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Understanding the universe is one of our
greatest dreams.

Quantum gravity Is another great dream.

Horava recently proposed a power-counting
renormalizable theory of gravitation.

Why don’t we apply Horava's theory to
cosmology?
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* Scalingdimof ¢ . Renormalizability
t >bt ( )

X =2 bx

* Gravity Is highly non-
1+3-2+2s =0 linear and thus non-
renormalizable
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 Anisotropic scaling

t > bt ) « Forz=3,
X 2> b X

are
z+3-2z+25 =0 renormalizable!
s = -(3-2)/2

* Gravity becomes
* renormalizable!?
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, renormalizable nonlinear theory
Il RG flow

, familiar Lorentz invariant theory

Note: we need a mechanism to make “limits of
speed” of different species to be the same.



Horava (2009)
Basic quantities:
lapse [/, shift I\', 3d spatial metric

ADM metric (emergent in the IR)
ds? = -N2dt? + g (dx' + N'dt)(dx! + 1Ndt)

Foliation-preserving deffeomorphism
t > '), x 2> X(t,x)

Ingredients in the action
Ndt Jgd°x 9 D, R
K;==—(6,9;,-DN;-D,N;)  (C=0In3d)



« Kinetic terms (2" time derivative)

| Ndt/gd*x (K K" - 2K?)

potential terms (6™ spatial derivative)
det\Fd x| DR,D'R* DRDR
RRIR, RR/R}  R® ]

c.f. DR;D'R¥ is written in terms of other terms



« z=2 potential terms (4" spatial derivative)
|Ndt/gd’x[ R'R}  R® ]

« z=1 potential term (2"9 spatial derivative)

| Ndt/gd*x[ R ]

« 7=0 potential term (no derivative)

Ith\Ed?’x[ 1 |



, renormalizable quantum gravity
1L RG flow

recovers familiar GR iff L 2 1

kinetic term

AN
4 A

| Ndt/gd*x (K K" - AK? + R - 2A

167zG

note: RG flow has not yet been investigated.



Minkowski + perturbation
N=1,N"=0,g;=9+h;
Residual guage freedom =
time-independent spatial diffeo.

Momentum constraint
0,0, Hij = Hij = hij —/lhé}j

Fix the residual guage freedom by setting
ai Hij =0 at some fixed time surface.

Decompose H; into trace and traceless parts
part :2d.o.f. (usual tensor graviton)
Trace part . 1 d.o.f. (scalar graviton)
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* Inthe limit A - 1, the scalar graviton H
becomes pure gauge. So, it decouples.

* However, its kinetic term will vanish
3 iy, A1 2
L jdtd X|:(atHij) "‘2(3/1_1) (0H) }
and may have strong self-coupling.
* This is not a problem if there is no vDVZ
discontinuity or if there is Vainshtein effect,

since HL gravity Is supposed to be UV
complete. More on related issue later.




Infinitesimal tr. 8t = f(t), dx' = i(t,x)
5gij — 8ié/kgjk +aj§kgik +§kakgij T 1:gij
SN, =0.¢'N, +¢ 0N, + &g, + N, + N,
SN ='0.N + fN + N

Space-independent N cannot be transformed to
space-dependent N.

N Is the gauge field associated with the time
reparametrization.

It IS natural to restrict
Consequencely,



* Imposing local Hamiltonian constraint would
result in theoretical inconsistencies and
phenomenological obstacles.

» “Strong coupling in Horava gravity”
by C.Charmousis, et.al., arXiv:0905.2579
“A trouble with Horava-Lifshitz gravity”
oy M.LiI and Y.Pang, arXiv:0905.2751

* Those problems disappear once we notice
that there Is no local Hamiltonian constraint.
(c.f. section 5 of arXiv:0905.3563)




It IS Interesting to investigate cosmological
iImplications, in parallel with fundamental issues such
as renormalizability and RG flow.

Higher curvature terms lead to
(Calcagni 2009, Brandenberger 2009).

Higher curvature terms (1/a®, 1/a*) might make the
(Kiritsis&Kofinas 2009).

The z=3 scaling leads to scale-invariant cosmological
perturbations in non-inflationary epoch (Mukohyama
2009).

Absence of local Hamiltonian constraint leads to
CDM as integration “constant” (Mukohyama 2009).



Scale-invariant cosmological
perturbations from Horava-
Lifshitz gravity without inflation

arXiv:0904.2190 [hep-th]



e ?>>H?2: oscillate
m? << H? : freeze

»? =k?/a? leads to d?a/dt? > O
Generation of super-horizon fluctuations requires
accelerated expansion, I.e. inflation.

« Scaling law
t 2bt ( )

x > b x )

Scale-invariance requires almost const. H, i.e.
Inflation.




®® =M-+k%/a® leads to d?(a3)/dt> > O
OK for a~tP with p > 1/3

« Scaling law
t 2 b3t ( )

X =2 b X
—)

Scale-invariant fluctuations!
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Dark matter as integration constant
In Horava-Lifshitz gravity

arXiv:0905.3563 [hep-th]



* 4D diffeomorphism -
4 constraints = 1 Hamiltonian + 3 momentum

« Constraints are preserved by dynamical
equations.

* \WWe can solve dynamical equations, provided
that constraints are satisfied at initial time.



Foliation-preserving diffeomorphism

= 3D spatial diffeormorphism
+

3 local constraints + 1 global constraint

= 3 momentum @ each time @ each point
_|_

Constraints are preserved by dynamical
equations.

We can solve dynamical equations, provided
that constraints are satisfied at initial time.
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 Looks like GR Iff A = 1. S0, we assume that
A =11Is an IR fixed point of RG flow.

/de\/_ D - Agp) — 8nGNT,,)n"n" =0

n,dxt = —Ndt, n"0, = O, — N'0;)

1

v

 Momentum constraint & dynamical eg
(G + Aglh — 8nGNTy,)n* = 0

G + Ag(4) 87TGNTZ‘J' =0



Def. TH-,, G + A = 8nGy (T, + T1F)

174

General solution to the momentum
constraint and dynamical eq.

TﬂL = p'tn,n, n*V,n,=0
Global Hamiltonian constraint

/d?’af;\/ﬁpHL =\

Bianchi identity = (non-)conservation eq

O p7t + Kptt = n“V*1,,



» Overall behavior of smooth T = pftn n is
like pressueless dust.

(cf. early universe bounce [Calcagni
2009, Brandenberger 2009])

* Group of microscopic lumps with collisions and
bounces = When coarse-grained, can it mimic
a cluster of particles with velocity dispersion?

* Dispersion relation of matter fields defined in
the rest frame of “dark matter” = Any
astrophysical implications at collisions & cusps?



Horava-Lifshitz gravity is power-counting
renormalizable and can be a candidate theory
of quantum gravity.

While there are many fundamental issues to
be addressed, It Is Interesting to investigate
cosmological implications.

The z=3 scaling leads to scale-invariant
cosmological perturbations for a~tP with p>1/3.

The lack of local Hamiltonian constraint leads




Renormalizability beyond power-counting
RG flow: iIs A =1 an IR fixed point ?

Embedding into an unified theory : can we get a
common “limit of speed” ?

Are there vDVZ discontinuity and Vainshtein effect?
Unlike massive gravity case, Vainshtein effect can
be trusted because of “UV completeness”.

(work In progress with K.Izumi and K.Takahashi)

How to setup initial condition for “dark matter”?
Spectral tilt from anomalous dimension?
Can we solve the flatness problem without inflation?

There are many things to do!



Spare slides
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FRW background with H >> M
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Normalized mode function

ik-2
€ ~1/27.—3/2 k* dn
Qﬁg—(gﬂ)SXQ /2 /Mexp( %MQ/ )

for axt?’, p>1/3

oo ) too dt
/ a =/ £ converges

a? a’

Power spectrum

a}f = \/ﬁ‘ 2’”)3‘3519‘ = g



ds? = - dt? + a?(t) (dx? + dy? + dz?)

Approximates overall behavior of our patch

of the universe inside the Hubble horlzon

Hamiltonian constraint 3"’_2 — 87TGNZ/0®

- Friedmann eq a®
E.o.m. of matter
-> conservation eq.
-2

[?ynam_mal eg L a_2 _ 87TGNZPz‘
IS not independent a a -

but follows from the above n+1 eqQs.

pz_|_3 (pz"_P) 0



* Approximates overall behavior of our patch
of the universe inside the Hubble horizon.

* No “local” Hamiltonian constraint

E.o.m. of matter
-> conservation eq.

* Dynamical eq L a* 8WGN§:B
can be integrated to give a @’ i=1
Friedmann eq with ) " ~
“dark matter as 3— = 81Gy (Z pi + )
integration constant” '

)



 General solution to the momentum
constraint and dynamical eq.

G+ Aglh) + O(N—1)

urv ur

+ (higher curvature corrections)
= 87TGN (T,Lw + pHLnun,,)
* Global Hamiltonian constraint

/d?’a:\/ﬁpHL =0
* Bianchi identity - (non-)conservation eq
6J_pHL 4+ KpHL _ nuv,uT'uy + O(A N 1)

+ (higher curvature corrections)



Black holes with N=N(t)?

« Schwarzschild BH in PG coordinate

2
ds® = —dt? + (dr +, /z—mdtpj +r’dQ’  exact sol
r
forr=1

« Gaussian normal coordinate

2 2 approx sol
as __dtG+"° fora=1

 emaitre reference frame
Doran coordinate

* Relativistic starwith A >1 and A 2 1
work In progress with K.lzumi and K.Takahashi




