
 - P_2 should not appear in $[\delta_{\epsilon}, \delta_{\epsilon'}]$

Two possibilities for 1/2 BPS boundary condition

[Berman, Thompson]

N=(1,1) type (A-type)
$$\gamma^2\epsilon=ar\epsilon$$

N=(2,0) type (B-type) $\gamma^2 \epsilon = \epsilon$

$$\gamma^{0} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \qquad \gamma^{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \gamma^{2} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
$$\gamma^{2} = \gamma^{0} \gamma^{1} \qquad \text{Chirality in 2D sense}$$

N=(2,0) type (B-type) $\gamma^2 \epsilon = \epsilon$

$$\gamma^2 \epsilon_1 = \epsilon_1 \qquad \gamma^2 \epsilon_2 = \epsilon_2$$

A-type and B-type are completely distinct.

They cannot be equivalent.

Landau-Ginzburg model

Chiral super field

$$\Phi^{i}(x,\theta,\bar{\theta}) = \phi^{i}(x) + \sqrt{2}\theta\psi^{i}(x) + \theta\theta F^{i}(x) + \cdots$$

Lagrangian

$$L = K(\Phi, \overline{\Phi})|_D + W(\Phi)|_F + (c.c.)$$

SUSY current

$$J^{\mu} = -\sqrt{2}K_{i\bar{j}}(\partial^{\mu}\bar{\phi}^{\bar{j}})\psi^{i} + \sqrt{2}K_{i\bar{j}}(\partial_{\nu}\bar{\phi}^{\bar{j}})\gamma^{\mu\nu}\psi^{i} - \sqrt{2}i\gamma^{\mu}\bar{\psi}^{\bar{i}}\bar{W}_{\bar{i}},$$
$$\bar{J}^{\mu} = -\sqrt{2}K_{i\bar{j}}(\partial^{\mu}\phi^{i})\bar{\psi}^{\bar{j}} + \sqrt{2}K_{i\bar{j}}(\partial_{\nu}\phi^{i})\gamma^{\mu\nu}\bar{\psi}^{\bar{j}} + \sqrt{2}i\gamma^{\mu}\psi^{i}W_{i}.$$

Boundary condition → Brane

Results

A-type: Lagrangian submanifold ImW = (constant)

B-type: Complex submanifold W = (constant)

A-type $\partial_2 \phi^I$ Normal to the brane

$\partial_a \phi^I$ Tangent to the brane

$$g_{IJ}\partial_2\phi^I v^J = 0, \quad \longrightarrow \quad v^I \quad \text{tangent}$$

$$g_{IJ}\partial_a\phi^I w^{Ja} = 0, \quad \longrightarrow \quad w^{Ia} \quad \text{normal}$$

$$\underline{iW_i v^i - i\bar{W}_{\bar{i}}\bar{v}^{\bar{i}} = 0}, \quad \text{where} \quad a = 0, 1$$

$$v^I\partial_I \text{Im}W = 0 \quad \longrightarrow \text{Im}W = (\text{constant})$$

To show Lagrangian

$$S^{I}{}_{J} = \left(\begin{array}{cc} 0 & S^{*\bar{i}}{}_{j} \\ S^{i}{}_{\bar{j}} & 0 \end{array}\right)$$

From the definition

$$Sv = +v$$
 $Sw = -w$

(Tangent space)=(+1 eigen space of S)

The brane is middle dimensional

 $S^2 = 1, \ {\rm Tr}S = 0$

ω_{IJ} Kähler form

We can show

$$\omega_{IJ} v^{I} v'^{J}$$
 for arbitrary tangent vectors $v^{I} v'^{I}$

The A-type brane is a Lagrangian submanifold

$$\begin{array}{lll} \text{B-type} & \gamma^2 \epsilon = \epsilon \\ & \epsilon J^2 - \bar{\epsilon} \bar{J}^2 = 0 & \gamma^2 \psi^i = R^i{}_j \psi^j \\ & & & & \\ \hline & & & \\ \hline & & & \\ v^I \coloneqq \begin{cases} \epsilon \psi^i & (I=i) \\ -\bar{\epsilon} \bar{\psi}^{\bar{i}} & (I=\bar{i}) \end{cases} & z^{Ia} \coloneqq \begin{cases} \epsilon \sigma^a \psi^i & (I=i) \\ -\bar{\epsilon} \sigma^a \bar{\psi}^{\bar{i}} & (I=\bar{i}) \end{cases} \end{array}$$

$$g_{IJ}\partial_2\phi^I v^J = 0,$$

$$g_{IJ}\partial_a\phi^I z^{Ja} = 0,$$

$$u^i W_i + \bar{u}^{\bar{i}} \bar{W}_{\bar{i}} = 0.$$

B-type

$$\begin{split} g_{IJ}\partial_2\phi^I v^J &= 0, & \longrightarrow v^I \text{ tangent} \\ g_{IJ}\partial_a\phi^I z^{Ja} &= 0, & \longrightarrow z^{Ia} \text{ normal} \\ u^i W_i + \bar{u}^{\bar{i}} \bar{W}_{\bar{i}} &= 0. \end{split}$$

$$\begin{array}{l} \mathsf{B-type} \\ S^{I}{}_{J} = \left(\begin{array}{cc} R^{i}{}_{j} & 0 \\ 0 & R^{*\bar{i}}{}_{\bar{j}} \end{array} \right) \end{array}$$

We can show $\omega_{IJ} v^{I} z^{J} = 0$

Complex submanifold

$$u^{I} := \begin{cases} i\bar{\epsilon}\psi^{i} & (I=i) \\ i\epsilon\bar{\psi}^{\bar{i}} & (I=\bar{i}) \end{cases}$$

u is tangent

$$u^i W_i + \bar{u}^{\bar{i}} \bar{W}_{\bar{i}} = 0$$

W is constant on the brane

Results

A-type: Lagrangian submanifold ImW = (constant)

B-type: Complex submanifold W = (constant)

Maxwell theory

Vector super field

$$V = -\theta \sigma^{\mu} \bar{\theta} A_{\mu} + i \theta \bar{\theta} \sigma - i \theta \theta \bar{\theta} \bar{\lambda} + i \bar{\theta} \bar{\theta} \theta \lambda + \frac{1}{2} \theta \theta \bar{\theta} \bar{\theta} \bar{\theta} D(x).$$

Field strength

$$\Sigma := -\frac{i}{2}\bar{D}DV.$$

Maxwell action

$$L = -\frac{1}{e^2} \Sigma^2 |_D$$

$$=\frac{1}{e^2}\left(-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}-i\bar{\lambda}\sigma^{\mu}\partial_{\mu}\lambda-\frac{1}{2}\partial^{\mu}\sigma\partial_{\mu}\sigma+\frac{1}{2}D^2\right)$$

SUSY current

$$J^{\mu} = -iF^{\mu\nu}\gamma_{\nu}\bar{\lambda} + \frac{i}{2}\epsilon^{\mu\rho\sigma}\bar{\lambda}F_{\rho\sigma} + \gamma^{\mu\nu}\bar{\lambda}\partial_{\nu}\sigma - \bar{\lambda}\partial^{\mu}\sigma,$$

$$\bar{J}^{\mu} = +iF^{\mu\nu}\gamma_{\nu}\lambda - \frac{i}{2}\epsilon^{\mu\rho\sigma}\lambda F_{\rho\sigma} + \gamma^{\mu\nu}\lambda\partial_{\nu}\sigma - \lambda\partial^{\mu}\sigma.$$

Duality

$$\bigcap^{\rho} \bigcup_{\longrightarrow \sigma} (\nabla^{\rho} \nabla^{\rho} \nabla^{\rho}$$

Ex.2

$$\partial_2 \sigma = 0, \ F_{2a} = 0$$

These branes are actually Lagrangian submanifolds

Ex.4

 $\sigma = (\text{const.}), \ F_{2a} = 0$

They are actually complex submanifolds

 $\mathbf{Ex.4} \\ \sigma = (\text{const.}), \ F_{2a} = 0$

Position in p direction

Boundary theta term

 σ

Ex.3
$$\partial_2 \sigma = 0, \ F_{01} = 0$$

No boundary theta term

QED

Field contents

Field strength Vector super field $V \longrightarrow \Sigma$

Charged chiral super fields Φ_+, Φ_-

Lagrangian

$$L = \left[-\frac{1}{e^2} \Sigma^2 + \bar{\Phi}_+ e^{-2V} \Phi_+ + \bar{\Phi}_- e^{+2V} \Phi_- \right] |_D$$

Example of B-type boundary condition

$$\gamma^2 \psi_{\pm} = \psi_{\pm}, \quad \gamma^2 \lambda = -\lambda, \quad \phi_{\pm} = 0, \quad \partial_2 \sigma = F_{01} = 0$$

Mirror symmetry

[Aharony, Hanany, Intriligator, Seiberg, Strassler], [de Boer, Hori, Oz]

QED = XYZ model

LG model with 3 chiral super fields

X, Y, Z

W = XYZ

Moduli space

Coulomb branch

Coulomb branch

Summary

1/2 BPS boundary condition are explored

Landau-Ginzburg

Maxwell

QED

Future problem

Calculating superconformal index

(For B-type boundary, superconformal index will exists)