Twisted space-time reduction in large N QCD with adjoint Wilson fermions

M. Okawa with A. Gonzalez-Arroyo

We study the large N QCD with adjoint fermions using the twisted space-time reduced model.

For two flavor theory ($N_{f}=2$) with $\mathrm{N}=289$, string tension is calculated which seems to vanish at $m_{q}=0$, in a way consistent with the theory governed by an infrared fixed point.

For one flavor theory ($N_{f}=1$), string tension remains finite at $m_{q}=0$, indicating a confining theory .

Plan of the talk (first part)

- Twisted Eguchi-Kawai model for pure $\operatorname{SU}(\mathrm{N})$ gauge theory
- large N QCD with two adjoint fermions
- large N QCD with one adjoint fermion
- Eguchi-Kawai model

Eguchi-Kawai model is obtained from the usual SU(N) lattice gauge theory

$$
Z_{W}=\int \prod_{x, \mu} d U_{x, \mu} \exp \left\{b N \sum_{x} \sum_{\mu \neq \nu=1}^{d} \operatorname{Tr}\left(U_{x, \mu} U_{x+\mu, \nu} U_{x+\nu, \mu}^{\dagger} U_{x, \nu}^{\dagger}\right)\right\}
$$

by neglecting the space-time dependence of the link variables

$$
\begin{gathered}
U_{x, \mu} \rightarrow U_{\mu} \longrightarrow \\
Z_{E K}=\int \prod_{\mu} d U_{\mu} \exp \left\{b N \sum_{\mu \neq \nu=1}^{d} \operatorname{Tr}\left(U_{\mu} U_{\nu} U_{\mu}^{\dagger} U_{\nu}^{\dagger}\right)\right\}, \quad b=\frac{1}{g^{2} N}
\end{gathered}
$$

In the same way, Wilson loop is defined by

$$
\begin{aligned}
& W_{W}(C)=\left\langle\operatorname{Tr}\left(U_{x, \mu} U_{x+\mu, \nu} \cdots U_{x-\rho, \rho}\right)\right\rangle \\
& W_{E K}(C)=\left\langle\operatorname{Tr}\left(U_{\mu} U_{v} \cdots U_{\rho}\right)\right\rangle
\end{aligned}
$$

Eguchi and Kawai show that in the large N limit, the Schwinger-Dyson eqs. satisfied by Wilson loops are identical in both theories provided that the $Z(N)^{d}$ symmetry

$$
U_{\mu} \rightarrow e^{i \theta_{\mu}} U_{\mu}, \quad e^{i \theta_{\mu}} \in Z(N)
$$

of the EK model is not spontaneously broken.

Bhanot, Heller and Neuberger found, however, that this symmetry is broken spontaneously in the weak coupling region.

- Twisted Eguchi-Kawai model

EK model can be viewed as the usual Wilson gauge theory having only one site with the periodic boundary conditions.

We introduce twisted boundary conditions in $\operatorname{SU}(N), N=L^{2}$ theory
(why it works. second part!)

$$
\begin{gathered}
S_{T E K}=b N \sum_{\mu \neq \nu=1}^{d} \operatorname{Tr}\left(Z_{\mu \nu} U_{\mu} U_{\nu} U_{\mu}^{\dagger} U_{v}^{\dagger}\right) \\
Z_{\mu \nu}=\exp \left(k \frac{2 \pi i}{L}\right), \quad Z_{\nu \mu}=-Z_{\mu \nu}, \quad \mu>v
\end{gathered}
$$

$k, L:$ co-prime, k / L fixed as we go $N=L^{2} \rightarrow \infty$
Our model is related to ordinary $\mathrm{SU}(\mathrm{N})$ lattice theory on $V=L^{4}$ space-time volume up to $O\left(1 / N^{2}\right)$ corrections.

The number of degree of freedom of $\operatorname{SU}(\mathrm{N})$ matrix is $N^{2}=L^{4}$

If the TEK model is correct nonperturbatively, we should be able to calculate the string tension.

In our reduced model, the Wilson loop $W(R, T)$ is defined by

$$
W(R, T)=Z_{\mu \nu}^{R T}\left\langle\operatorname{Tr}\left(U_{\mu}^{R} U_{\nu}^{T} U_{\mu}^{\dagger R} U_{v}^{\dagger T}\right)\right\rangle \sim \sigma R T+\cdots
$$

Then the string tension σ is obtained from Creutz ratio as

$$
\begin{gathered}
\chi\left(R^{\prime}, T^{\prime}\right)=-\log \frac{W\left(R^{\prime}+0.5, T^{\prime}+0.5\right) W\left(R^{\prime}-0.5, T^{\prime}-0.5\right)}{W\left(R^{\prime}+0.5, T^{\prime}-0.5\right) W\left(R^{\prime}-0.5, T^{\prime}+0.5\right)} \\
\chi\left(R^{\prime}, R^{\prime}\right)=\sigma+\frac{2 \gamma}{R^{\prime 2}}+\frac{\eta}{R^{\prime 4}}
\end{gathered}
$$

with half-integer R^{\prime}, T^{\prime}.

We calculate the continuum string tension by extrapolating the TEK data with $N=841=29^{2}, k=9$ at 6 values of b

$$
b=0.36,0.365,0.37,0.375,0.38,0.385
$$

Our system should be related to the lattice theory with $V=29^{4}$

For comparison, we also calculate the continuum string tension using ordinary $\mathrm{SU}(\mathrm{N})$ lattice gauge theory with $N=3,4,5,6,8$ on a $V=32^{4}$ lattice

Comparison of the continuum string tension $\Lambda_{\overline{M S}} / \sqrt{\sigma}$

TEK model with $N=841=29^{2}$ and LGT with $N=3,4,5,6,8$

Plan of the talk

- Twisted Eguchi-Kawai model
for pure $\operatorname{SU}(\mathrm{N})$ gauge theory
- large N QCD with two adjoint fermions
- large N QCD with one adjoint fermion

Motivation for $N_{f}=2$ adjoint fermions

SU(N) LGT with two adjoint fermions is thought to be conformal or nearly conformal for any value of N since the first two coefficient of beta functions expressed in term of 't Hooft coupling is independent of N .

$$
\begin{aligned}
& b_{0}=\frac{4 N_{f}-11}{24 \pi^{2}}, b_{1}=\frac{16 N_{f}-17}{192 \pi^{4}} \\
& b_{0}<0 \rightarrow N_{f}<\frac{11}{4}=2.75 \quad \text { asymptotic free }
\end{aligned}
$$

$$
b_{1}>0 \rightarrow N_{f}>\frac{17}{16}=1.08 \quad \text { infrared fixed point }
$$

- Twisted reduced model of large N QCD with two adjoint Wilson fermions

We consider gauge group $\operatorname{SU}(N), N=L^{2}$

$$
\begin{aligned}
& S= b N \\
& \sum_{\mu \neq \nu=1}^{d} \operatorname{Tr}\left(Z_{\mu \nu} U_{\mu} U_{\nu} U_{\mu}^{\dagger} U_{\nu}^{\dagger}\right)+\sum_{j=1}^{N_{f}} \bar{\psi}_{j} D_{W} \psi_{j} \\
& Z_{\mu \nu}=\exp \left(k \frac{2 \pi i}{L}\right), \quad Z_{\nu \mu}=Z_{\mu \nu}^{*}, \quad \mu>v \\
& D_{W}=1-\kappa \sum_{\mu=1}^{4}\left[\left(1-\gamma_{\mu}\right) U_{\mu}^{a d j}+\left(1+\gamma_{\mu}\right) U_{\mu}^{\dagger a d j}\right], \quad U_{\mu}^{a d j} \psi_{j}=U_{\mu} \psi_{j} U_{\mu}^{\dagger}
\end{aligned}
$$

k, L : co-prime, $\quad m_{q}=\left(1 / \kappa-1 / \kappa_{c}\right) / 2$
$k=0$ corresponds to periodic boundary condition
$k \neq 0$ corresponds to twisted boundary condition

We calculate the string tension with $N=289=17^{2}, k=5$ at 2 values of $b=0.35,0.36$ for various values of κ

Our system should be related to the lattice theory with $V=17^{4}$
-For $N_{f}=2$, we use the Hybrid Monte Carlo method.
Simulations have been done on Hitachi SR16000 at KEK
One node: 32 cores power 7, peak speed 980 GFlops
256 GB shared memory

Sustained speed of our code in one node is 600 Gflops at $\mathrm{N}=289$

We thank to Hitachi system engineers !

If the theory is governed by an infrared fixed point with the relevant mass term $m_{q} \bar{\psi} \psi$, all physical quantity having mass dimension should vanish as $m_{q} \rightarrow 0$.

In particular, the string tension having mass square dimension should behave as

$$
\sigma \sim m_{q}^{2 /\left(1+\gamma_{*}\right)}
$$

with γ_{*} the mass anomalous dimension at infrared fixed point. From our data, we have

$$
\frac{2}{1+\gamma_{*}}=1.34(11) \quad \therefore \gamma_{*}=0.49(4)
$$

Simple derivation

$$
\begin{aligned}
& \mu \frac{d m(\mu)}{d \mu}=-\gamma_{*} m(\mu) \\
& \therefore m(\mu) \propto \mu^{-\gamma_{*}} \mu_{0}^{\gamma_{*}} m\left(\mu_{0}\right)
\end{aligned}
$$

Define RG invariant mass M as $m(M)=M$.
Then setting $\mu_{0}=M$ and $\mu=a^{-1}$, we have

$$
\begin{aligned}
& m\left(a^{-1}\right)=m_{q} \propto a^{-\gamma_{*}} M^{1+\gamma_{*}} \\
& \therefore a M \propto\left(a m_{q}\right)^{1 /\left(1+\gamma_{*}\right)}
\end{aligned}
$$

We can show that all physical quantity M_{X} having mass dimension is proportional to M, then

$$
a M_{X} \propto\left(a m_{q}\right)^{1 /\left(1+\gamma_{*}\right)}
$$

String tension as a function of $\mathrm{m}_{\mathrm{q}}, \quad \mathrm{N}_{\mathrm{f}}=2, \mathrm{SU}(289), \mathrm{k}=5, \mathrm{~b}=0.35$

String tension as a function of $\mathrm{m}_{\mathrm{q}}, \quad \mathrm{N}_{\mathrm{f}}=2, \mathrm{SU}(289), \mathrm{k}=5, \mathrm{~b}=0.36$

String tension as a function of $m_{q}, N_{f}=2, S U(289), k=5, b=0.36$

Plan of the talk

- Twisted Eguchi-Kawai model
for pure $\operatorname{SU}(\mathrm{N})$ gauge theory
- large N QCD with two adjoint fermions
- large N QCD with one adjoint fermion

Motivation for $N_{f}=1$ adjoint fermion
In the large N limit, $N_{f}=1$ adjoint fermion is equivalent to $N_{f}=2$ fundamental fermion in rank two anti-symmetric rep. (Armoni, Shifman, Veneziano, Kovtun, Unsal, Yaffe)

For $\mathrm{N}=3$, the latter theory is just two flavor QCD and our model corresponds to Corrigan-Ramond large-N limit.

We then expect the reduced model of $N_{f}=1$ adjoint fermion as
confining theory

String tension as a function of $m_{q}, \quad N_{f}=1$ and $2, S U(289), k=5, b=0.35$

Conclusion

We have demonstrated that the twisted reduced model of large N QCD with adjoint Wilson fermions works quite well.
$N_{f}=2$
String tension is calculated at $\mathrm{N}=289$, which clearly decreases
as we increase kappa and seems to vanish around kappa ~ 0.175 in a way consistent with the theory governed by an infrared fixed point.
$N_{f}=1$
String tension is calculated at $\mathrm{N}=289$, which clearly remains finite around kappa ~ 0.16 strongly suggesting this is the confining theory. We also find that cg iteration does not converge for kappa >0.16.

Remaining important problems

- We need to understand the finite N (finite volume) effects make simulation with larger $N=529=23^{2}$
- calculate hadronic correlators

On going project

Wilson fermions with $\quad N_{f}=1 / 2$
overlap fermions with $N_{f}=2$
with Garcia-Perez, Gonzalez-Arroyo, Ishikawa, Keegan

Twisted space-time reduction in large N QCD

with adjoint Wilson fermions

Plan of the talk (second part)

- Why twisted reduction works ?
- Finite N corrections with two adjoint fermions
- How to calculate κ_{c}

Twisted reduction in theories having $\mathrm{SU}(\mathrm{N})$ internal symmetry
Let consider $\operatorname{SU}(\mathrm{N})$ with $N=L^{2}$ and introduce the twisted space-time reduction as

$$
\begin{aligned}
U(n) & \rightarrow U \\
U(n+\mu) & \rightarrow \Gamma_{\mu} U \Gamma_{\mu}^{\dagger}
\end{aligned}
$$

Γ_{μ} are four twist matrices satisfying

$$
\begin{gathered}
\Gamma_{\nu} \Gamma_{\mu}=z_{\mu \nu} \Gamma_{\mu} \Gamma_{\nu} \\
\text { with } \quad z_{\mu \nu}=\exp \left(k \frac{2 \pi i}{L}\right), \quad z_{\nu \mu}=z_{\mu \nu}^{*}, \quad \mu>v
\end{gathered}
$$

k and L should be co-prime

We can construct Γ_{μ} from 'tHooft matrices P_{L} and Q_{L}

$$
P_{L}=\left(\begin{array}{ccccc}
0 & 1 & & & \\
& 0 & 1 & & \\
& & \cdot & & \\
& & & \cdot & 1 \\
1 & & & & 0
\end{array}\right), \quad Q_{L}=\left(\begin{array}{lllll}
1 & & & & \\
& z & & & \\
& & z^{2} & & \\
& & & . & \\
& & & & z^{L-1}
\end{array}\right), \quad z=\exp \left(\frac{2 \pi i}{L}\right)
$$

$$
P_{L} Q_{L}=z Q_{L} P_{L} \quad P_{L}, Q_{L}: L \times L \quad \text { matrices }
$$

$$
\begin{array}{ll}
\Gamma_{1}=P_{L} \otimes I_{L} & \Gamma_{\mu}: N \times N \text { matrices with } N=L^{2} \\
\Gamma_{2}=Q_{L}^{k} \otimes P_{L} & \Gamma_{\nu} \Gamma_{\mu}=z^{k} \Gamma_{\mu} \Gamma_{v}, \quad \mu>v \\
\Gamma_{3}=Q_{L}^{k} \otimes P_{L} Q_{L}^{k} & \\
\Gamma_{4}=Q_{L}^{k} \otimes Q_{L}^{k} &
\end{array}
$$

Let consider the $\operatorname{SU}(\mathrm{N})$ lattice gauge theory

$$
S=b N \sum_{n} \sum_{\mu \neq \nu=1}^{4} \operatorname{Tr}\left[V_{\mu}(n) V_{v}(n+\mu) V_{\mu}^{\dagger}(n+v) V_{v}^{\dagger}(n)\right]
$$

where b is the inverse 't Hooft coupling constant and $V_{\mu}(n) \in S U(N)$ Twisted reduction amounts to the following replacements

$$
\begin{aligned}
V_{\mu}(n) & \rightarrow V_{\mu} \\
V_{\mu}(n+v) & \rightarrow \Gamma_{v} V_{\mu} \Gamma_{v}^{\dagger}
\end{aligned}
$$

Then we get $\quad S=b N \sum_{\mu \neq \nu=1}^{4} \operatorname{Tr}\left[V_{\mu} \Gamma_{\mu} V_{\nu} \Gamma_{\mu}^{\dagger} \Gamma_{\nu} V_{\mu}^{\dagger} \Gamma_{\nu}^{\dagger} V_{\nu}^{\dagger}\right]$
Writing $U_{\mu}=V_{\mu} \Gamma_{\mu}$ and using $\Gamma_{\nu} \Gamma_{\mu}=z_{\mu \nu} \Gamma_{\mu} \Gamma_{\nu}$ we have

$$
S=b N \sum_{\mu \neq v=1}^{4} \operatorname{Tr}\left[z_{\mu \nu} U_{\mu} U_{\nu} U_{\mu}^{\dagger} U_{v}^{\dagger}\right]
$$

This is the twisted Eguchi-Kawai (TEK) model
(A. Gonzalez-Arroyo and M. O. 1983, 2010)

Classical vacuum configuration $U_{\mu}^{(0)}$ satisfies

$$
\begin{aligned}
& z_{\mu \nu} U_{\mu}^{(0)} U_{v}^{(0)} U_{\mu}^{(0) \dagger} U_{v}^{(0) \dagger}=1 \\
& \therefore U_{v}^{(0)} U_{\mu}^{(0)}=z_{\mu \nu} U_{\mu}^{(0)} U_{v}^{(0)}
\end{aligned}
$$

Thus, $U_{\mu}^{(0)}=\Gamma_{\mu}$. Perturbation theory can be obtained by expanding U_{μ} around classical vacuum $U_{\mu}=\exp \left(i A_{\mu}\right) \Gamma_{\mu}$

Usually, we expand A_{μ} in terms the generator of Lie algebra λ^{a}. However, it is more convenient to use another bases.

We can show

$$
\Gamma(n)=\Gamma_{1}^{n_{1}} \Gamma_{2}^{n_{2}} \Gamma_{3}^{n_{3}} \Gamma_{4}^{n_{4}}, \quad 1 \leq n_{\mu} \leq L
$$

are $L^{4}=N^{2}$ independent matrices, which span the bases of $N x N$ matrix $\quad A_{\mu}=\sum_{n} a_{\mu}(n) \Gamma(n)$,

Since $\Gamma_{\nu} \Gamma_{\mu}=\exp \left(\pm k \frac{2 \pi i}{L}\right) \Gamma_{\mu} \Gamma_{V}$, for $\Gamma(n)=\Gamma_{1}^{n_{1}} \Gamma_{2}^{n_{2}} \Gamma_{3}^{n_{3}} \Gamma_{4}^{n_{4}}$

$$
\begin{aligned}
& \Gamma_{\mu} \Gamma(n) \Gamma_{\mu}^{\dagger}=\exp \left[k \frac{2 \pi i}{L}\left(-\sum_{v=1}^{\mu-1} n_{v}+\sum_{v=\mu+1}^{4} n_{v}\right)\right] \Gamma(n) \\
& \equiv \exp \left[\frac{2 \pi i}{L} m_{\mu}\right] \Gamma(n), \quad m_{\mu} \quad \text { defined modulo } L \\
&\left(\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3} \\
m_{4}
\end{array}\right)=k\left(\begin{array}{cccc}
0 & 1 & 1 & 1 \\
-1 & 0 & 1 & 1 \\
-1 & -1 & 0 & 1 \\
-1 & -1 & -1 & 0
\end{array}\right)\left(\begin{array}{l}
n_{1} \\
n_{2} \\
n_{3} \\
n_{4}
\end{array}\right), \quad\left(\begin{array}{l}
n_{1} \\
n_{2} \\
n_{3} \\
n_{4}
\end{array}\right)=\frac{1}{k}\left(\begin{array}{cccc}
0 & -1 & 1 & -1 \\
1 & 0 & -1 & 1 \\
-1 & 1 & 0 & -1 \\
1 & -1 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
m_{1} \\
m_{2} \\
m_{3} \\
m_{4}
\end{array}\right)
\end{aligned}
$$

Then $\Gamma(n(m))$ is the momentum eigenstate on a L^{4} lattice

Propagator is identical to that of the lattice theory on $V=L^{4}=N^{2}$
If we introduce interactions, there appears phase factor in each vertex. However, they cancel completely in planar diagram.

For non-planar diagrams, phase factor survives, which oscillates very rapidly in the large N limit, and suppressing the contribution of non-planar diagram.

The order parameters of $Z(L)^{4} \quad$ symmetry $U_{\mu} \rightarrow z U_{\mu}$ of the TEK action are

$$
\left\langle\operatorname{Tr}\left(U_{\mu}^{\ell}\right)\right\rangle, \quad \ell=1 \sim(L-1)
$$

For the classical vacuum $U_{\mu}^{(0)}=\Gamma_{\mu}$, it is straightforward to show

$$
\operatorname{Tr}\left(U_{\mu}^{(0) \ell}\right)=\operatorname{Tr}\left(\Gamma_{\mu}^{\ell}\right)=0, \quad \ell=1 \sim(L-1)
$$

Then the Schwinger-Dyson eqs. satisfied by the TEK model and the corresponding lattice theory are identical.

We naturally expect that both theories are equivalent even nonperturbatively.
A. Gonzalez-Arroyo and M. O. $1983 k=1$

In 2003, Tomomi Ishikawa and M. O. found that in the intermediate coupling region, $\left\langle\operatorname{Tr}\left(U_{\mu}\right)\right\rangle \neq 0$ for $\mathrm{N}>100$ with $k=1$.
$N=64, k=1$

b
Z_{L}^{4} symmery is not broken all over the coupling region.

Z_{L}^{4} symmetry is broken in the intermediate region for $\mathrm{N}>100$

$$
\mathrm{k}=2
$$

We also found that
$Z(L)^{4}$ symmetry is broken for $N \geq 360$ with $k=2$.
Z_{L}^{4} symmetry is broken in the intermediate region for $N \gtrsim 360$.

Why $Z(L)^{4}$ symmetry is broken ?
M. Teper, H. Vairinhops (2007) k=1
A. Gonzalez-Arroyo, M. O. (2010) general k

In the $Z(L)^{4}$ symmetry broken phase, the eigenvalues of U_{μ} attract each other In the complex plane, thus $U_{\mu}^{(0)} \sim I_{N}$

It is then the competition of energy gap and entropy between two configurations

$$
\begin{aligned}
& F\left(U_{\mu}^{(0)}=\Gamma_{\mu}\right)=\frac{3}{2} \log (b N) N^{2} \\
& F\left(U_{\mu}^{(0)}=I_{N}\right)=12 b N^{2}\left(1-\cos \left(\frac{2 \pi k}{L}\right)\right)+\log (b N) N^{2}
\end{aligned}
$$

$$
\begin{aligned}
\Delta F & \equiv F\left(U_{\mu}^{(0)}=I_{N}\right)-F\left(U_{\mu}^{(0)}=\Gamma_{\mu}\right) \\
& =12 b N^{2}\left(1-\cos \left(\frac{2 \pi k}{L}\right)\right)-\frac{1}{2} \log (b N) N^{2}
\end{aligned}
$$

-For $b \rightarrow \infty$ with fixed $L, N, k, \quad \Delta F>0$ (weak coupling limit)

- For $N=L^{2} \rightarrow \infty$ with fixed $b, k, \quad \Delta F \sim-N^{2} / 2<0$

The wrong vacuum $U_{\mu}^{(0)}=I_{N}$ wins

Our proposal

As we take $N=L^{2} \rightarrow \infty$, we fix $k / L . \quad L$ and k co-prime. In the same time, we scale $b \sim\left(11 / 48 \pi^{2}\right) \log (N)$
then the physical lattice size $L a(b)$ is fixed

So far, the arguments are perturbative, which we should not trust so much. We need non-perturbative study.

$$
\begin{array}{lll}
k=0: & Z(L) & \text { symmetry is broken for } \\
k=0 \\
k=1: & Z(L) & \text { symmetry is broken for } \\
L>10 \\
k=2: & Z(L) & \text { symmetry is broken for } \\
L>18 \\
k=3: & Z(L) & \text { symmetry is broken for } \\
L>28 \\
k=4: & Z(L) & \text { symmetry is broken for }
\end{array} L>37
$$

The above numerical results strongly suggest that

$$
Z(L)^{4} \quad \text { symmetry is not broken for } \frac{k}{L}>\frac{1}{9}
$$

We also found that k should not be chosen too large .
In fact, for $k=\frac{L-1}{2}$, we observe at $L=17,19,21,23$

$$
\left\langle\operatorname{Tr}\left(U_{\mu}\right)\right\rangle=0 \quad \text { but } \quad\left\langle\operatorname{Tr}\left(U_{\mu}^{2}\right)\right\rangle \neq 0
$$

We notice $2 k=L-1=1(\bmod L)$, then $\bar{k}=2 \quad[k \bar{k}=1 \bmod L]$
Might be related to the tachyonic instability of
the non-commutative field theory?
In any case, large value of \bar{k} is desirable to suppress non planer diagrams

Take large L keeping $k / L>1 / 9$ with large $\bar{k} . L$ and k co-prime.

We mainly make numerical simulations for the following four parameter sets

$$
\begin{array}{cccc}
N & L & k & \bar{k} \\
\hline 289 & 17 & 5 & 7 \\
\hline 529 & 23 & 7 & 10 \\
\hline 841 & 29 & 9 & 13 \\
\hline 1369 & 37 & 11 & 10 \\
\hline
\end{array}
$$

We note $k / L \sim 0.3$ for all cases !

N dependence of $\mathrm{W}(1,1)$

Detailed comparison at $\mathrm{b}=0.36$

$$
\begin{aligned}
& \text { For } V=16^{4} N=9-16 \\
& E=0.55800(2)+\frac{0.963(6)}{N^{2}}-\frac{4.3(4)}{N^{4}} \\
& E=0.557998(5) \quad(N=841, k=9) \\
& E=0.557999(19) \quad(N=289, k=5) \\
& E=0.557991(13) \quad(N=529, k=7)
\end{aligned}
$$

Comparison of the continuum string tension $\Lambda_{\overline{M S}} / \sqrt{\sigma}$

TEK model with $N=841=29^{2}$ and LGT with $N=3,4,5,6,8$

Twisted space-time reduction in large N QCD

 with adjoint Wilson fermionsPlan of the talk (second part)

- Why twisted reduction works ?
- Finite N corrections with two adjoint fermions
- How to calculate κ_{c}

The action of the adjoint fermions in lattice theory is

$$
\begin{aligned}
& S_{f}=\sum_{j=1}^{N_{f}} \sum_{n} \operatorname{Tr}\left[\bar{\psi}_{j}(n) \psi_{j}(n)-\kappa \sum_{\mu=1}^{4}\left\{\bar{\psi}_{j}(n)\left(1-\gamma_{\mu}\right) V_{\mu}(n) \psi_{j}(n+\mu) V_{\mu}^{\dagger}(n)\right.\right. \\
&\left.\left.+\bar{\psi}_{j}(n)\left(1+\gamma_{\mu}\right) V_{\mu}^{\dagger}(n-\mu) \psi_{j}(n-\mu) V_{\mu}(n-\mu)\right\}\right]
\end{aligned}
$$

where ψ_{j} is the adjoint fermions in color (N, \bar{N}) representation Reducing the lattice theory by

$$
\begin{aligned}
U_{\mu}(n) & \rightarrow U_{\mu} & \psi_{j}(n) & \rightarrow \psi_{j} \\
U_{\mu}(n+v) & \rightarrow \Gamma_{\nu} U_{\mu} \Gamma_{v}^{\dagger} & \psi_{j}(n+v) & \rightarrow \Gamma_{\nu} \psi_{j} \Gamma_{v}^{\dagger} \\
U_{\mu}(n-v) & \rightarrow \Gamma_{\nu}^{\dagger} U_{\mu} \Gamma_{v} & \psi_{j}(n-v) & \rightarrow \Gamma_{\nu}^{\dagger} \psi_{j} \Gamma_{v}
\end{aligned}
$$

and writing $U_{\mu}=V_{\mu} \Gamma_{\mu}$ with $\Gamma_{\nu} \Gamma_{\mu}=z_{\mu \nu} \Gamma_{\mu} \Gamma_{\nu}$ we have

$$
S_{f}=\sum_{j=1}^{N_{f}} \operatorname{Tr}\left[\bar{\psi}_{j} \psi_{j}-\kappa \sum_{\mu=1}^{4}\left\{\bar{\psi}_{j}\left(1-\gamma_{\mu}\right) U_{\mu} \psi_{j} U_{\mu}^{\dagger}+\bar{\psi}_{j}\left(1+\gamma_{\mu}\right) U_{\mu}^{\dagger} \psi_{j} U_{\mu}\right\}\right]
$$

$\mathrm{Z}(\mathrm{N})$ symmetry breaking of the Eguchi-Kawai model ($\mathrm{k}=0$) without fermion occures since the eigenvalues of U_{μ} attract each other, then $U_{\mu}^{(0)} \sim I_{N}$.

It has been shown by several authors that
Dynamical quark effects of adjoint fermion induce repulsive force between the eigenvalues of U_{μ}, thus the symmetry breaking does not occurs even for $k=0$. Kovtun, Unsal, Yaffe, Bringoltz, Koren, Sharpe

It is true, however, it is not clear
how large is the finite N corrections especially for $k=0$.

Simulations have been done with $\operatorname{SU}(N), N=L^{2}$

$$
\begin{aligned}
& N=25,49,81,121,169,225,289 \\
& (L=5,7,9,11,13,15,17)
\end{aligned}
$$

Twisted model is related to ordinary $S U(N)$ lattice theory on $V=L^{4}$ space-time volume up to $O\left(1 / N^{2}\right)$ corrections

$$
\begin{aligned}
& N=25,49,81,121,169,225,289 \\
& V=5^{4}, 7^{4}, 9^{4}, 11^{4}, 13^{4}, 15^{4}, 17^{4}
\end{aligned}
$$

We can, then, calculate Wilson loop $W(R, R)$ up to

$$
R=2, \quad 3, \quad 4, \quad 5, \quad 6, \quad 7, \quad 8
$$

$$
E=Z_{\mu \nu}\left\langle\operatorname{Tr}\left(U_{\mu} U_{\nu} U_{\mu}^{\dagger} U_{v}^{\dagger}\right)\right\rangle
$$

$\mathrm{b}=0.35$, карра $=0.12$

$\mathrm{b}=0.35$, карра=0. 12

$\mathrm{b}=0.36$, карра=0.12

b=0.35, kappa=0.14

The finite N correction of the model with twisted boundary condition ($k \neq 0$)

- significantly smaller than those of the model with periodic boundary condition $(k=0)$.
- can be fitted with the form $a+b / N^{2}+\cdots$ for appropriately chosen range of $N<N_{c}$, with N_{c} roughly determined by the symmetry breaking pattern of the pure gauge theory.

Twisted space-time reduction in large N QCD

 with adjoint Wilson fermionsPlan of the talk (second part)

- Why twisted reduction works ?
- Finite N corrections with two adjoint fermions
- How to calculate κ_{c}

How to calculate κ_{c}

So far, we have not calculated any hadronic spectrum.
However, it is straightforward to calculate the lowest eigenvalue of positive hermitian Wilson Dirac operator $Q^{2}=\left(D_{W} \gamma_{5}\right)^{2}$, which should be related to the physical quark mass square.

$$
\begin{aligned}
D_{W}=1-\kappa \sum_{\mu=1}^{4}\left[\left(1-\gamma_{\mu}\right) U_{\mu}^{a d j}+\left(1+\gamma_{\mu}\right) U_{\mu}^{\dagger a d j}\right] & =\kappa\left(\frac{1}{\kappa}-\frac{1}{\kappa_{c}}\right)+2 \kappa \partial_{\mu} \gamma^{\mu}+\cdots \\
& =2 \kappa m_{q}+2 \kappa \partial_{\mu} \gamma^{\mu}+\cdots
\end{aligned}
$$

lowest eigenvalue of positive Hermitian Wilson Dirac operator

$$
\kappa^{2}\left(\frac{1}{\kappa}-\frac{1}{\kappa_{c}}\right)^{2}=4 \kappa^{2} m_{q}^{2}
$$

We can fit the lowest eigenvalue of Q^{2} with the following fitting form

$$
\kappa^{2}\left(1 / \kappa-1 / \kappa_{c}\right)^{2}
$$

We then have $\kappa_{c}=0.1773(2)$
Now the string tension should behave as

$$
\sigma \sim m_{q}^{2 /\left(1+\gamma_{*}\right)} \sim\left(1 / \kappa-1 / \kappa_{c}\right)^{2 /\left(1+\gamma_{*}\right)}
$$

with γ_{*} the mass anomalous dimension at infrared fixed point.

From our data, we have

$$
\frac{2}{1+\gamma_{*}}=1.34(11) \quad \therefore \gamma_{*}=0.49(4)
$$

String tension and lowest eigenvalue of $Q^{2}, N_{f}=2, S U(289), k=5, b=0.36$

Conclusion and outlook

- Twisted space-time reduction works for $S U(N), N=L^{2}$ with

$$
\frac{1}{9}<\frac{k}{L}<\frac{1}{2} . \quad L \text { and } k \text { co-prime. large } \bar{k} .
$$

- For suitably chosen values of N, the finite N corrections of the model with fixed b, k, κ are of order $1 / N^{2}$ as expected.
- Study of the eigenvalue distribution $\rho(\omega)$ of the Wilson Dirac fermion matrix is promising.

Lowest eigenvalue determine the value of critical κ_{c}. We can determine γ_{*} from $\rho(\omega) \sim \omega^{\left(3-\gamma_{*}\right) /\left(1+\gamma_{*}\right)}$ near κ_{c}.

- We need to develop the method to calculate hadronic quantities!

