Supersymmetric Boundary Conditions in Three Dimensional $\mathrm{N}=2$ Theories

Satoshi Yamaguchi (Osaka U.)

Based on T. Okazaki, SY, arXiv:1302.6593

Quantum field theory on the spacetime with

Boundary

QFT with boundary

Not often appear in particle physics

Ex. phenomenology of extra dimensions (boundary of internal space)

QFT with boundary

Worldsheet theory of open string 2 D boundary CFT

Other dimensional spacetime?

Today's talk

3-dimensional QFT with boundary

"D-branes of membrane theory"

Boundary and symmetry

Symmetry
 Current J^{μ}

$$
\partial_{\mu} J^{\mu}=0
$$

$Q=\int_{\text {space }} J^{0}$
conserved
Generator of the transformation

When boundary exists...

$$
\begin{aligned}
& \text { If } \\
& \left.J^{\perp}\right|_{\text {boundary }} \neq 0 \longmapsto \begin{array}{c}
\text { Charge is NOT } \\
\text { conserved }
\end{array}
\end{aligned}
$$

Symmetry is broken

Symmetry is preserved
 $\left.J^{\perp}\right|_{\text {boundary }}=0$

Example: Complex scalar

$\mathrm{U}(1)$ symmetry $\phi \rightarrow e^{i \alpha} \phi$

Current $\quad J^{\mu}=i\left(\bar{\phi} \partial^{\mu} \phi-\phi \partial^{\mu} \bar{\phi}\right)$

Example: Complex scalar
 $S=\int d^{3} x\left(-\partial_{\mu} \phi \partial^{\mu} \bar{\phi}-V(|\phi|)\right)$

At the boundary

$$
J^{\perp}=J^{2}=i\left(\bar{\phi} \partial_{2} \phi-\phi \partial_{2} \bar{\phi}\right)=0
$$

Ex. $1 \partial_{2} \phi=0$

Ex. $2 \phi=0$

Ex. $1 \quad \partial_{2} \phi=0$

(Neumann)

Ex. $2 \phi=0$

(Dirichlet)

Today's talk

Supersymmetry and bounday

What is $1 / 2$ SUSY preserving boundary condition?

Motivation

"D-brane of membrane"

Duality with boundary
c.f. 2dim [Ooguri,Oz, Yin], [Hori,Iqbal,Vafa]

(2d SUSY)-(4d non-SUSY) relation
[Alday,Gaiotto,Tachikawa],
[Terashima, Yamazaki], [Gaiotto,Gukov,Dimofte]

Our result 1

N=2 SUSY Landau-Ginzburg model
A-type: Lagrangian submanifold

$$
\operatorname{Im} W=(\text { constant })
$$

B-type: Complex submanifold $W=$ (constant)

Our result 2
N=2 Maxwell theory

Mapping of the "brane" under the abelian duality

Our result 3

N=2 SUSY QED

Mapping of the "brane" under the mirror symmetry

(Conjecture)

Let us take a break

1/2 BPS boundary condition

3D $N=2$ SUSY similar to $4 \mathrm{D} N=1$ SUSY

$$
Q_{\alpha}, \quad \alpha= \pm \quad \text { Complex }
$$

Real central charge

$$
\left\{Q_{\alpha}, \bar{Q}_{\beta}\right\}=2 \sigma_{\alpha \beta}^{\mu} P_{\mu}+i C_{\alpha \beta} \not Z^{\swarrow}
$$

No dotted spinor
Parameter ϵ^{α}

$$
\delta_{\epsilon}=\epsilon Q-\bar{\epsilon} \bar{Q}
$$

When boundary exists

It is impossible to preserve all the SUSY

because
P_{2} is not preserved
P_{2} should not appear in $\left[\delta_{\epsilon}, \delta_{\epsilon^{\prime}}\right]$

Two possibilities for $1 / 2$ BPS boundary condition

[Berman, Thompson]

$N=(1,1)$ type (A-type)
$\gamma^{2} \epsilon=\bar{\epsilon}$
$N=(2,0)$ type (B-type)

$$
\gamma^{2} \epsilon=\epsilon
$$

$$
\gamma^{0}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \quad \gamma^{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \gamma^{2}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \quad C=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

$\gamma^{2}=\gamma^{0} \gamma^{1} \quad$ Chirality in 2D sense

$$
\epsilon=\epsilon_{\epsilon_{1}+i \epsilon_{2}} \underbrace{}_{\text {Majopana }}
$$

$\mathrm{N}=(1,1)$ type (A-type) $\quad \gamma^{2} \epsilon=\bar{\epsilon}$

$$
\gamma^{2} \epsilon_{1}=\epsilon_{1} \quad \gamma^{2} \epsilon_{2}=-\epsilon_{2}
$$

$\mathrm{N}=(2,0)$ type (B-type) $\quad \gamma^{2} \epsilon=\epsilon$

$$
\gamma^{2} \epsilon_{1}=\epsilon_{1} \quad \gamma^{2} \epsilon_{2}=\epsilon_{2}
$$

Remark

A-type and B-type are completely distinct.
They cannot be equivalent.

Landau-Ginzburg model

Chiral super field

$$
\Phi^{i}(x, \theta, \bar{\theta})=\phi^{i}(x)+\sqrt{2} \theta \psi^{i}(x)+\theta \theta F^{i}(x)+\cdots
$$

Lagrangian

$$
L=\left.K(\Phi, \bar{\Phi})\right|_{D}+\left.W(\Phi)\right|_{F}+(c . c .)
$$

SUSY current

$$
\begin{aligned}
& J^{\mu}=-\sqrt{2} K_{i \overline{i j}}\left(\partial^{\mu} \bar{\phi}^{\bar{j}}\right) \psi^{i}+\sqrt{2} K_{i \bar{j}}\left(\partial_{\nu} \bar{\phi}^{\bar{j}}\right) \gamma^{\mu \nu} \psi^{i}-\sqrt{2} i \gamma^{\mu} \bar{\psi}^{\bar{\omega}} \bar{W}_{\bar{i}}, \\
& \bar{J}^{\mu}=-\sqrt{2} K_{i \bar{j}}\left(\partial^{\mu} \phi^{i} \psi^{\psi} \bar{\psi}^{\bar{j}}+\sqrt{2} K_{i \bar{i}}\left(\partial_{\nu} \phi^{i}\right) \gamma^{\mu \nu} \bar{\psi}^{\bar{j}}+\sqrt{2} i \gamma^{\mu} \psi^{i} W_{i} .\right.
\end{aligned}
$$

Boundary condition

 Brane

Results

A-type: Lagrangian submanifold

$$
\operatorname{Im} W=(\text { constant })
$$

B-type: Complex submanifold

$$
W=(\text { constant })
$$

A-type $\quad \gamma^{2} \epsilon=\bar{\epsilon}$

$$
\begin{aligned}
& \epsilon J^{2}-\bar{\epsilon} \bar{J}^{2}=0 \quad \gamma^{2} \psi^{i}=S^{i} \bar{j} \bar{\psi}^{\bar{j}} \\
& v^{I}:=\left\{\begin{array}{ll}
\epsilon \psi^{i} & (I=i) \\
-\bar{\epsilon} \bar{\psi}^{\bar{i}} & (I=\bar{i})
\end{array} \quad w^{I a}:= \begin{cases}\bar{\epsilon} \sigma^{a} \psi^{i} & (I=i) \\
-\epsilon \sigma^{a} \bar{\psi}^{\bar{i}} & (I=\bar{i})\end{cases} \right. \\
& g_{I J} \partial_{2} \phi^{I} v^{J}=0, \\
& g_{I J} \partial_{a} \phi^{I} w^{J a}=0, \\
& i W_{i} v^{i}-i \bar{W}_{\bar{i}} \bar{v}^{\bar{i}}=0, \quad \text { where } \quad a=0,1
\end{aligned}
$$

A-type
$\partial_{2} \phi^{I} \quad$ Normal to the brane
$\partial_{a} \phi^{I}$ Tangent to the brane

$$
\begin{aligned}
g_{I J} \partial_{2} \phi^{I} v^{J}=0, & \longrightarrow \quad v^{I} \text { tangent } \\
g_{I J} \partial_{a} \phi^{I} w^{J a}=0, & \longrightarrow \quad w^{I a} \text { normal } \\
i W_{i} v^{i}-i \bar{W}_{\bar{i}} \bar{v}^{\bar{i}}=0, & \text { where } a=0,1 \\
\quad & \\
v^{I} \partial_{I} \operatorname{Im} W=0 & \longrightarrow \operatorname{Im} W=(\text { constant })
\end{aligned}
$$

To show Lagrangian

$$
S_{J}^{I}=\left(\begin{array}{cc}
0 & S^{* \bar{i}} \\
S_{\bar{j}}^{i_{\bar{j}}} & 0
\end{array}\right)
$$

From the definition

$$
\begin{gathered}
S v=+v \quad S w=-w \\
(\text { Tangent space })=(+1 \text { eigen space of } S)
\end{gathered}
$$

The brane is middle dimensional

$S^{2}=1, \operatorname{Tr} S=0$

$\omega_{I J} \quad$ Kähler form

We can show

$\omega_{I J} v^{I} v^{\prime J} \quad$ for arbitrary tangent vectors $\quad v^{I} \quad v^{I}$

The A-type brane is a Lagrangian submanifold

B-type $\quad \gamma^{2} \epsilon=\epsilon$

$$
\epsilon J^{2}-\bar{\epsilon} \bar{J}^{2}=0 \quad \gamma^{2} \psi^{i}=R^{i}{ }_{j} \psi^{j}
$$

$$
\checkmark v^{I}:=\left\{\begin{array}{ll}
\epsilon \psi^{i} & (I=i) \\
-\bar{\epsilon} \bar{\psi}^{i} & (I=\bar{i})
\end{array} \quad z^{I a}:= \begin{cases}\epsilon \sigma^{a} \psi^{i} & (I=i) \\
-\bar{\epsilon} \sigma^{a} \overline{\psi^{i}} & (I=\bar{i})\end{cases}\right.
$$

$$
\begin{aligned}
g_{I J} \partial_{2} \phi^{I} v^{J} & =0, \\
g_{I J} \partial_{a} \phi^{I} z^{J a} & =0, \\
u^{i} W_{i}+\bar{u}^{\bar{i}} \bar{W}_{\bar{i}} & =0 .
\end{aligned}
$$

B-type

$$
\begin{aligned}
g_{I J} \partial_{2} \phi^{I} v^{J} & =0, \quad \longrightarrow \quad v^{I} \text { tangent } \\
g_{I J} \partial_{a} \phi^{I} z^{J a} & =0, \\
u^{i} W_{i}+\bar{u}^{\bar{i}} \bar{W}_{\bar{i}} & =0 .
\end{aligned}
$$

B-type

$$
\begin{gathered}
S_{J}^{I}=\left(\begin{array}{cc}
R_{j}^{i} & 0 \\
0 & R^{i_{j}}
\end{array}\right) \\
S v=-v \\
\text { tangent }
\end{gathered} \begin{gathered}
S z=z \\
\text { normal }
\end{gathered}
$$

We can show

$$
\omega_{I J} v^{I} z^{J}=0
$$

Complex submanifold

$$
u^{I}:= \begin{cases}i \bar{\epsilon} \psi^{i} & (I=i) \\ i \epsilon \overline{\psi^{\bar{i}}} & (I=\bar{i})\end{cases}
$$

U is tangent

$$
u^{i} W_{i}+\bar{u}^{\bar{i}} \bar{W}_{\bar{i}}=0
$$

W is constant on the brane

Results

A-type: Lagrangian submanifold

$$
\operatorname{Im} W=(\text { constant })
$$

B-type: Complex submanifold

$$
W=(\text { constant })
$$

Maxwell theory

Vector super field

$$
V=-\theta \sigma^{\mu} \bar{\theta} A_{\mu}+i \theta \bar{\theta} \sigma-i \theta \theta \bar{\theta} \bar{\lambda}+i \bar{\theta} \bar{\theta} \theta \lambda+\frac{1}{2} \theta \theta \bar{\theta} \bar{\theta} D(x) .
$$

Field strength

$$
\Sigma:=-\frac{i}{2} \bar{D} D V
$$

Maxwell action

$$
\begin{aligned}
L & =-\left.\frac{1}{e^{2}} \Sigma^{2}\right|_{D} \\
& =\frac{1}{e^{2}}\left(-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-i \bar{\lambda} \sigma^{\mu} \partial_{\mu} \lambda-\frac{1}{2} \partial^{\mu} \sigma \partial_{\mu} \sigma+\frac{1}{2} D^{2}\right)
\end{aligned}
$$

SUSY current

$$
\begin{aligned}
& J^{\mu}=-i F^{\mu \nu} \gamma_{\nu} \bar{\lambda}+\frac{i}{2} \epsilon^{\mu \rho \sigma} \bar{\lambda} F_{\rho \sigma}+\gamma^{\mu \nu} \bar{\lambda} \partial_{\nu} \sigma-\bar{\lambda} \partial^{\mu} \sigma, \\
& \bar{J}^{\mu}=+i F^{\mu \nu} \gamma_{\nu} \lambda-\frac{i}{2} \epsilon^{\mu \rho \sigma} \lambda F_{\rho \sigma}+\gamma^{\mu \nu} \lambda \partial_{\nu} \sigma-\lambda \partial^{\mu} \sigma .
\end{aligned}
$$

Duality

$$
\begin{array}{lc}
\text { Vector superfield } & \text { Chiral superfield } \\
\qquad \bar{\theta} A_{\mu}+i \theta \bar{\theta} \sigma-i \theta \theta \bar{\theta} \bar{\lambda}+i \bar{\theta} \bar{\theta} \theta \lambda+\frac{1}{2} \theta \theta \bar{\theta} \bar{\theta} D(x) . & \Phi=\sigma+i \rho \\
\text { dual photon }
\end{array}
$$

A-type

Ex. 1

$$
\sigma=(\text { const. }), F_{01}=0
$$

Ex. 2

$$
\partial_{2} \sigma=0, F_{2 a}=0
$$

These branes are actually Lagrangian submanifolds

B-type

Ex. 3

$$
\partial_{2} \sigma=0, F_{01} \uparrow_{\text {Dirichlet }}=0
$$

Ex. 4

$$
\sigma=(\text { const. }), F_{2 a}=0
$$

They are actually complex submanifolds

Ex. 4
$\sigma=$ (const.), $F_{2 a}=0$
Position in ρ direction
1
Boundary theta term

$$
S_{\vartheta}=\frac{\vartheta}{2 \pi} \int_{x^{2}=0} d x^{0} d x^{1} F_{01}
$$

Ex. 3

$$
\partial_{2} \sigma=0, F_{01}=0
$$

No boundary theta term

QED

Field contents

Field strength
Vector super field $V \longrightarrow \Sigma$
Charged chiral super fields $\quad \Phi_{+}, \Phi_{-}$

Lagrangian

$$
L=\left.\left[-\frac{1}{e^{2}} \Sigma^{2}+\bar{\Phi}_{+} e^{-2 V} \Phi_{+}+\bar{\Phi}_{-} e^{+2 V} \Phi_{-}\right]\right|_{D}
$$

Example of B-type boundary condition

$$
\gamma^{2} \psi_{ \pm}=\psi_{ \pm}, \quad \gamma^{2} \lambda=-\lambda, \quad \phi_{ \pm}=0, \quad \partial_{2} \sigma=F_{01}=0
$$

Mirror symmetry

Ex.
[Aharony, Hanany, Intriligator, Seiberg, Strassler], [de Boer, Hori, Oz]

LG model with 3 chiral super fields

$$
X, Y, Z
$$

$$
W=X Y Z
$$

Moduli space

Coulomb branch

Example of map of B-type boundary condition

QED $\phi_{ \pm}=0, \quad \partial_{2} \sigma=F_{01}=0 . \quad$ XYZ $\quad Z=0$

Higgs branch
Complex submanifold
superpotential is constant

Coulomb branch

Summary

3D $N=2$ theories

1/2 BPS boundary condition are explored

Landau-Ginzburg
Maxwell
Duality
QED

Future problem

Calculating superconformal index

(For B-type boundary, superconformal index will exists)

