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• Understanding the universe is one of our 

greatest dreams.

• Quantum gravity is another great dream.

• Horava recently proposed a power-counting 

renormalizable theory of gravitation.

• Why don’t we apply Horava’s theory to 

cosmology?



Power counting

• Scaling dim of f
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• Renormalizability

• Gravity is highly non-

linear and thus non-

renormalizable



Abandon Lorentz symmetry?
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• Anisotropic scaling

t   bz t (Eb-zE)

x  b x

f bs f

z+3-2z+2s = 0

s = -(3-z)/2

• s = 0 if z = 3

( 3 )/

3

s z

n

z n

d x

E

td f

  



• For z = 3, any 

nonlinear 

interactions are 

renormalizable!

• Gravity becomes 

renormalizable!?



Scalar with z=3 

UV: z=3 IR: z=1

• UV: z=3 , renormalizable nonlinear theory

RG flow

• IR: z=1 , familiar Lorentz invariant theory
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Note: we need a mechanism to make “limits of 

speed” of different species to be the same.



Horava-Lifshitz gravity

• Basic quantities:

lapse N, shift Ni, 3d spatial metric gij

• ADM metric (emergent in the IR)

ds2 = -N2dt2 + gij (dxi + Nidt)(dxj + Njdt)

• Foliation-preserving deffeomorphism

t  t’(t),   xi
 x’i(t,xj)

• Ingredients in the action

Horava (2009)
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UV action with z=3

• Kinetic terms (2nd time derivative)

c.f.   = 1 for GR

• z=3 potential terms (6th spatial derivative)

c.f. DiRjiD
jRki is written in terms of other terms
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Relevant deformations

• z=2 potential terms (4th spatial derivative)

• z=1 potential term (2nd spatial derivative)

• z=0 potential term (no derivative)
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• UV: z=3 , renormalizable quantum gravity

RG flow

• IR: z=1 , recovers familiar GR iff  1

note: RG flow has not yet been investigated.

IR potential
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IR action with z=1

kinetic term



Propagating d.o.f.
• Minkowski + perturbation

N = 1, Ni = 0, gij = dij + hij

• Residual guage freedom = 

time-independent spatial diffeo.

• Momentum constraint

• Fix the residual guage freedom by setting

at some fixed time surface.

• Decompose Hij into trace and traceless parts

TT part      : 2 d.o.f. (usual tensor graviton)

Trace part : 1 d.o.f. (scalar graviton)
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Scalar graviton and  1

• In the limit  1, the scalar graviton H 
becomes pure gauge. So, it decouples.

• However, its kinetic term will vanish

and may have strong self-coupling.

• This is not a problem if there is no vDVZ 
discontinuity or if there is Vainshtein effect, 
since HL gravity is supposed to be UV 
complete. More on related issue later.
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Projectability condition
• Infinitesimal tr. dt = f(t), dxi = zi(t,xj)

• Space-independent N cannot be transformed to 

space-dependent N.

• N is the gauge field associated with the time 

reparametrization.

• It is natural to restrict N to be space-independent.

• Consequencely, Hamiltonian constraint is an 

equation integrated over a whole space.
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Note

• Imposing local Hamiltonian constraint would 

result in theoretical inconsistencies and 

phenomenological obstacles.

• “Strong coupling in Horava gravity”

by C.Charmousis, et.al., arXiv:0905.2579

“A trouble with Horava-Lifshitz gravity”

by M.Li and Y.Pang, arXiv:0905.2751

• Those problems disappear once we notice 

that there is no local Hamiltonian constraint.

(c.f. section 5 of arXiv:0905.3563)



Horava-Lifshitz cosmology

• It is interesting to investigate cosmological 
implications, in parallel with fundamental issues such 
as renormalizability and RG flow.

• Higher curvature terms lead to regular bounce
(Calcagni 2009, Brandenberger 2009).

• Higher curvature terms (1/a6, 1/a4) might make the 
flatness problem milder (Kiritsis&Kofinas 2009).

• The z=3 scaling leads to scale-invariant cosmological 
perturbations in non-inflationary epoch (Mukohyama 
2009).

• Absence of local Hamiltonian constraint leads to 
CDM as integration “constant” (Mukohyama 2009).



Scale-invariant cosmological 

perturbations from Horava-

Lifshitz gravity without inflation

arXiv:0904.2190 [hep-th]



Usual story with z=1

• w2 >> H2 : oscillate

w2 << H2 : freeze
oscillation  freeze-out  iff d(H2/ w2)/t > 0
w2 =k2/a2 leads to d2a/dt2 > 0
Generation of super-horizon fluctuations requires 
accelerated expansion, i.e. inflation.

• Scaling law 
t   b t  (E  b-1E)
x  b x
f b-1 f
Scale-invariance requires almost const. H, i.e. 
inflation.

~E Hdf 



UV fixed point with z=3

• oscillation  freeze-out  iff d(H2/ w2)/t > 0

w2 =M-4k6/a6 leads to d2(a3)/dt2 > 0

OK for a~tp with p > 1/3

• Scaling law 

t   b3 t  (E  b-3E)

x  b x

f b0 f

Scale-invariant fluctuations!

0 0~E Hdf 



ln L

ln a
H >> M H << M

Horizon exit and re-entry

pa t
1/3 < p < 1



ln L

ln a
H >> M H << M

Horizon exit and re-entry

pa t
1/3 < p < 1



Dark matter as integration constant 

in Horava-Lifshitz gravity

arXiv:0905.3563 [hep-th]



Structure of GR

• 4D diffeomorphism  

4 constraints = 1 Hamiltonian + 3 momentum

@ each time @ each point

• Constraints are preserved by dynamical 

equations.

• We can solve dynamical equations, provided 

that constraints are satisfied at initial time.



Structure of HL gravity

• Foliation-preserving diffeomorphism

= 3D spatial diffeormorphism

+ space-independent time reparametrization

• 3 local constraints + 1 global constraint

= 3 momentum  @ each time @ each point

+ 1 Hamiltonian @ each time      integrated

• Constraints are preserved by dynamical 

equations.

• We can solve dynamical equations, provided 

that constraints are satisfied at initial time.



IR limit of HL gravity

• Looks like GR iff  = 1. So, we assume that 

 = 1 is an IR fixed point of RG flow.

• Global Hamiltonian constraint

• Momentum constraint & dynamical eq
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Dark matter as integration constant

• Def. THL
mn

• General solution to the momentum 

constraint and dynamical eq.

• Global Hamiltonian constraint

rHL can be positive everywhere in our 

patch of the universe inside the horizon.

• Bianchi identity  (non-)conservation eq



Micro to Macro
• Overall behavior of smooth THL

mn = rHLnmnn is 

like pressueless dust.

• Microscopic lumps of rHL can collide and 

bounce. (cf. early universe bounce [Calcagni 

2009, Brandenberger 2009])

• Group of microscopic lumps with collisions and 

bounces  When coarse-grained, can it mimic 

a cluster of particles with velocity dispersion?

• Dispersion relation of matter fields defined in 

the rest frame of “dark matter”  Any 

astrophysical implications at collisions & cusps?



Summary

• Horava-Lifshitz gravity is power-counting 

renormalizable and can be a candidate theory 

of quantum gravity.

• While there are many fundamental issues to 

be addressed, it is interesting to investigate 

cosmological implications. 

• The z=3 scaling leads to scale-invariant 

cosmological perturbations for a~tp with p>1/3.

• The lack of local Hamiltonian constraint leads

to “dark matter” as an integration constant.



Open problems
• Renormalizability beyond power-counting

• RG flow: is  = 1 an IR fixed point ? 

• Embedding into an unified theory : can we get a 
common “limit of speed” ?

• Are there vDVZ discontinuity and Vainshtein effect?
Unlike massive gravity case, Vainshtein effect can 
be trusted because of “UV completeness”. 
(work in progress with K.Izumi and K.Takahashi)

• How to setup initial condition for “dark matter”?

• Spectral tilt from anomalous dimension?

• Can we solve the flatness problem without inflation?

• …

• There are many things to do!



Spare slides



A free scalar field (I)

UV: z=3 IR: z=1

FRW background with H >> M



A free scalar field (II)

Normalized mode function

converges

for

initially oscillates and freezes @ w2~H2

independent of H and scale-invariant!

Power spectrum

k
f



FRW spacetime in GR
• ds2 = - dt2 + a2(t) (dx2 + dy2 + dz2)

• Approximates overall behavior of our patch 

of the universe inside the Hubble horizon.

• Hamiltonian constraint

 Friedmann eq 

E.o.m. of matter

 conservation eq.

• Dynamical eq 

is not independent

but follows from the above n+1 eqs.



FRW spacetime in HL gravity
• Approximates overall behavior of our patch 

of the universe inside the Hubble horizon.

• No “local” Hamiltonian constraint

E.o.m. of matter

 conservation eq.

• Dynamical eq

can be integrated to give

Friedmann eq with

“dark matter as

integration constant”



More general case
• General solution to the momentum 

constraint and dynamical eq. 

• Global Hamiltonian constraint

• Bianchi identity  (non-)conservation eq



Black holes with N=N(t)?
• Schwarzschild BH in PG coordinate

• Gaussian normal coordinate

Lemaitre reference frame

Doran coordinate

• Relativistic star with  >1 and  1

work in progress with K.Izumi and K.Takahashi

2

2 2 2 22
P P

m
ds dt dr dt r d

r

 
      

 

2 2

Gds dt  

exact sol

for  = 1

approx sol

for  = 1


