
  Twisted space-time reduction in large N QCD  
               with adjoint Wilson fermions 

        M. Okawa  with  A. Gonzalez-Arroyo   
 
We study the large N QCD with  adjoint fermions 
                       using the twisted space-time reduced model.  
  
For two flavor theory (              ) with N=289,  string tension is 
calculated  which seems to vanish at               , in a way consistent  
with the theory governed by an infrared fixed point. 
 
For one flavor theory (              ),  string tension remains finite  
at              , indicating a confining theory . 
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 Plan of the talk (first part) 

 
● Twisted Eguchi-Kawai model  
                            for pure SU(N) gauge theory 
 
●  large N QCD with  two adjoint fermions  
 
●  large N QCD with  one adjoint fermion  
 



●  Eguchi-Kawai model 
 
Eguchi-Kawai model is obtained from the usual SU(N) lattice  
gauge theory 
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Eguchi and Kawai show that in the large N limit,  
the Schwinger-Dyson eqs. satisfied by Wilson loops are identical  
in both theories provided that the                  symmetry  
 
 
 of the EK model is not spontaneously broken. 

,iU e Uµθµ µ→

Bhanot, Heller and Neuberger found, however, that  
this symmetry is broken spontaneously  
in the weak coupling region.    
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●  Twisted Eguchi-Kawai model 
 
              EK model can be viewed as the usual Wilson gauge theory  
               having only one site with the periodic boundary conditions. 

We introduce twisted boundary conditions in                              theory 
                                （ why it works.  second part! )            
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2( ),SU N N L=

 k , L : co-prime,   k/L  fixed as we go   

Our model is related to ordinary SU(N) lattice theory   
on               space-time volume up to                    corrections. 2(1 / )O N4V L=

2N L= → ∞

The number of degree of freedom of SU(N) matrix is  2 4N L=



If the TEK model is correct nonperturbatively,  
                     we should be able to calculate the string tension. 

In our reduced model, the Wilson loop                   is defined by  ( , )W R T
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Then the string tension        is obtained from Creutz ratio as 
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We calculate the continuum string tension by extrapolating  
the TEK data with                                  at 6 values of b 
 
 
Our system should be related to the lattice theory with 
 
For comparison, we also calculate the continuum string tension 
using ordinary SU(N) lattice gauge theory with   
on a                 lattice 
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Comparison of the continuum string tension     /MS σΛ

2841 29N = =   TEK model with                            and LGT with     3, 4, 5, 6, 8N =



 Plan of the talk 

● Twisted Eguchi-Kawai model  
                            for pure SU(N) gauge theory 
 
●  large N QCD with  two adjoint fermions  
 
●  large N QCD with  one adjoint fermion  
 



Motivation for            adjoint fermions  
 
SU(N) LGT with two adjoint fermions is thought to be 
conformal or nearly conformal for any value of N since 
the first two coefficient of beta functions expressed in 
term of ‘t Hooｆt coupling is independent of N. 
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● Twisted reduced model of large N QCD  
                                           with two adjoint Wilson fermions  

We consider gauge group   
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We calculate the string tension with                              
at 2 values of            for various values of  
 
Our system should be related to the lattice theory with 
 
 
 

0.35, 0.36b =
2289 17 , 5N k= = =

417V =

κ

●For             , we use the Hybrid Monte Carlo method.  
 
         Simulations have been done on Hitachi SR16000 at KEK      
               One node:   32 cores power 7,   
                                     peak speed 980 GFlops 
                                   256 GB shared memory 
      
               Sustained speed of our code in one node is 
                                     600 Gflops at N=289 
  
               We thank to Hitachi system engineers !                                                
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How to calculate       , second part   cκ



If the theory is governed by an infrared fixed point with  
the relevant mass term                 , all physical quantity 
having mass dimension should vanish as  
 
In particular, the string tension having mass square 
dimension should behave as 
 
 
with       the mass anomalous dimension at infrared fixed 
point.  From our data, we have 
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 Plan of the talk 

● Twisted Eguchi-Kawai model  
                            for pure SU(N) gauge theory 
 
●  large N QCD with  two adjoint fermions  
 
●  large N QCD with  one adjoint fermion 
 



Motivation for            adjoint fermion 
 
In the large N limit,      adjoint fermion is equivalent to               
          fundamental fermion in rank two anti-symmetric rep.   
           (Armoni, Shifman, Veneziano,   Kovtun, Unsal, Yaffe) 
 
For N=3, the latter theory is just two flavor QCD and 
our model corresponds to Corrigan-Ramond large-N limit. 
 
We then expect the reduced model of      adjoint 
fermion as 
                                      confining theory 
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Conclusion 

We have demonstrated that the twisted reduced model of large N  
QCD with adjoint Wilson fermions works quite well.  
 
 
String tension is calculated at N=289, which clearly decreases 
as we increase kappa and seems to vanish around kappa ～ 0.175  
in a way consistent with the theory governed by an infrared fixed  
point . 
 
 
String tension is calculated at N=289, which clearly remains finite  
around kappa ～ 0.16  strongly suggesting this is the confining theory.  
We also find that cg iteration does not converge for kappa > 0.16. 
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Remaining important problems  
 
● We need to understand the finite N (finite volume) effects 
           make simulation with larger    
 
● calculate hadronic correlators 
 
On going project  
 
  Wilson fermions with 
 
  overlap fermions with    
    with Garcia-Perez, Gonzalez-Arroyo, Ishikawa, Keegan 

2529 23N = =

1 / 2fN =
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 Twisted reduction in theories having SU(N) internal symmetry 

Let consider SU(N) with                and  
                            introduce the twisted space-time reduction as 
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We can construct        from ‘tHooft matrices    and   µΓ
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Let consider the SU(N) lattice gauge theory 
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   This is the twisted Eguchi-Kawai (TEK) model  
                                ( A. Gonzalez-Arroyo and M. O. 1983, 2010 ) 



Classical vacuum configuration           satisfies  (0)Uµ
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Thus,                    .     Perturbation theory can be obtained by 
expanding         around classical  vacuum     
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However, it is more convenient to use another bases.  
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Then                  is the momentum eigenstate on a       lattice   ( ( ))n mΓ 4L
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If we introduce interactions, there appears phase factor in each  
vertex.   However, they cancel completely in planar diagram. 
 
For non-planar diagrams, phase factor survives, which oscillates 
very rapidly in the large N limit, and suppressing the contribution of  
non-planar diagram.  

no phase factor remains 
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Propagator is identical to that of  the lattice theory on   4 2V L N= =



4( )Z LThe order parameters of                symmetry   
of the TEK action are  
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For the classical vacuum                   , it is straightforward to show (0)Uµ µ= Γ

(0)( ) ( ) 0, 1 ( 1)Tr U Tr Lµ µ= Γ = = − 

 

  

U zUµ µ→

Then the Schwinger-Dyson eqs. satisfied by the TEK model and  
the corresponding lattice theory are identical. 
 
We naturally expect that both theories are equivalent  even 
nonperturbatively. 

  A. Gonzalez-Arroyo and M. O. 1983   k = 1 



In 2003, Tomomi Ishikawa and M. O. found that in the 
intermediate coupling region,                           for  N>100 with k=1.  
 
  

( ) 0Tr Uµ ≠

( )P Tr Uµ=



               symmetry is broken  4( )Z L

360N ≥for                   with k=2.  

We also found that  



Why               symmetry is broken ? 
                                        M. Teper, H. Vairinhops (2007)  k=1 
                                         A. Gonzalez-Arroyo, M. O. (2010)  general k 

4( )Z LIn the             symmetry broken phase,  
the eigenvalues of        attract each other 
In the complex plane, thus   
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It is then the competition of  energy gap and  entropy 
between two configurations   
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●For                with fixed               ,                  (weak coupling limit)  b →∞ , ,L N k 0F∆ >

●For                          with fixed         ,                     2N L= → ∞ ,b k 2 / 2 0F N∆ − <
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            Our proposal                    

As we take                         ,  we fix           .        and    co-prime. 2N L= → ∞
2(11 / 48 )log( )b Nπ

In the same time, we scale  
then the physical lattice size      is fixed   ( )La b

L k



So far, the arguments are perturbative, which we should not 
trust so much.  We need non-perturbative study.     

  symmetry is broken for  0L >0 : ( )k Z L=

  symmetry is broken for   10L >

4( )Z L

  symmetry is broken for   18L >2 : ( )k Z L=

  symmetry is broken for   28L >3: ( )k Z L=

  symmetry is broken for   37L >4 : ( )k Z L=

The above numerical results strongly suggest that 
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We also found that k should not be chosen too large . 
 
In fact, for                 , we observe at   
 
                                       but    
 
We notice                                         , then                  
 
Might be related to the tachyonic instability of  
                                                   the non-commutative field theory ?   
 
In any case, large value of      is desirable  
                                                       to  suppress non planer diagrams    
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Take large  L  keeping  k/L > 1/9  with large k .   L and k co-prime. 
 
We mainly make numerical simulations  
                                          for the following four parameter sets 

_  

289 17 5 7
529 23 7 10
841 29 9 13

1369 37 11 10
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Comparison of the continuum string tension     /MS σΛ

2841 29N = =   TEK model with                            and LGT with     3, 4, 5, 6, 8N =
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The action of the adjoint fermions in lattice theory is 
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Reducing the lattice theory by    
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Z(N) symmetry breaking of the Eguchi-Kawai model (k=0) 
without fermion occures since the eigenvalues of         
attract each other, then                  . 
 
 
 
It has been shown by several authors that  
    Dynamical quark effects of adjoint fermion induce 
    repulsive force between the eigenvalues of        , 
    thus the symmetry breaking does not occurs even  
    for k=0 .           Kovtun, Unsal, Yaffe,   Bringoltz, Koren, Sharpe 
 
It is true, however, it is not clear  
       how large is the finite N corrections especially for k=0. 

Uµ
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Simulations have been done with  
 

2( ),SU N N L=

25, 49, 81,121,169, 225, 289
( 5, 7, 9, 11, 13, 15, 17 )

N
L
=
=

Twisted model is related to ordinary SU(N) lattice theory   
on              space-time volume up to                  corrections  
 

2(1 / )O N4V L=

4 4 4 4 4 4 4

25, 49, 81, 121, 169, 225, 289
5 , 7 , 9 , 11 , 13 , 15 , 17

N
V
=

=

We can, then, calculate Wilson loop W(R,R) up to   
 

2, 3, 4, 5, 6, 7, 8R =
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0.5460(2)E =

20.5460 4.47 /E N= +



0.5702(1)E =

20.5700(2) 4.17 /E N= +





The finite N correction of the model with twisted 
boundary condition (          )   
 
● significantly smaller than those of the model  
  with periodic boundary condition (           ).  

0k ≠

0k =

● can be fitted with the form 
      for appropriately chosen range of               , 
      with      roughly determined by the symmetry  
      breaking pattern of the pure gauge theory.       
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2 2289 17 , 0.35N L b= = = =
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How to calculate    cκ



However, it is straightforward to calculate the  lowest eigenvalue 
of positive hermitian Wilson Dirac operator                           , 
which should be related to the physical quark mass square. 
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So far, we have not calculated any hadronic spectrum. 

lowest eigenvalue of positive  
Hermitian Wilson Dirac operator 
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We can fit  the lowest eigenvalue of        with the following fitting 
form 
 
 
We then have 
 
Now the string tension should behave as 
 
 
 
with       the mass anomalous dimension at infrared fixed point. 
 
From our data, we have 
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2 2289 17 , 0.36N L b= = = =
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Conclusion and outlook 
 
● Twisted space-time reduction works for                            with 
  
                           .     L and k co-prime.  large k.  
 
●  For suitably chosen values of N, the finite N corrections of the  
     model with fixed             are of order             as expected.  
 
●  Study of the eigenvalue distribution              of the Wilson 
     Dirac fermion matrix is promising. 
 
           Lowest eigenvalue determine the value of critical      .  
           We can determine      from                                              near      .                                             
        
●  We need to develop the method to calculate hadronic quantities!  
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