Cosmological Connection at the LHC

Stau Neutralino Co-annhilation Case

R. Arnowitt, B. Dutta, A. Gurrola, <u>T. Kamon, A. Krislock, D. Toback</u> Department of Physics, Texas A&M University "Facing the LHC Data" Institute for Physics and Mathematics of the Universe The University of Tokyo, Japan December 17-21, 2007

OUTLINE

Dark Matter (DM) in Universe DM Particle in SUSY Cosmological Connection (CC) at the LHC and Ωh² [Co-annihilation (CA) Case] Summary

Arnowitt, Dutta, Kamon, Kolev, Toback, PLB 639 (2006) 46 Arnowitt, Arusano, Dutta, Kamon, Kolev, Simeon, Toback, Wagner, PLB 649 (2007) 73 Arnowitt, Dutta, Gurrola, Kamon, Krislock, Toback, in preparation w

LA LANK & DES CAR

Dark Matter (DM) in Universe splitting normal matter and dark matter apart

- Another Clear Evidence of Dark Matter -

(8/21/06)

Ordinary Matter (NASA's Chandra X Observatory)

Dark Matter (Gravitational Lensing) Approximately the same size as the Milky Way

DM Particle

Cosmological Connection at the LHC: Stau Neutralino Coannihilation Case

12/17/07

DM Particle

Cosmological Connection at the LHC: Stau Neutralino Coannihilation Case

12/17/07

DM Particle in SUSY

 $\frac{\Omega_{\widetilde{\chi}_1^0}}{0.23}h^2 \sim \int_0^{x_f} \frac{1}{\langle \sigma_{ann} v \rangle} dx$

 $\frac{\langle \sigma_{ann} v \rangle}{0.9 \text{ pb}} = \frac{\pi \alpha^2}{8M^2}$

strophysi

SUSY

Dark Energy

73%

Cold

SUSY is an interesting class of models to provide a weakly interacting massive neutral particle ($M \sim 100$ GeV).

Cosmological Connection (CC) at the LHC and Qh²

Anatomy of σ_{ann}

An accidental near degeneracy occurs naturally for light stau in mSUGRA.

Cosmological Connection at the LHC: Stau Neutralino Coannihilation Case

 $\underbrace{\Omega_{\widetilde{\chi_1^0}}}_{\chi_1^{\infty}}h^2 \sim \int_0^{\chi_1^{\infty}} \frac{1}{\langle \sigma_{ann} v \rangle} dx$

Minimal Supergravity (mSUGRA)

	4 parameters + 1 sign
<i>m</i> _{1/2}	Common gaugino mass at M _G
m ₀	Common scalar mass at M _G
A ₀	Trilinear coupling at M _G
tan <i>β</i>	$< H_u > / < H_d >$ at the electroweak scale
$sign(\mu)$	Sign of Higgs mixing parameter $(W^{(2)} = \mu H_u H_d)$

Experimental Constraints

- i. $M_{\text{Higgs}} > 114 \text{ GeV}$ $M_{\text{chargino}} > 104 \text{ GeV}$
- ii. $2.2 \times 10^{-4} < Br \ (b \rightarrow s \ \gamma) < 4.5 \times 10^{-4}$
- iii. $0.094 < \Omega_{\tilde{\chi}_1^0} h^2 < 0.129$
- iv. $(g-2)_{\mu}$ [~3 σ deviation from the SM calculation]

DM Allowed Regions

Below is the case of mSUGRA model. However, the results can be generalized.

Stau Neutralino Coannihilation Case

CA Regions - Illustration

CA Region at $tan\beta = 40$

Can we measure ΔM at colliders?

CC at the LHC

Excess in E_T^{miss} + Jets

□ Excess in ETmiss + Jets → R-parity conserving SUSY
 □ M_{eff} → Measurement of the SUSY scale at 10-20%.

Hinchliffe and Paige, Phys. Rev. D 55 (1997) 5520

$$E_T^{j1} > 100 \text{ GeV}, \quad E_T^{j2,3,4} > 50 \text{ GeV}$$

$$M_{eff} > 400 \text{ GeV } (M_{eff} \equiv E_T^{j1} + E_T^{j2} + E_T^{j3} + E_T^{j4} + E_T^{miss})$$

➢ E_T^{miss} > max [100, 0.2 M_{eff}]

The heavy SUSY particle mass is measured by combining the final state particles

HM1: High Mass Scenario 1

 $m_{1/2}$ = 250, m_0 = 60; σ = 45 fb

M(gluino) = 1886; M(squark) = 1721

Dilepton Endpoint

- □ DM content → Measurements of the SUSY masses [e.g., M.M. Nojiri, G. Polesselo, D.R. Tovey, JHEP 0603 (2006) 063]
 - Dilepton "edge" in the χ_2^0 decay in dilepton (*ee*, $\mu\mu$, $\tau\tau$) channels for reconstruction of decay chain.

Dilepton Endpoint in CA Region

□ In the CA region, however, the *ee* and $\mu\mu$ channels are almost absent. We are in a different game:

Br($\chi_2^0 \rightarrow ee, \mu\mu$) ~ 0% Br($\chi_2^0 \rightarrow \tau\tau$) ~ 100% $\Delta M = 5-15 \text{ GeV}$

Questions:

- (1) How can we establish the dark matter allowed regions?
- (2) To what accuracy can we calculate the relic density based on the measurements at the LHC?

Our Reference Point

$m_{1/2} = 351, m_0 = 210, \tan\beta = 40, \mu > 0, A_0 = 0$ [ISAJET version 7.69]

TABLE I: Masses (in GeV) of SUSY particles for our reference point $m_{1/2} = 351$ GeV, $m_0 = 210$ GeV, $\tan \beta = 40$, $\mu > 0$, and $A_0 = 0$. We use **ISAJET** v7.69 The \tilde{q}_L and \tilde{q}_R masses are represented by the \tilde{u}_L and \tilde{u}_R masses. $\Delta M = 10.6$ GeV.

$ ilde{g}$	$egin{array}{c} { ilde q}_L \ { ilde q}_R \end{array}$	${ ilde t}_2 { ilde t}_1$	${ar b_2 \ ilde b_1}$	${ ilde e_L} { ilde e_R}$	$rac{ ilde{ au}_2}{ ilde{ au}_1}$	$ ilde{\chi}^0_2$	$ ilde{\chi}_1^0$
831	$748 \\ 725$	728 561	705 645	319_{251}	329 151-3	260.3	140.7
	140	100	040	20 I	191.9		

Smoking Gun of CA Region

SUSY Anatomy

Warming-up Quizzes

- I. Hadronic or leptonic?
 - > Hadronic, because e or μ does not tell us the evidence of tau leptons
- **II.** How low in $p_{\rm T}$?
 - > CDF : $p_{\rm T}^{\rm vis} > 15-20 \, {\rm GeV}$
- **III. Worries about triggers?**
 - \succ $E_{\rm T}^{\rm miss}$ + jet trigger for SUSY
 - Lepton+tau trigger for Z's (calibration)

[Assumption] $\varepsilon_{\tau} = 50\%$, fake rate 1%

We choose the peak position as an observable.

OS-LS Slope(**P**_T^{soft})

ΔM Dependence of Slope(P_T^{soft})

We can still see the dependence of the P_T slope on ΔM using OS–LS method.

12/17/07

Stau Neutralino Coannihilation Case

12/17/07

28

SUSY Anatomy

M_{jtt} Distribution

M_{jtt} Distribution

Stau Neutralino Coannihilation Case

$M_{i\tau\tau}^{peak}$ vs. X

Determining SUSY Masses (10 fb⁻¹)

5th observable $(M_{i\tau})$

is not ready for this

talk. We assume:

 $\widetilde{q}_I = 0.9 \cdot \widetilde{g}$

once the $M_{i\tau}$ study

be

assumption

removed

[This

is ready.]

will

4 observables defined as functions of 5 masses $N_{OS-LS} = f(\tilde{g}, \tilde{q}_L, \Delta M, \tilde{\chi}_2^0, \tilde{\chi}_1^0)$ $M_{\tau\tau}^{peak} = h(\tilde{g}, \Delta M, \tilde{\chi}_2^0, \tilde{\chi}_1^0)$ $Slope = w(\tilde{g}, \Delta M, \tilde{\chi}_2^0, \tilde{\chi}_1^0)$ $M_{j\tau\tau}^{peak} = y(\tilde{g}, \tilde{q}_L, \Delta M, \tilde{\chi}_2^0, \tilde{\chi}_1^0)$ Invert the equations to determine the masses as functions

of the observables

$$\widetilde{g} = f'(N_{OS-LS}, M_{\tau\tau}^{peak}, Slope, M_{j\tau\tau}^{peak})$$

$$\widetilde{q}_{L} = 0.9 \cdot \widetilde{g}$$

$$\Delta M = h'(N_{OS-LS}, M_{\tau\tau}^{peak}, Slope, M_{j\tau\tau}^{peak})$$

$$\widetilde{\chi}_{2}^{0} = w'(N_{OS-LS}, M_{\tau\tau}^{peak}, Slope, M_{j\tau\tau}^{peak})$$

$$\widetilde{\chi}_{1}^{0} = y'(N_{OS-LS}, M_{\tau\tau}^{peak}, Slope, M_{j\tau\tau}^{peak})$$

Gaugino Universality (10 fb⁻¹)

We test a gaugino univesality.

SUSY Anatomy

M_{eff} **Distribution**

> $E_T^{j_1} > 100 \text{ GeV}$, $E_T^{j_2,3,4} > 50 \text{ GeV}$ [No ε 's, μ 's with $P_T > 20 \text{ GeV}$] > $M_{eff} > 400 \text{ GeV}$ ($M_{eff} \equiv E_T^{j_1} + E_T^{j_2} + E_T^{j_3} + E_T^{j_4} + E_T^{miss}$ [No *b* jets; $\varepsilon_b \sim 50\%$]) > $E_T^{miss} > max$ [100, 0.2 M_{eff}]

M_{eff}^{peak} vs X

M_{eff}^{peak} Very insensitive to A_0 and $tan\beta$.

M_{eff}^(b) Distribution

> $E_T^{j1} > 100 \text{ GeV}$, $E_T^{j2,3,4} > 50 \text{ GeV}$ [No ε 's, μ 's with $P_T > 20 \text{ GeV}$] > $M_{eff}^{(b)} > 400 \text{ GeV}$ ($M_{eff}^{(b)} \equiv E_T^{j1=b} + E_T^{j2} + E_T^{j3} + E_T^{j4} + E_T^{miss}$ [j1 = *b* jet]) > $E_T^{miss} > max$ [100, 0.2 M_{eff}]

DM Connection

mSUGRA Parameters (10 fb⁻¹)

We have made a determination of the masses

 $\widetilde{g} = f'(N_{OS-LS}, M_{\tau\tau}^{peak}, Slope, M_{j\tau\tau}^{peak})$ $\Delta M = h'(N_{OS-LS}, M_{\tau\tau}^{peak}, Slope, M_{j\tau\tau}^{peak})$ $\widetilde{\chi}_{2}^{0} = w'(N_{OS-LS}, M_{\tau\tau}^{peak}, Slope, M_{j\tau\tau}^{peak})$ $\widetilde{\chi}_{1}^{0} = y'(N_{OS-LS}, M_{\tau\tau}^{peak}, Slope, M_{j\tau\tau}^{peak})$

The gaugino masses determine $m_{1/2}$

$$\tilde{g} = f_1(m_{1/2}), \, \tilde{\chi}_2^0 = f_2(m_{1/2}), \, \tilde{\chi}_2^0 = f_3(m_{1/2})$$

Incorporating the M_{eff} and $M_{eff}^{(b)}$ observables

$$M_{eff} = f_4(m_{1/2}, m_0), M_{eff}^{(b)} = f_5(m_{1/2}, m_0, \tan\beta, A_0)$$

Writing ΔM as a function of the model parameters:

$$\Delta M = f_6(m_0, m_{1/2} \tan \beta, A_0)$$

DM Relic Density (10 fb⁻¹)

The Dark Matter relic density depends on the model parameters:

$$\Omega h^2 = f'''(m_0, m_{1/2} \tan \beta, A_0)$$

Summary

- This talk is about a cosmological connection at the LHC in the case of co-annihilation (CA).
- The LHC should be able to uncover the striking small ΔM signature (smoking gun in the CA region) with ~10 fb⁻¹ of data in multi-τ final states and make high quality measurements with the first few years of running.

• With the mSUGRA model in the CA region, the dark matter content can be measured with an accuracy of ~40%.

PPC 2007 III PPC 2008

The University of New Mexico Albuquerque, USA May 2008

SCIENTIFIC TOPICS

Dark Matter & Dark Energy - CMB Measurements - Supernovae, Weak Lensing & Large Scale Structure -Future Telescopes - Space Programs - Particle Cosmology - String Cosmology - Dark Matter Searches -Collider Searches - Future Accelerators

http://ppc07.physics.tamu.edu

A. Riess (Johns Hopkins)

G. Ross (Oxford)

P. Shapiro (UT Austin)

M. Shochet (Chicago)

G.F. Smoot (UC Berkeley) D. Spergel (Princeton)

P. Sphicas (CERN/Athens)

Program Advisory Committee

B. Allanach (Cambridge)	P. Jenni
V. Barger (Wisconsin)	G. Kane
V.A. Bednyakov (JINR, Dubna)	D.I. Kaz
D. Cline (UCLA)	R. Kirsh
R. Cousins (UCLA)	T. Koba
W. de Boer (Karlsruhe)	H. Mon
B. Dutta (TAMU)	M. Noji
I. Ellis (CERN)	F. Paige
J. Hewett (SLAC)	S. Perln
. Hinchliffe (UC Berkeley)	M. Pesk

P. Jenni (CERN) G. Kane (Michigan) D.I. Kazakov (JINR, Dubna) R. Kirshner (Harvard) T. Kobayashi (Tokyo) H. Montgomery (FNAL) M. Nojiri (KEK) F. Paige (BNL) S. Perlmutter (LBNL) M. Peskin (SLAC)

Organizing Committee

Amowitt (TAMU)	A. Safonov (TAMU)
Bryan (TAMU)	N. Suntzeff (TAMU)
Dutta (TAMU)*	D. Toback (TAMU)
Kamon (TAMU)*	N. Turok (Cambridg
MeIntyre (TAMU)	L. Wang (TAMU)
Nanopoulos (TAMU)	R. Webb (TAMU)
Perry (Cambridge)	J. White (TAMU)
Pope (TAMU)	*co-chairs

Cambridge-Mitchell (TAMU) Collaboration in Cosmology Texas A&M University, College Station, TX, USA May 14-18, 2007

S.C.C. Ting (MIT) S. Weinberg (UT Austin)

Credit and Copyright [Left to Right]: CERN Photo (CMS), Richard Massey/Nature, NASA/ Chandra X-ray Center