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Motivation

• Regge theory gives important physical information in QCD 

Regge trajectory for isospin             even parity mesons. 

Chapter 1. Introduction

Figure 1.2: The Chew–Frautschi plot. Spin J of the isospin I = 1 even parity mesons against
their mass squared. (From reference [4])

String Theory was discovered forty years ago as an attempt to understand hadronic physics.

By that time, QCD and String Theory competed as models of the strong force. Of course, this

QCD/String dispute was decided long ago in favor of QCD. However, the modern viewpoint

replaces dispute by duality, and rephrases the main question: Is QCD a String Theory?

1.1 Hadronic Spectrum & Strings

Although the fundamental particles of QCD are quarks and gluons, the confinement mechanism

disallows their direct observation. Instead, the observed spectrum is characterized by a long

list of colorless bound states of the fundamental particles. Most of these bound states are

unstable and are found as resonances in scattering experiments. At the present day, we are still

unable to accurately predict the observed hadronic spectrum directly from the QCD dynamics1.

Nevertheless, from a phenomenological perspective, the hadronic spectrum has several inspiring

features.

In figure 1.2 we plot the spin J of the lighter mesons against their mass squared m2. The

result is well modeled by a linear Regge trajectory

J = α
(

m2
)

= α(0) + α′m2 ,

where α(0) and α′ are known as the intercept and the Regge slope, respectively. In fact, most

1See [2] and [3] and references therein for attempts using the lattice formulation of QCD and the AdS/CFT
correspondence.
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1.1. Hadronic Spectrum & Strings

Figure 1.3: Regge trajectory determined from the large energy (20–200 GeV ) behavior of the
differential cross section of the process π− + p → π0 + n. The straight line is obtained by
extrapolating the trajectory in figure 1.2. (From reference [4])

of the hadronic resonances fall on approximately linear Regge trajectories with slopes around

1(GeV )−2 and different intercepts. A linear relation between spin and mass squared suggests a

description of the bound states as string like objects rotating at relativistic speeds. Indeed, the

spin of a classical open string with tension T rotating as a straight line segment, with endpoints

traveling at the speed of light, is given by α′ = (2πT )−1 times its energy squared2.

A related stringy feature of QCD is the high energy behavior of scattering amplitudes.

Experimentally, at large center–of–mass energy
√

s, the hadronic scattering amplitudes show

Regge behavior

A(s, t) ∼ β(t)sα(t) ,

where t is the square of the momentum transferred. The appropriate Regge trajectory α(t)

that dominates a given scattering process is selected by the exchanged quantum numbers. For

example, the process

π− + p → π0 + n

is dominated by the exchange of isospin I = 1 even parity mesons, i. e. the Regge trajectory

in figure 1.2. In figure 1.3 we plot the Regge trajectory obtained from the behavior of the

differential cross section at large s. Elastic scattering is characterized by the exchange of the

vacuum quantum numbers. In this case the scattering amplitude is dominated by the Pomeron

2See section 2.1.3 of [5] for details.
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These mesons dominate exchange in
⇡� + p ! ⇡0 + n

s⇥ �t

intercept slope

A(s, t) ⇠ �(t) s↵(t)

↵(t) = ↵(0) + ↵0t

j0



• Trajectory that dominates a given process determined by exchanged quantum 
numbers. For elastic scattering these are the vacuum quantum numbers. 

(Evidence from lattice QCD that there are glueballs on this 
trajectory with            )

�P � 1.08 + 0.25 t (GeV units)

[Landshoff-Donnachie]

Chapter 1. Introduction

Figure 1.4: Total cross sections for elastic scattering at high energy. The cross sections rise
slowly due to pomeron exchange. (From reference [6])

trajectory[6, 4]

αP (t) ! 1, 08 + 0, 25 t , (GeV units) .

There is some evidence from lattice simulations that there are glueball states lying on this

trajectory starting from spin J = 2 [7, 8]. Furthermore, an even glueball state with spin 2

lying on the pomeron trajectory seems to have been found in experiments [9]. However, in real

QCD, glueball states mix with mesons and their identification is not clear [6]. An important

consequence of the pomeron intercept being larger than 1, is that hadrons effectively expand at

high energies. More precisely, the total cross section for elastic processes in QCD grows with

center–of–mass energy,

σ ∼ sαP (0)−1 ∼ s0.08 ,

as can be seen in figure 1.4. This expansion with energy reinforces the picture of hadrons as

stringlike objects. It is well known [10] that the average size of a fundamental string is given by

the divergent sum,

< R2 >∼ α′
∞
∑

n=1

1

n
,

coming from the contributions of zero point fluctuations of each string mode. However, in

a scattering experiment, only the modes with frequency smaller than the energy
√

s can be
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Soft Pomeron

J � 2

P

X

γ
e� e�

• Pomeron enters also in diffractive processes. For example DIS.

Hard Pomeron
[BFKL - Balitsky, Fadin, Kuraev & Lipatov]

In DIS much larger intercept is observed
j0 = 1.2� 1.4



Strings exhibit Regge behaviour

Basic idea & two goals

[Kotikov, Lipatov, Staudacher,Velizhanin 07]

(Connection with pomeron physics by BPST 2006)• Phenomenology of low x physics in QCD
[works with Cornalba, Penedones,Djuric; MSC, Djuric, Evans to appear]

Regge theory in CFT’s
[works with Cornalba, Penedones] 

[MSC, Penedones, Gonçalves 12] 

• Explore high energy scattering in the Regge limit in AdS/CFT context

• Obtain new information about anomalous dimensions and OPE coefficients in 
N=4 Super Yang-Mills, and also AdS graviton Regge trajectory



Regge theory in String Theory

• Virasoro-Shapiro S-matrix element
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• Amplitude contains poles for each physical 
exchange. The Regge behaviour can be obtained only 
from exchange of particles in leading Regge trajectory.
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• t-channel partial wave expansion T (s, t) =
�⇤

J=0

aJ(t) PJ

�
1 + 2

s

t

⇥
�

�s

t

⇥J

• Exchange of spin     field has pole at t = m2(J)J aJ(t) ⇥ r(J)
t�m2(J)

0 2 4 6

C

C'
• Analytically continue in     and pick leading pole from J

j(t) = 2 +
��t

2

T (s, t) � �(t)sj(t) aJ(t) ⇥ �j�(t) r(j(t))
J � j(t)

• Sum exchanges in leading 
Regge trajectory and 
Sommerfeld-Watson transform
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AdS/CFT duality

Strings in AdS (d+1 dimensions) Conformal Field Theory (d dimensions)

String fields Single trace operators

Tree level Planar level

Finite string length Finite ‘t Hooft coupling

N �⇥

ls =
�

�� ⇥ = g2
Y MN =

R4

��2

�1

�2

�3

�4

� O

gs ! 0

hO1(y1)O2(y2)O3(y3)O4(y4)i



Conformal Regge theory

• 4-pt correlator A(yi) = hO1(y1)O2(y2)O3(y3)O4(y4)i

• CFT Regge limit
y+y�

y1 y2

y3y4

AdS scattering process

Reggeon spin                  defined by inverse function J = j(�)

�2 + (�(J)� 2)2 = 0

�(⌫) ! C13j(⌫)C24j(⌫)

Residue related to OPE coeffs

• After Sommerfeld-Watson transform 
in Mellin space exchange of operators 
in leading Regge trajectory 

M(s, t) �
�

d⇥ �(⇥) ⇤�,j(�)(t) sj(�)

� = �(J)



N=4 Super Yang Mills

• Correlation functions that exchange vacuum quantum numbers are dominated 
in Regge limit by exchange of pomeron/graviton Regge trajectory (twist 2)

tr
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Low-    QCD (DIS, DVCS & VMP)

P

X

γ
e� e�

x

• Deep inelastic scattering x• At low-

P

⇠ Im

�

� ⇠ Im

• BFKL pomeron is conformal, so it is 
particular case of conformal Regge 
theory. Use AdS model to fit data, 
therefore including strong coupling 
effects.

[Brower, Djuric, Sarcevic, Tan 10]Effective Pomeron 

We can also ⇥t the data to `e�ect ive Pomerons', by ⇥xing Q2 , and then
⇥tt ing

F2(x,Q
2) � (1/x)�eff

By doing this we get the following

F igure: Q2-dependence for e�ect ive Pomeron intercept ,  P = 1 +  eff .

Djurić — Small-x AdS Deep Inelastic Scattering 30/37
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Regge Kinematics in CFTs

• Consider correlator with EMG current and scalar operators in position space   

• Regge limit y =
�
y+, y�, y⇥

⇥
y+y�

y1 y2

y3y4
y+
1 ⇥ �⇤

y+
3 � +⇥

y�2 ⇥ �⇤
y�4 � +⇥

y2
i , y2

i� fixed

[Cornalba 07; Cornalba, MSC, Penedones 08,09]

A(yi) = hO1(y1)O2(y2)O3(y3)O4(y4)i O1 = O3 ⌘ ja

O2 = O4



• Use different Poincaré patches to cover each operator

P4

P1 P2

P3

(b)

x

x1 x2

3x

(a)
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P4

P1 P2

P3



• Conformal transformation for each operator

i = 2, 4
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• In CFT Regge limit useful to consider correlator

Regge limitA(xi) = hO1(x1)O2(x2)O1(x3)O2(x4)i xi ! 0

• Cross ratios

x ⇥ x1 � x3

x̄ ⇥ x2 � x4
Regge limit ⇥ � 0 , � fixed

�

2
= x

2
x̄

2
, cosh ⇢ = � x · x̄

|x||x̄| A(x, x̄) =
A(�, ⇢)

x

2�1
x̄

2�2



Overview

y+y�
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C.T.

F.T. F.T.

• Where is AdS?

cosh L = � p · p̄

|p||p̄|

S = 4|p||p̄|
+� p

p̄
H3

L

A(x, x̄)A(yi)

T (ki) B(p, p̄)



�
1� ei�(s,l�)

⇥
idem for gauge field

,    AdS energy squared

,  impact parameter

R2
H3

S = rr̄s

cosh L =
r2 + r̄2 + l2�

2rr̄

r̄

l�
L

ds2(H3) =
dr2 + ds2(R2)

r2

r

Bulk-boundary propagators for 
scalar field coupled to Reggeon 

• Conformal (AdS) impact parameter representation [ Cornalba, MSC, Penedones, Schiappa 06]

T (kj) � 2is

�
dl⇥ eiq�·l�

�
dr

r3

dr̄

r̄3
⇥(r) �(r̄) B(S, L)

AdS scattering process
(Witten diagram)

• Holography in Regge limit
      SO(3,1) is        isometry groupH3

• Only used conformal symmetry



• Correlators can be thought as S-matrix elements for AdS scattering. 
Mellin amplitudes make analogy explicit (Feynman rules) 

Conformal Regge theory

[Mack 09; Penedones 10]

� product of � functionsA(u, v) =
� i⇥

�i⇥

dtds

(4�i)2
M(s, t) ut/2v�(s+t)/2

• Regge limit is again s� t M�,J(s, t) � ��,J(t)sJ

• Can write partial wave expansion M(s, t) =
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Residue related to OPE coeffs r(J) = C13JC24JK�(J),J

• Sommerfeld-Watson transform in CFT



Resume 
Strings in flat spacetime CFTd or Strings in AdSd+1

Scattering amplitude Correlation function or Mellin amplitude
T (s, t) M(s, t)

Partial wave expansion Conformal partial wave expansion
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N=4 Super Yang Mills

• Correlation functions that exchange vacuum quantum numbers are dominated 
in Regge limit by exchange of pomeron/graviton Regge trajectory (twist 2)
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Reggeon spin & dimension of twist 2 operators

j(�) = 2

g � 1
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• Anomalous dimension (integrability)

N=4 Super Yang Mills - anomalous dimension at weak coupling

�(J) = �(J)� J � 2 =
��
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• Spin of BFKL pomeron j(�) = 1 +
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[Kotikov et al 07]

• Inversion around            gives prediction for behaviour of           around          to 
arbitrary high order in coupling (wrapping                    ). From leading BFKL spin
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• From known form of 4pt correlation function at two loop obtain prediction for 
behaviour of OPE coefficients between external operators and operators in 
the leading Regge trajectory around          to arbitrary high order in coupling

N=4 Super Yang Mills - OPE coefficients at weak coupling

J = 1
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• From known form of 4pt correlation function at two loop obtain prediction for 
behaviour of OPE coefficients between external operators and operators in 
the leading Regge trajectory around          to arbitrary high order in coupling

N=4 Super Yang Mills - OPE coefficients at weak coupling

J = 1
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• Anomalous dimension of string states in leading Regge trajectory know up to 
next to next leading order [Basso 11; Gromov et al 11]

N=4 Super Yang Mills - Reggeon spin at strong coupling
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• Can invert,                         , to learn about behaviour of graviton Regge 
trajectory around           to arbitrary high order in strong coupling expansionJ = 2

             is a polynomial of degree 

�
�
j(⌫)

�
= 2 + i⌫

j(⌫) = 2� 4 + ⌫2

2
p
�

 
1 +

1X

n=2

j̃n(⌫2)

�(n�1)/2

!
n� 2j̃n(⌫

2)

j̃n(⌫
2) =

n�2X

k=0

cn,k⌫
2k

[Janik, work in progress]
c2,0 =

1

2
, c3,0 = �1

8
, c3,1 =

3

8
, c4,1 = � 3

32

�
8⇣(3)� 7

�
, c5,2 =

21

64
, cn,k = 0 for

hn
2

i
 k  n� 2 with n � 4



• New prediction for the strong coupling expansion of intercept
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• Equating flat space limit of amplitude to Virasoro-Shapiro in Regge limit can 
make prediction for strong coupling OPE coefficients involving Lagrangian and 
operators in leading Regge trajectory

N=4 Super Yang Mills - OPE coefficients at strong coupling

L
L

OJ

CLLJ =
⇥

3
2

3N

(J � 2)
5+J

2

21+J�
�

J
2

⇥ �
7
4 2��1/4

⇥
2(J�2)



Applications to low     physics in QCD

• Optical theorem
�

X
= Im

2

(t = 0)
X

P

γ γ

P

γ

P

P

X

γ
e� e�

• Hadronic tensor W ab(x, Q, t) = i

�
d4y eiq·y⇤P |T{ja(y) jb(0)}|P ⇥⌅

x

• Deep inelastic scattering (DIS)



s = � (q + P )2

s

q

P

• Bjorken

P

q

p

x

p = xP

• Transverse resolution 

1/Q

1/Q

P
γ

Q2 = q2

large     s xsmall�
s � Q2

x



• Parton distribution functions fi

�
x, Q2

⇥

One or two pomerons (soft and hard)? Is it the same Regge trajectory? 
Hard Pomeron explains well data for DIS outside the confining region Q � �QCD [Kowalski, Lipatov, Ross, Watt 10]
Exponent is smaller in confining region (more like soft pomeron)

Gluons dominate 
at small x

For                       much steeper     - dependencexx � 10�2

with a intercept 

�(0) = j0 ⇥ 1.2� 1.3

� ⇠ x

1�j0



R

1/Q

• Perturbation theory will break down, even for small coupling, because there 
will be gluon saturation at very low x.

• Strong rise in        , violating Froissart bound 1/x

� � m�

�
ln s)2



• DVCS & VMP

��
Q

P

d�

dt
(Q, x, t) � |W |2

�tot(Q, x)P

�, V

• Hadronic tensor W = 2is

�
d2l⇥ eiq�·l�

�
dr

r3

dr̄

r̄3
⇥(r) �(r̄) B(S, L)

DIS, DVCS & VMP from AdS/CFT

normalizable (                 ), use delta functionr̄ � 1/M

non-normalizable (                        ); 
if out-going photon on-shell (            )

0 < r < 1/Q
Q� � 0

L

Re
�
1� ei�

⇥

1

0.5

Ls(S)

AdS black disk
and

AdS pomeron

• DIS

��

P
(structure function     )

(t = 0)

Q

P

��
Q

�(Q, x) / ImW

F2



AdS black disk model for saturation [Cornalba, MSC 08]

• Target wave function                 ; Normalization of current operatorr� C

• Black disk in AdS (or in conformal QCD)
ln S

BB

Ls(S) � � lnS

L

S � Q

x⇤
1� ei�(S,L)

⌅
= �

�
Ls(S)� L

⇥

Ls(S) � � lnS

Im �(S, Ls) � 1Non-linear effects become important for                            . Both in 
weak coupling QCD and AdS gravi-Reggeon, this happens for 

B(S,L) =

• It is all AdS (or CFT) kinematics. Only dynamical information is the on-set of 
black disk region                      (                 so               )� � ⇠ x

�!j0 ⌘ 1 + !



Q/x

Q
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[Debbio et al; mostly Zeus & Hera]

(i)
(ii)

(iii)

(i) Weak coupling

(ii) Inside saturation

� ln
Q

xM
> ln

Q

M�

(iii) Regge limit of large S

Q

xM
> 103
�

• Data selection (171 points)

Q > Qmin � 1 GeV



Real Data
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• Fit to data

- Matches data with 6% 
accuracy in kinematical range

0.5 < Q

2
< 10 GeV2

, x < 10�2

- New prediction
FL

FT
⇡ F2 � 2xF1

2xF1
⇡ 1 + !

3 + !

- Predict                . Compactible
with geometric scaling (              )

� = �

✓
Q

Qs

◆
, Q

2
s = M

2
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��

� =
2!

1� !
! = 0.14
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� = 0.32



DIS - AdS Pomeron (with hard wall) [Brower, Djuric, Sarcevic, Tan 10]

P lots

F igure: Global �ts to the combined Z E US-H1 small-x data. Dot ted red lines are
for single conformal B PS T Pomeron and dotted blue lines are for single hard-wall
B PS T Pomeron.

Djurić — Small-x AdS Deep Inelastic Scattering 25/37

Four parameters: g20 , j0 , r⇤ , r0

HERA combined data by H1 and ZEUS 
experiments                           with[Aaron et al 10]

0.10 < Q2 < 400 GeV 2, x < 10�2

For hard wall model obtained excellent fit 
with (249 points)

�2
d.o.f. = 1.07

r⇥ = 2.31 GeV�1

r0 = 4.96 GeV�1

j0 = 1.22
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Figure 9: The fit of the hard-wall pomeron model to the data. The first five figures are for the
di�erential cross section data and the last one for the cross section. W is the center of mass energy
and we use units of GeV. To avoid cluttering the last figure we did not plot all of the Q2 values.
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�2
d.o.f. = 0.51

r⇥ = 3.35 GeV�1

r0 = 4.44 GeV�1

All data (52 points)

DVSC (differential cross section) [MSC, Djuric 12]

j0 = 1.29
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�2
d.o.f. = 1.03

r0 = 8.14 GeV�1

r⇥ = 4.86 GeV�1

DVSC (total cross section) [MSC, Djuric 12]

All data (44 points)

j0 = 1.19



VMP (                      ) [MSC, Djuric, Evans to appear]J/ , !, �, ⇢0



• Constructed the formalism for Regge theories for CFT’s or, equivalently, for scattering in AdS spaces.

Concluding remarks & future directions
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NLONNLO

j(0)

g

• In N=4 SYM can we derive spin of pomeron/graviton 
Regge trajectory using integrability for any value of the 
coupling (like Y-system for anomalous dimensions)?

• Pomeron exchange from strong coupling (AdS) 
computation matches data in very large kinematical 
range (for DIS, DVSC and VMP). Can we use AdS 
inspired IR cut-off to analise weak coupling BFKL? 

• In a restricted kinematical window (inside saturation) DIS and DVSC show a black disk in AdS 
(or in conformal QCD).

• Explored consequences of Conformal Regge theory in N=4 SYM and gave many new predictions - useful 
data for program of solving theory exactly using integrability. Explore other trajectories, e.g.                               .OJ = Tr

�
ZDJZ

�



• From DIS analysis, in confinement region of Q, 
effective intercept is decreasing (soft pomeron 
region). Is this evidence for a single pomeron?

We can also ⇥t the data to `e�ect ive Pomerons', by ⇥xing Q2 , and then
⇥tt ing

F2(x,Q
2) � (1/x)�eff

By doing this we get the following

F igure: Q2-dependence for e�ect ive Pomeron intercept ,  P = 1 +  eff .

Djurić — Small-x AdS Deep Inelastic Scattering 30/37

Effective Pomeron intercept 

F2(x, Q2) � (1/x)�eff

[Brower, Djuric, Sarcevic, Tan 10]

- Intercept: 1.2 - 1.4 (hard pomeron)
                  1.08 (soft pomeron)

- What about Regge slope? 
   (0.25 for soft pomeron)

• One can interpolate between a CFT in UV and a confined gauge theory in IR where standard Regge 
theory applies. Can we understand better how conformal and standard Regge theories interpolate? 
(single Regge trajectory becomes infinite sequence of trajectories) 

• Further model testing with other processes where pomeron plays a role (e. g. vector meson 
production [in progress], double diffractive Higgs production [Brower, Djuric, Tan 12], elastic hadron-
hadron scattering). What happens at lower x values? Is it an AdS black disk? Can we turn this approach 
into a precise phenomenological model?
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