High Energy Scattering in AdS/CFT

Applications to N=4 SYM and to low- x QCD

Miguel S. Costa
 Faculdade de Ciências da Universidade do Porto

Works with L. Cornalba, M. Djuric, N. Evans, J. Penedones, V. Gonçalves

IPMU
Tokyo - June 2013

Motivation

- Regge theory gives important physical information in QCD

Regge trajectory for isospin $I=1$ even parity mesons.

These mesons dominate exchange in

$$
\pi^{-}+p \rightarrow \pi^{0}+n
$$

$s \gg-t$

$$
A(s, t) \sim \beta(t) s^{\alpha(t)}
$$

$$
\alpha(t)=\alpha(0)+\alpha^{\prime} t
$$

- Trajectory that dominates a given process determined by exchanged quantum numbers. For elastic scattering these are the vacuum quantum numbers.

Soft Pomeron [Landshoff-Donnachie]

$$
\alpha_{P} \approx 1.08+0.25 t \quad(\mathrm{GeV} \text { units })
$$

(Evidence from lattice QCD that there are glueballs on this trajectory with $J \geq 2$)

- Pomeron enters also in diffractive processes. For example DIS.

Hard Pomeron

[BFKL - Balitsky, Fadin, Kuraev \& Lipatov]
In DIS much larger intercept is observed

$$
j_{0}=1.2-1.4
$$

Basic idea \& two goals

- Explore high energy scattering in the Regge limit in AdS/CFT context

Strings exhibit Regge behaviour
Regge theory in CFT's
[works with Cornalba, Penedones]
[Kotikov, Lipatov, Staudacher,Velizhanin 07]

- Obtain new information about anomalous dimensions and OPE coefficients in $\mathrm{N}=4$ Super Yang-Mills, and also AdS graviton Regge trajectory
[MSC, Penedones, Gonçalves 12]
- Phenomenology of low x physics in QCD (Connection with pomeron physics by BPST 2006)
[works with Cornalba, Penedones,Djuric; MSC, Djuric, Evans to appear]

Regge theory in String Theory

- Virasoro-Shapiro S-matrix element

$$
\mathcal{T}(s, t)=8 \pi G_{N}\left(\frac{t u}{s}+\frac{s u}{t}+\frac{s t}{u}\right) \frac{\Gamma\left(1-\frac{\alpha^{\prime} s}{4}\right) \Gamma\left(1-\frac{\alpha^{\prime} u}{4}\right) \Gamma\left(1-\frac{\alpha^{\prime} t}{4}\right)}{\Gamma\left(1+\frac{\alpha^{\prime} s}{4}\right) \Gamma\left(1+\frac{\alpha^{\prime} u}{4}\right) \Gamma\left(1+\frac{\alpha^{\prime} t}{4}\right)}
$$

Regge limit $s \gg-t$

$$
\begin{array}{r}
\frac{32 \pi G_{N}}{\alpha^{\prime}} e^{-\frac{i \pi \alpha^{\prime} t}{4}} \frac{\Gamma\left(-\frac{\alpha^{\prime} t}{4}\right)}{\Gamma\left(1+\frac{\alpha^{\prime} t}{4}\right)}\left(\frac{\alpha^{\prime} s}{4}\right)^{2+\frac{\alpha^{\prime} t}{2}}{ }_{j(t)}^{j(t)}
\end{array}
$$

- Amplitude contains poles for each physical exchange. The Regge behaviour can be obtained only from exchange of particles in leading Regge trajectory.

- t-channel partial wave expansion

$$
\mathcal{T}(s, t)=\sum_{J=0}^{\infty} a_{J}(t) P_{J}\left(1+2 \frac{s}{t}\right) \quad \sim\left(\frac{s}{t}\right)^{J}
$$

- Exchange of spin J field has pole at $t=m^{2}(J)$

$$
a_{J}(t) \approx \frac{r(J)}{t-m^{2}(J)}
$$

- Sum exchanges in leading Regge trajectory and Sommerfeld-Watson transform

$$
\sum_{J} \rightarrow \int_{\mathrm{C}} \frac{d J}{2 \pi i} \frac{\pi}{\sin (\pi J)}
$$

- Analytically continue in J and pick leading pole from

$$
\mathcal{T}(s, t) \approx \beta(t) s^{j(t)}
$$

$$
a_{J}(t) \approx-\frac{j^{\prime}(t) r(j(t))}{J-j(t)}
$$

AdS/CFT duality

Strings in AdS (d+1 dimensions)

Conformal Field Theory (d dimensions)

$$
\text { Tree level } \quad g_{s} \rightarrow 0
$$

Planar level $N \rightarrow \infty$

Finite string length $l_{s}=\sqrt{\alpha^{\prime}}$

String fields ϕ

Finite 't Hooft coupling $\lambda=g_{Y M}^{2} N=\frac{R^{4}}{\alpha^{\prime 2}}$
Single trace operators \mathcal{O}

$$
\left\langle\mathcal{O}_{1}\left(y_{1}\right) \mathcal{O}_{2}\left(y_{2}\right) \mathcal{O}_{3}\left(y_{3}\right) \mathcal{O}_{4}\left(y_{4}\right)\right\rangle
$$

Conformal Regge theory

- 4-pt correlator $\quad A\left(y_{i}\right)=\left\langle\mathcal{O}_{1}\left(y_{1}\right) \mathcal{O}_{2}\left(y_{2}\right) \mathcal{O}_{3}\left(y_{3}\right) \mathcal{O}_{4}\left(y_{4}\right)\right\rangle$
- CFT Regge limit

AdS scattering process

- After Sommerfeld-Watson transform in Mellin space exchange of operators in leading Regge trajectory $\Delta=\Delta(J)$

$$
M(s, t) \approx \int d \nu \beta(\nu) \omega_{\nu, j(\nu)}(t) s^{j(\nu)}
$$

Reggeon spin $J=j(\nu)$ defined by inverse function

$$
\nu^{2}+(\Delta(J)-2)^{2}=0
$$

Residue related to OPE coeffs

$$
\beta(\nu) \rightarrow C_{13 j(\nu)} C_{24 j(\nu)}
$$

N=4 Super Yang Mills

- Correlation functions that exchange vacuum quantum numbers are dominated in Regge limit by exchange of pomeron/graviton Regge trajectory (twist 2)

$$
\begin{aligned}
& \mathcal{O}_{1}=\mathcal{O}_{3}=\operatorname{tr}\left(\phi_{12} \phi^{12}\right) \\
& \mathcal{O}_{2}=\mathcal{O}_{4}=\operatorname{tr}\left(\phi_{34} \phi^{34}\right)
\end{aligned}
$$

$$
\mathcal{O}_{J}=\left\{\begin{array}{l}
\operatorname{tr}\left(F_{\mu \nu_{1}} D_{\nu_{2}} \ldots D_{\nu_{J-1}} F_{\nu_{J}}{ }^{\mu}\right) \\
\operatorname{tr}\left(\phi_{A B} D_{\nu_{1}} \ldots D_{\nu_{J}} \phi^{A B}\right) \\
\operatorname{tr}\left(\bar{\psi}_{A} D_{\nu_{1}} \ldots D_{\nu_{J-1}} \Gamma_{\mu_{J}} \psi^{A}\right)
\end{array}\right.
$$

- Weak coupling

- Strong coupling

Low- x QCD (DIS, DVCS \& VMP)

- Deep inelastic scattering

- At low- x

Effective Pomeron [Brower, Djuric, Sarcevic, Tan 10]

- BFKL pomeron is conformal, so it is particular case of conformal Regge theory. Use AdS model to fit data, therefore including strong coupling effects.

5min BREAK

Regge Kinematics in CFTs [Cornalba 07; Cornalba, MSC, Penedones 08,09]

- Consider correlator with EMG current and scalar operators in position space

$$
A\left(y_{i}\right)=\left\langle\mathcal{O}_{1}\left(y_{1}\right) \mathcal{O}_{2}\left(y_{2}\right) \mathcal{O}_{3}\left(y_{3}\right) \mathcal{O}_{4}\left(y_{4}\right)\right\rangle \quad \begin{array}{ll}
\mathcal{O}_{1}=\mathcal{O}_{3} \equiv j^{a} \\
\mathcal{O}_{2}=\mathcal{O}_{4}
\end{array}
$$

- Regge limit $y=\left(y^{+}, y^{-}, y_{\perp}\right)$

$$
\begin{array}{cl}
y_{1}^{+} \rightarrow-\infty & y_{2}^{-} \rightarrow-\infty \\
y_{3}^{+} \rightarrow+\infty & y_{4}^{-} \rightarrow+\infty \\
& y_{i}^{2}, y_{i \perp}^{2} \\
\text { fixed }
\end{array}
$$

- Use different Poincaré patches to cover each operator

- Conformal transformation for each operator

$$
\begin{array}{rr}
x_{i}=\left(x_{i}^{+}, x_{i}^{-}, x_{i \perp}\right)=-\frac{1}{y_{i}^{+}}\left(1, y_{i}^{2}, y_{i \perp}\right), & i=1,3 \\
x_{i}=\left(x_{i}^{+}, x_{i}^{-}, x_{i \perp}\right)=-\frac{1}{y_{i}^{-}}\left(1, y_{i}^{2}, y_{i \perp}\right), & i=2,4 \\
-d y^{+} d y^{-}+d y_{\perp}^{2}=\frac{1}{\left(x^{+}\right)^{2}}\left(-d x^{+} d x^{-}+d x_{\perp}^{2}\right)
\end{array}
$$

- In CFT Regge limit useful to consider correlator

$$
A\left(x_{i}\right)=\left\langle\mathcal{O}_{1}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right) \mathcal{O}_{1}\left(x_{3}\right) \mathcal{O}_{2}\left(x_{4}\right)\right\rangle
$$

$$
\text { Regge limit } x_{i} \rightarrow 0
$$

- Cross ratios

$$
\begin{aligned}
& x \approx x_{1}-x_{3} \\
& \bar{x} \approx x_{2}-x_{4}
\end{aligned}
$$

$$
\sigma^{2}=x^{2} \bar{x}^{2}, \quad \cosh \rho=-\frac{x \cdot \bar{x}}{|x||\bar{x}|}
$$

$$
A(x, \bar{x})=\frac{\mathcal{A}(\sigma, \rho)}{x^{2 \Delta_{1}} \bar{x}^{2 \Delta_{2}}}
$$

Regge limit $\quad \sigma \longrightarrow 0, \quad \rho$ fixed

Overview

- Where is AdS?
基
- Conformal (AdS) impact parameter representation [Cornalba, MSC, Penedones, Schiappa 06]

Bulk-boundary propagators for scalar field coupled to Reggeon

$$
T\left(k_{j}\right) \approx 2 i s \int d l_{\perp} e^{i q_{\perp} \cdot l_{\perp}} \int \frac{d r}{\int_{\text {idem for gauge field }}^{3}} \frac{d \bar{r}}{\bar{r}^{3}} \Psi(r) \Phi(\bar{r}) \mathcal{B}(S, L) \quad\left[1-e^{i \delta\left(s, l_{\perp}\right)}\right]
$$

$$
\begin{aligned}
& S=r \bar{r} s, \quad \text { AdS energy squared } \\
& L
\end{aligned}
$$

- Only used conformal symmetry
- Holography in Regge limit
$\mathrm{SO}(3,1)$ is H_{3} isometry group

AdS scattering process (Witten diagram)

Conformal Regge theory

- Correlators can be thought as S-matrix elements for AdS scattering.

Mellin amplitudes make analogy explicit (Feynman rules) [Mack 09; Penedones 10]

$$
\mathcal{A}(u, v)=\int_{-i \infty}^{i \infty} \frac{d t d s}{(4 \pi i)^{2}} M(s, t) u^{t / 2} v^{-(s+t) / 2} \times \text { product of } \Gamma \text { functions }
$$

- Can write partial wave expansion $\quad M(s, t)=\sum_{J=0}^{\infty} \int_{-\infty}^{\infty} d \nu b_{J}\left(\nu^{2}\right) M_{\nu, J}(s, t)$
- Exchange of operator of dimension Δ and spin J

$$
b_{J}\left(\nu^{2}\right) \approx C_{13 k} C_{24 k} \frac{K_{\Delta, J}}{\nu^{2}+(\Delta-2)^{2}}
$$

- Regge limit is again $s \gg t \quad M_{\nu, J}(s, t) \approx \omega_{\nu, J}(t) s^{J}$
- Sommerfeld-Watson transform in CFT

$$
M(s, t)=\sum_{J=0}^{\infty} \int_{-\infty}^{\infty} d \nu b_{J}\left(\nu^{2}\right) M_{\nu, J}(s, t)
$$

$$
b_{J}(\nu) \approx \frac{r(J)}{\nu^{2}+(\Delta(J)-2)^{2}} \approx-\frac{j^{\prime}(\nu) r(j(\nu))}{2 \nu(J-j(\nu))}
$$

Reggeon spin $J=j(\nu)$ defined by inverse function of $\Delta(J)$

$$
\nu^{2}+(\Delta(J)-2)^{2}=0
$$

Residue related to OPE coeffs

$$
r(J)=C_{13 J} C_{24 J} K_{\Delta(J), J}
$$

$$
M(s, t) \approx \int d \nu \beta(\nu) \omega_{\nu, j(\nu)}(t) s^{j(\nu)}
$$

Resume

$$
\uparrow s=-\left(p_{1}+p_{2}\right)^{2}
$$

$$
\begin{aligned}
& \tau(s, t)= \\
& =\sum_{J} \int d \mu a_{J}(\mu) \delta\left(\mu^{2}-t\right) P_{J}(\cos \theta)
\end{aligned}
$$

Strings in flat spacetime	CFT_{d} or Strings in AdS_{d+1}
Scattering amplitude $\mathcal{T}(s, t)$	Correlation function or Mellin amplitude $M(s, t)$
Partial wave expansion $\mathcal{T}(s, t)=\sum_{J} a_{J}(t) \underbrace{P_{J}(\cos \theta)}_{\text {partial wave }}$	Conformal partial wave expansion $M(s, t)=\sum_{J} \int d \nu b_{J}\left(\nu^{2}\right) \underbrace{M_{\nu, J}(s, t)}_{\text {partial wave }}$
On-shell poles $a_{J}(t) \sim \frac{C^{2}(J)}{t-m^{2}(J)}$	On-shell poles $b_{J}\left(\nu^{2}\right) \sim \frac{C^{2}(J)}{\nu^{2}+\left(\Delta(J)-\frac{d}{2}\right)^{2}}$
Leading Regge trajectory $m^{2}(J)=\frac{2}{\alpha^{\prime}}(J-2)$	Leading twist operators $\Delta(J)=d-2+J+\underbrace{\gamma\left(J, g^{2}\right)}_{\substack{\text { anomalous } \\ \text { dimension }}}$
Cubic couplings $C(J) \sim \sum_{m}$	3-pt functions or OPE coefficients $C(J) \sim$
Regge limit: $s \rightarrow \infty$ with fixed t $\begin{aligned} & P_{J}(\cos \theta) \approx\left(\frac{2 s}{t}\right)^{J} \\ & T(s, t) \approx \beta(t) s^{j(t)} \end{aligned}$	Regge limit: $s \rightarrow \infty$ with fixed t $\begin{gathered} M_{\nu, J}(s, t) \approx \omega_{\nu, J}(t) s^{J} \\ M(s, t) \approx \int d \nu \omega_{\nu, j(\nu)}(t) \beta(\nu) s^{j(\nu)} \end{gathered}$
Regge pole and residue $\begin{aligned} t-m^{2}(J) & =0 \Rightarrow J=j(t) \\ \beta(t) & \sim C^{2}(j(t)) \end{aligned}$	Regge pole and residue $\begin{gathered} \left(\Delta(J)-\frac{d}{2}\right)^{2}+\nu^{2}=0 \Rightarrow J=j(\nu) \\ \beta(\nu) \sim C^{2}(j(\nu)) \end{gathered}$

N=4 Super Yang Mills

- Correlation functions that exchange vacuum quantum numbers are dominated in Regge limit by exchange of pomeron/graviton Regge trajectory (twist 2)

$$
\begin{aligned}
& \mathcal{O}_{1}=\mathcal{O}_{3}=\operatorname{tr}\left(\phi_{12} \phi^{12}\right) \\
& \mathcal{O}_{2}=\mathcal{O}_{4}=\operatorname{tr}\left(\phi_{34} \phi^{34}\right)
\end{aligned}
$$

$$
\mathcal{O}_{J}=\left\{\begin{array}{l}
\operatorname{tr}\left(F_{\mu \nu_{1}} D_{\nu_{2}} \ldots D_{\nu_{J-1}} F_{\nu_{J}}{ }^{\mu}\right) \\
\operatorname{tr}\left(\phi_{A B} D_{\nu_{1}} \ldots D_{\nu_{J}} \phi^{A B}\right) \\
\operatorname{tr}\left(\bar{\psi}_{A} D_{\nu_{1}} \ldots D_{\nu_{J-1}} \Gamma_{\mu_{J}} \psi^{A}\right)
\end{array}\right.
$$

- Weak coupling

- Strong coupling

't Hooft coupling

$$
\begin{aligned}
\lambda & =g_{Y M}^{2} N \\
& =(4 \pi g)^{2}
\end{aligned}
$$

Reggeon spin \& dimension of twist 2 operators

$$
\Delta=\Delta(J) \quad \text { or } \quad J=j(\nu) \quad \Delta(j(\nu))=2+i \nu
$$

- Anomalous dimension (integrability)

$$
\gamma(J)=\Delta(J)-J-2=\sum_{n=1}^{\infty} g^{2 n} \gamma_{n}(J)
$$

- Spin of BFKL pomeron

$$
j(\nu)=1+\sum_{n=1}^{\infty} g^{2 n} j_{n}(\nu) \quad \Delta(j(\nu))=2+i \nu
$$

- Consider limit $j \rightarrow 1, g^{2} \rightarrow 0$ of $\frac{j(\nu)-1}{g^{2}}=\frac{-8}{i \nu-1}+\sum_{k=0}^{\infty} a_{k}(i \nu-1)^{k}$
- Inversion around $i \nu=1$ gives prediction for behaviour of $\Delta(J)$ around $J=1$ to arbitrary high order in coupling (wrapping [Bajnok et al 08]). From leading BFKL spin

$$
\Delta(J)-3=2\left(\frac{-4 g^{2}}{J-1}\right)+0\left(\frac{-4 g^{2}}{J-1}\right)^{2}+0\left(\frac{-4 g^{2}}{J-1}\right)^{3}-4 \zeta(3)\left(\frac{-4 g^{2}}{J-1}\right)^{4}+\cdots
$$

N=4 Super Yang Mills - OPE coefficients at weak coupling

- From known form of 4 pt correlation function at two loop obtain prediction for behaviour of OPE coefficients between external operators and operators in the leading Regge trajectory around $J=1$ to arbitrary high order in coupling

$$
\begin{aligned}
& \mathcal{O}_{1}=\mathcal{O}_{3}=\operatorname{tr}\left(\phi_{12} \phi^{12}\right) \\
& \mathcal{O}_{2}=\mathcal{O}_{4}=\operatorname{tr}\left(\phi_{34} \phi^{34}\right)
\end{aligned}
$$

Regge limit in position space

N=4 Super Yang Mills - OPE coefficients at weak coupling

- From known form of 4 pt correlation function at two loop obtain prediction for behaviour of OPE coefficients between external operators and operators in the leading Regge trajectory around $J=1$ to arbitrary high order in coupling

$$
\begin{aligned}
& \mathcal{O}_{1}=\mathcal{O}_{3}=\operatorname{tr}\left(\phi_{12} \phi^{12}\right) \\
& \mathcal{O}_{2}=\mathcal{O}_{4}=\operatorname{tr}\left(\phi_{34} \phi^{34}\right)
\end{aligned}
$$

$$
\begin{aligned}
C_{11 J} C_{22 J}= & g^{0}\left[(J-1) \frac{2}{3}+O(J-1)^{2}\right]+ \\
& g^{2}\left[\frac{64}{9}+O(J-1)\right]+ \\
& g^{4}\left[\frac{1}{\text { Free theory }}\right. \text { (Wick contra } \\
& \left.\frac{32}{27}\left(61-3 \pi^{2}\right)+O(J-1)^{0}\right]+
\end{aligned}
$$

N=4 Super Yang Mills - Reggeon spin at strong coupling

- Anomalous dimension of string states in leading Regge trajectory know up to next to next leading order [Basso 11; Gromov et al 11]

$$
x=J-2
$$

$$
\Delta(J)(\Delta(J)-4)=x\left[2 \sqrt{\lambda}+\left(-1+\frac{3 x}{2}\right)-\frac{3}{8}\left(-10+x(8 \zeta(3)-1)+x^{2}\right) \frac{1}{\sqrt{\lambda}}+\cdots\right]
$$

- Can invert, $\Delta(j(\nu))=2+i \nu$, to learn about behaviour of graviton Regge trajectory around $J=2$ to arbitrary high order in strong coupling expansion

$$
j(\nu)=2-\frac{4+\nu^{2}}{2 \sqrt{\lambda}}\left(1+\sum_{n=2}^{\infty} \frac{\tilde{j}_{n}\left(\nu^{2}\right)}{\lambda^{(n-1) / 2}}\right) \quad \begin{gathered}
\tilde{j}_{n}\left(\nu^{2}\right) \text { is a polynomial of degree } n-2 \\
\tilde{j}_{n}\left(\nu^{2}\right)=\sum_{k=0}^{n-2} c_{n, k} \nu^{2 k}
\end{gathered}
$$

$c_{2,0}=\frac{1}{2}, \quad c_{3,0}=-\frac{1}{8}, \quad c_{3,1}=\frac{3}{8}, \quad c_{4,1}=-\frac{3}{32}(8 \zeta(3)-7), \quad c_{5,2}=\frac{21}{64}, \quad c_{n, k}=0$ for $\left[\frac{n}{2}\right] \leq k \leq n-2$ with $n \geq 4$

- New prediction for the strong coupling expansion of intercept

$$
\begin{aligned}
j(0)= & 2-\frac{2}{\sqrt{\lambda}}\left(1+\frac{1}{2 \sqrt{\lambda}}-\frac{1}{8 \lambda}\right) \\
& +2\left(1-\zeta_{3}\right) \frac{1}{\lambda^{2}}
\end{aligned}
$$

[Kotikov and Lipatov 13]

N=4 Super Yang Mills - OPE coefficients at strong coupling

- Equating flat space limit of amplitude to Virasoro-Shapiro in Regge limit can make prediction for strong coupling OPE coefficients involving Lagrangian and operators in leading Regge trajectory

$$
C_{\mathcal{L L} J}=\frac{\pi^{\frac{3}{2}}}{3 N} \frac{(J-2)^{\frac{5+J}{2}}}{2^{1+J} \Gamma\left(\frac{J}{2}\right)} \lambda^{\frac{7}{4}} 2^{-\lambda^{1 / 4}} \sqrt{2(J-2)}
$$

Applications to low x physics in QCD

- Deep inelastic scattering (DIS)

- Optical theorem

- Hadronic tensor

$$
W^{a b}(x, Q, t)=i \int d^{4} y e^{i q \cdot y}\langle P| T\left\{j^{a}(y) j^{b}(0)\right\}\left|P^{\prime}\right\rangle
$$

$$
\begin{aligned}
s & =-(q+P)^{2} \\
Q^{2} & =q^{2}
\end{aligned}
$$

- Bjorken x

- Transverse resolution $1 / Q$

- Parton distribution functions $f_{i}\left(x, Q^{2}\right)$

Gluons dominate at small x

For $x \lesssim 10^{-2}$ much steeper x-dependence

$$
\sigma \sim x^{1-j_{0}}
$$

with a intercept

$$
\alpha(0)=j_{0} \sim 1.2-1.3
$$

One or two pomerons (soft and hard)? Is it the same Regge trajectory?

Hard Pomeron explains well data for DIS outside the confining region $Q \sim \Lambda_{Q C D}$ [Kowalski, Lipatov, Ross, Watt 10] Exponent is smaller in confining region (more like soft pomeron)

- Strong rise in $1 / x$, violating Froissart bound

$$
\sigma \lesssim m_{\pi}(\ln s)^{2}
$$

- Perturbation theory will break down, even for small coupling, because there will be gluon saturation at very low x .

DIS, DVCS \& VMP from AdS/CFT

- Hadronic tensor $\quad W=2 i s \int d^{2} l_{\perp} e^{i q_{\perp} \cdot l_{\perp}} \int \frac{d r}{r^{3}} \frac{d \bar{r}}{\bar{r}^{3}} \Psi(r) \Phi(\bar{r}) \mathcal{B}(S, L)$

AdS black disk and AdS pomeron
normalizable ($\bar{r} \sim 1 / M$), use delta function

- DIS

$\sigma(Q, x) \propto \operatorname{Im} W$ $(t=0)$
(structure function F_{2})
- DVCS \& VMP
Re

$$
\begin{aligned}
& \frac{d \sigma}{d t}(Q, x, t) \propto|W|^{2} \\
& \sigma_{t o t}(Q, x)
\end{aligned}
$$

AdS black disk model for saturation [Cornalba, MSC 08]

- Black disk in AdS (or in conformal QCD)

$$
\mathcal{B}(S, L)=\left[1-e^{i \chi(S, L)}\right]=\Theta\left(L_{s}(S)-L\right)
$$

Non-linear effects become important for $\operatorname{Im} \chi\left(S, L_{s}\right) \sim 1$. Both in weak coupling QCD and AdS gravi-Reggeon, this happens for

$$
L_{s}(S) \sim \omega \ln S
$$

- It is all AdS (or CFT) kinematics. Only dynamical information is the on-set of black disk region $\longrightarrow \omega\left(j_{0} \equiv 1+\omega\right.$ so $\left.\sigma \sim x^{-\omega}\right)$
- Target wave function
r_{*}; Normalization of current operator

- Data selection (171 points)

(i) Weak coupling

$$
Q>Q_{\min } \sim 1 \mathrm{GeV}
$$

(ii) Inside saturation

$$
\omega \ln \frac{Q}{x M} \gtrsim \ln \frac{Q}{M}
$$

(iii) Regge limit of large S

$$
\frac{Q}{x M} \gtrsim 10^{3}
$$

[Debbio et al; mostly Zeus \& Hera]

- Fit to data

- Matches data with 6\% accuracy in kinematical range

$$
0.5<Q^{2}<10 \mathrm{GeV}^{2}, \quad x<10^{-2}
$$

- Predict $\omega=0.15$. Compactible with geometric scaling ($\lambda=0.32$)

$$
\begin{aligned}
& \sigma=\sigma\left(\frac{Q}{Q_{s}}\right), \quad Q_{s}^{2}=M^{2} x^{-\lambda} \\
& \lambda=\frac{2 \omega}{1-\omega} \longrightarrow \omega=0.14
\end{aligned}
$$

- New prediction

$$
\frac{F_{L}}{F_{T}} \approx \frac{F_{2}-2 x F_{1}}{2 x F_{1}} \approx \frac{1+\omega}{3+\omega}
$$

DIS - AdS Pomeron (with hard wall) [Brower, Djuric, Sarcevic, Tan 10]

Four parameters: $g_{0}^{2}, j_{0}, \quad r_{*}, r_{0}$

HERA combined data by H 1 and ZEUS experiments [Aaron et al 10] with

$$
0.10<Q^{2}<400 \mathrm{GeV}^{2}, x<10^{-2}
$$

For hard wall model obtained excellent fit with (249 points)

$$
\begin{aligned}
& \chi_{\text {d.o.f. }}^{2}=1.07 \\
& j_{0}=1.22 \\
& r_{*}=2.31 \mathrm{GeV}^{-1} \\
& r_{0}=4.96 \mathrm{GeV}^{-1}
\end{aligned}
$$

DVSC (differential cross section) [MSC, Djuric 12]

All data (52 points)

$$
\chi_{d . o . f .}^{2}=0.51
$$

$$
\begin{aligned}
j_{0} & =1.29 \\
r_{*} & =3.35 \mathrm{GeV}^{-1} \\
r_{0} & =4.44 \mathrm{GeV}^{-1}
\end{aligned}
$$

All data (44 points)

$$
\chi_{\text {d.o.f. }}^{2}=1.03
$$

$$
\begin{aligned}
j_{0} & =1.19 \\
r_{*} & =4.86 \mathrm{GeV}^{-1} \\
r_{0} & =8.14 \mathrm{GeV}^{-1}
\end{aligned}
$$

VMP ($J / \Psi, \omega, \phi, \rho_{0}$) [MSC, Djuric, Evans to appear]

Concluding remarks \& future directions

- Constructed the formalism for Regge theories for CFT's or, equivalently, for scattering in AdS spaces.
- Explored consequences of Conformal Regge theory in N=4 SYM and gave many new predictions - useful data for program of solving theory exactly using integrability. Explore other trajectories, e.g. $\mathcal{O}_{J}=\operatorname{Tr}\left(Z D^{J} Z\right)$.
- In N=4 SYM can we derive spin of pomeron/graviton Regge trajectory using integrability for any value of the coupling (like Y-system for anomalous dimensions)?
- Pomeron exchange from strong coupling (AdS) computation matches data in very large kinematical range (for DIS, DVSC and VMP). Can we use AdS inspired IR cut-off to analise weak coupling BFKL?

- In a restricted kinematical window (inside saturation) DIS and DVSC show a black disk in AdS (or in conformal QCD).
- From DIS analysis, in confinement region of Q, effective intercept is decreasing (soft pomeron region). Is this evidence for a single pomeron?

$$
F_{2}\left(x, Q^{2}\right) \sim(1 / x)^{\epsilon_{e f f}}
$$

- Intercept: 1.2-1.4 (hard pomeron)
1.08 (soft pomeron)
- What about Regge slope? (0.25 for soft pomeron)
[Brower, Djuric, Sarcevic, Tan 10]

- One can interpolate between a CFT in UV and a confined gauge theory in IR where standard Regge theory applies. Can we understand better how conformal and standard Regge theories interpolate? (single Regge trajectory becomes infinite sequence of trajectories)
- Further model testing with other processes where pomeron plays a role (e. g. vector meson production [in progress], double diffractive Higgs production [Brower, Djuric, Tan 12], elastic hadronhadron scattering). What happens at lower x values? Is it an AdS black disk? Can we turn this approach into a precise phenomenological model?

THANK YOU

