Searches for supersymmetry with the ATLAS detector

T. Lari INFN Milano

> ATLAS Detector Under construction October 2005

Outline

- Y
 - The accelerator LHC and the experiment ATLAS
 - Status of installation and commissioning
 - When will we get the data, and how much of them?
 - Searches for supersimmetry
 - Supersimmetry: what is this?
 - Search strategies for mSUGRA models
 - Commissioning of the detector
 - Measurement and control of backgrounds

My talk will be about the SUSY searches with the first LHC data, based on the "classical" jets+EtMiss+n-leptons signature. Giacomo will cover other search strategies, measurements of SUSY particle properties, and constraints of model parameters.

A needle in an haystack

INFN

Istituto Nazionale di Fisica Nucleare

> Only one event (= pp collision) in **one bilion** may contain an Higgs boson or a squark....

Need high luminosity

Need an **efficient online selection** (trigger) to select interesting events: cannot register everything for further processing

ATLAS (A Toroidal ApparatuS)

- □ Identify and measure the energy of (charged and neutral) hadrons, electrons, photons, and taus
- \Box Measure precisely the **trasverse momentum** p_T of charged particles; reconstruct decay vertices
- □ Measurement of **missing trasverse energy**
- □ Identify and measure the momentum of **muons**

LHC status

- The last of 1746 superconducting magnets was installed in the tunnel on April 26th
- Interconnection to the cryogenic system completed on November 7th
- Now, each of the eight sectors of the accelerator must be commissioned

- First collisions scheduled for July
- Success-oriented schedule: assumes no problem found during commissioning

Wk

Мо

Tu We

Th

Fr

Sa Su

Wk Мо Tu

We Th

Fr

Sa Su

The LHC pilot physics run (2008) non LHC Pilot Physics Run July Aug Sep 28 31 32 33 34 35 36 37 27 29 30 38 14 Pilot physics run 2008 Beam 17 weeks Commissionina to 7TeV Live time = $4 \cdot 10^6$ seconds Oct Nov Dec Rate = 200 Hz 40 41 42 43 44 45 46 47 48 49 50 51 52 Raw Data = $8 \cdot 10^8$ events (1300 TB) nas Da

Luminosity = ?

Nominal LHC luminosity is 10³⁴ cm⁻² s⁻¹

We will only achieve that after installation of additional hardware (in 2010?)

In 2008-2009, up to 2 10³³ cm⁻² s⁻¹ are possible

In practice, luminosity will gradually increase up to this value: it takes time to operate an hadron collider at the nominal performance.

It is impossible to know in advance how much time it will take to get the maximum luminosity.

~20 pp interaction each 25 ns -> 1 GHz of collisions We can afford to register about 200 Hz -> a tight online event selection (trigger) is needed. As luminosity increases, the trigger selection will get tighter, but the event 9 rate will be close to 200 Hz from day-1.

- Performance limit 2 10³³ cm⁻² s⁻¹
- IV. 25ns operation II
 - Push towards nominal performance

More details - phase A

This may give us peraphs 100 pb⁻¹ - end 2008?

Parameters			Beam levels		Rates in 1 and 5		Rates in 2	
k _b	N	β* 1,5 (m)	l _{beam} proton	E _{beam} (MJ)	Luminosity (cm ⁻² s ⁻¹)	Events/ crossing	Luminosity (cm ⁻² s ⁻¹)	Events/ crossing
1	10 ¹⁰	11	1 10 ¹⁰	10 -2	1.6 10 ²⁷	<< 1	1.8 10 ²⁷	<< 1
43	10 ¹⁰	11	4.3 10 ¹¹	0.5	7.0 10 ²⁸	<< 1	7.7 10 ²⁸	<< 1
43	4 10 ¹⁰	11	1.7 10 ¹²	2	1.1 10 ³⁰	<< 1	1.2 10 ³⁰	0.15
43	4 10 ¹⁰	2	1.7 10 ¹²	2	6.1 10 ³⁰	0.76	1.2 10 ³⁰	0.15
156	4 10 ¹⁰	2	6.2 10 ¹²	7	2.2 10 ³¹	0.76	4.4 10 ³⁰	0.15
156	9 10 ¹⁰	2	1.4 10 ¹³	16	1.1 10 ³²	3.9	2.2 10 ³¹	0.77

More details - phase A

This may give us a few fb⁻¹ - end 2009? At nominal luminosity, ~60 fb⁻¹/year

Parameters			Beam levels		Rates in 1 and 5		Rates in 2 and 8	
k _b	N	β* 1,5 (m)	I _{beam} proton	E _{beam} (MJ)	Luminosity (cm ⁻² s ⁻¹)	Events/ crossing	Luminosity (cm ⁻² s ⁻¹)	Events/ crossing
936	4 10 ¹⁰	11	3.7 10 ¹³	42	2.4 10 ³¹	<< 1	2.6 10 ³¹	0.15
936	4 10 ¹⁰	2	3.7 10 ¹³	42	1.3 10 ³²	0.73	2.6 10 ³¹	0.15
936	6 10 ¹⁰	2	5.6 10 ¹³	63	2.9 10 ³²	1.6	6.0 10 ³¹	0.34
936	9 10 ¹⁰	1	8.4 10 ¹³	94	1.2 10 ³³	7	1.3 10 ³²	0.76
Parameters			Beam levels		Rates in 1 and 5		Rates in 2 and 8	
k _b	N	β* 1,5 (m)	l _{beam} proton	E _{beam} (MJ)	Luminosity (cm ⁻² s ⁻¹)	Events/ crossing	Luminosity (cm ⁻² s ⁻¹)	Events/ crossing
2808	4 10 ¹⁰	11	1.1 10 ¹⁴	126	7.2 10 ³¹	<< 1	7.9 10 ³¹	0.15
2808	4 10 ¹⁰	2	1.1 10 ¹⁴	126	3.8 10 ³²	0.72	7.9 10 ³¹	0.15
2808	5 10 ¹⁰	2	1.4 10 ¹⁴	157	5.9 10 ³²	1.1	1.2 10 ³²	0.24
2808	5 10 ¹⁰	1	1.4 10 ¹⁴	157	1.1 10 ³³	2.1	1.2 10 ³²	0.24
2808	5 10 ¹⁰	0.55	1.4 10 ¹⁴	157	1.9 10 ³³	3.6	1.2 10 ³²	0.24
Nominal			3.2 10 ¹⁴	362	10 ³⁴	19	6.5 10 ³²	1.2

The detector installation is also close to completion, from the innermost components (beam pipe being inserted here)

ATLAS commissioning

Meanwhile, we are commissioning the detector and the software using cosmics data

- Integrate all subdetectors in a common data acquisition
- Monitoring software in place
- Trigger software in place
- First timing, alignment and calibration

What do we do when we get the data?

Before we can claim discovery of "New Physics" we have to do some homework...

- Understand and calibrate detector and trigger in situ using well-known physics samples: $Z/W \rightarrow$ leptons, semileptionic tt
- Understand basic SM physics at 14 TeV: first measurements and publications
 - \bullet jets and $W\!,Z$ cross-section top mass and cross-section
 - Event features: Min. bias, jet distributions, PDF constraints
- Understand tails of SM processes as backgrounds (tt, W/Z + jets), go for
 - discovery: Z', SUSY, Higgs

But let's have a look at our main SUSY discovery strategy, to understand what we need to understand to get there...

Supersymmetry: what is?

Supersimmetry (SUSY) in a nutshell

Standard particles

Superpartners

Quarks, leptons, neutrinos (spin 1/2) W, Z, gluino (spin-1)

Higgs (spin-0)

Squarks, sleptons, sneutrinos (spin-0) Wino, zino, gluino (spin 1/2) Higgsino (spin ½)

At least two Higgs doublets are needed \rightarrow **five Higgs bosons** Wino, Zino, Higgsino mix \rightarrow 4 charged (chargino) and 4 neutral (neutralino) states

SUSY particles not observed yet \rightarrow must be heavy \rightarrow simmetry is broken

It is possible to put directly SUSY mass terms in the lagrangian. This gives about **100 free parameters** with the minimal field content above (MSSM model)

Constrained models (with assumptions on the structure of SUSY breaking) have only a few parameters – but assumptions may be wrong.

Supersimmetry can solve several problems of the Standard Model at once

Supersymmetry: why?

Hierarchy problem:

- Fermions and bosons contribute with opposite sign to the Higgs mass
- $\delta m_{H} \sim m_{SUSY}$ [SUSY mass scale]

• Hierarchy ok if SUSY masses near the Higgs scale (accessible to a TeV-scale collider) True also for other SM extensions adressing hierarchy. The TeV-scale new physics and the Higgs are the main motivations for the Large Hadron Collider

Dark Matter

Need a conserved quantum number to avoid proton decay: R=+1 for SM particles, R=-1 for SUSY particles. Consequences:

- SUSY particles are produced in pairs
- The **lightest SUSY particle is stable**. If weakly interacting, it's a good candidate for Dark Matter

Unification of forces:

Better convergence of interaction strenght as a function of energy

- A random choice of the 105 MSSM parameters violates limits from B/D/K physics, electric dipole moments, FCNC, ...
- Need some assumption on the structure of SUSY breaking lagrangian. In mSUGRA (5 free parameters, most studied by ATLAS and CMS):
 - Conserved R-parity
 - **Common mass** m_0 for susy scalars, $m_{1/2}$ for fermions (at GUT scale).
 - Common value A_0 for the trilinear coupling of the s-fermions with the 2 Higgs doublets.

Then 5 free parameters: m_0 , $m_{1/2}$, A_0 , $\tan\beta$, $\operatorname{sgn}\mu$

Further constraints if it is required that the Big Bang has produced the right amount of stable neutralinos to explain observed Dark Matter density May be too constrained. Experiments at colliders are interested mostly in ²⁰ identify signatures to develop and study search strategies

If not too heavy, gluino and squark dominate production cross section at LHC

- Assuming R-parity conservation
- Strongly interacting sparticles (squarks, gluinos) should dominate production unless very heavy.
- Cascade decays to the stable, weakly interacting lightest neutralino follows.
- Event topology:
 - high p_T jets (from squark/gluino decay)
 - Large E_T^{miss} signature (from LSP)
 - High p_T leptons, b-jets, τ-jets (depending on model parameters)

Early searches try to cover a broad range of experimental signatures, but they are classified based on the event topology:

	Jet multiplicity	Additional signature	SUSY scenario	Backgrounds
		No lepton	mSUGRA, AMSB, split SUSY, heavy squark	QCD, ttbar, W/Z
Large E _T ^{miss} +	≥ 4	One lepton (e,µ)	mSUGRA, AMSB, split SUSY, heavy squark	ttbar, W
		di-lepton	mSUGRA, AMSB, GMSB	ttbar
		di-tau	GMSB, large tanβ	ttbar, W
		үү	GMSB	free
	~2		light squark	Ζ

Baseline selection (to be optimized)

- Jet multiplicity ≥ 4 , $p_T^{1st} > 100 \text{GeV}$, $p_T^{others} > 50 \text{GeV}$
- $E_T^{miss} > max(100 GeV, 0.2 x M_{eff})$
- Transverse sphericity > 0.2
- (Additional cuts depending on signature)
 - Transverse mass > 100GeV, $p_T^{lepton} > 20GeV$ (for one-lepton mode) ²³

SUSY search strategies

Most promising search strategy: jets + E_T^{miss} + n-leptons

- Backgrounds:
- Real missing energy from SM
 processes with hard neutrino (tt,
 W+jets, Z+jets, bb*, cc*)
- * n from semileptonic B/D decay
- Fake missing energy from detector

Jet energy resolution (expecially non-gaussian tails) critical A good understanding of both SM physics and detector (missing energy expecially) critical to claim excess over SM predictions

How much data will we need?

 5σ discovery reach (stat. errors only) of ATLAS in mSUGRA plane

Statistical reach with 100 pb⁻¹ is actually already ~1300 GeV, well beyond Tevatron limits (~400 GeV) BUT - only in a few cases SUSY has distinctive kinematical features - main selection tool at both trigger and analysis level is to select event with large missing Et, difficult to muster experimentally

More luminosity (for control samples) and/or time may be needed to understand backgrounds

Let's go back to detector commissioning and SM background studies... 25

EtMiss commissioning: event cleaning

Raw E_T^{miss} in early data is expected to have large tails

- Cosmic events
- Beam halo muons, beam gas interactions, cavern background (neutrons)
- Noisy and dead calorimeter cells
- Dead material, calorimeter cracks
- Fake muons
- All machine and detector garbage collected by E_T^{miss} trigger!
- We are developing tools for event cleaning
- Online and offline monitoring
- detect noisy/dead cells
- Reject beam halo and cosmics events
- E_{T}^{miss} correlation with hardest jet, muons,
- Stability of E_T^{miss} trigger rate

The jet energy scale affects directly SUSY discovery plots trough the cut on the presence of hard jets.

Also, E_{τ}^{miss} depends on the correct reconstruction of the energies of jets, photons, electrons, and muons!

• We will start from the knowledge obtained from testbeam data, electronics calibrations, survey measurements during installation of the tracking detectors, and cosmics data.

• We will then use well-known SM processes (standard candles) to improve Examples: leptonic decays of Z, W mass in semileptonic top events

B	Expected pei	formance	day-1	Physics samples to	improve (examples)	
ECAL uniformity e/γ E-scale HCAL uniformity Jet E-scale Tracking alignment	1-2% (~ 2 % ~ 3 % < 10% LO-200 μm in	~0.5% loca Rø Pixels/	ally) /SCT ?	Isolated electrons, $Z \rightarrow ee$ Single pions, QCD j $\gamma/Z + 1j$, $W \rightarrow jj$ i Generic tracks, isola	Z→ee ets n tt events ated μ, Z → μμ	
Process	$\sigma \times BI$	2	Events selected for 100 pb ⁻¹		Available statistics, with	
$W \rightarrow \ell \nu$	20 nb	$\sim 20\%$	~ 400000		conservative estimates	
$Z \to \mu \mu$	2 nb	$\sim 20\%$	~ 40000		reconstruction efficiencies	
$ar{t}t$ (semileptonic)	370 pb	$\sim 1.5\%$		< 1000	27	

EtMiss commissioning

Just two examples, several other physics process can be used: minimum bias, Z(II), ttbar, ... W(Iv) sample: Shape of transverse mass distribution depends on E_T^{miss} scale and resolution.

Z(ττ) sample: Z mass can be reconstructed with collinear aproximation (since the τ are boosted, ν are along visible τ energy). Can be used to calibrate E_T^{miss} scale.

Towards SUSY searches...

Once detector effects are understood, the next steps are:

- Fiducial cuts: reject E_T^{miss} pointing along leading jets, events with jets or electrons in calorimeter crack...
- Measure Z,W,ttbar cross sections and PDFs
- Understand residual tails in $E_T^{\ miss}$ performance and distribution of real $E_T^{\ miss}$ in SM events

Use data-driven estimates, do not rely on MC predictions Some examples in next slides, several other techniques are being studied. Results should be available early next year

The aim is to estimate the background for each channel with at least two independent technique and compare the results to get confidence that we really understand the SM background

The azimuthal separation between E_T^{Miss} and the leading jets in the event is a powerful cut to reject QCD background (and fake E_T^{miss} related to jets)

- $Z \rightarrow vv$ and $W \rightarrow Iv$ can be estimated from $Z \rightarrow \ell^+\ell^-$
- Either **replace** the two leptons with neutrinos correcting for acceptance and efficiency
- Or determine the **MC normalization** from Z(ll) and apply it to normalize the MC distribution of Z(vv) and W(lv) (almost same production mechanism)

Define control sample with transverse mass <100GeV

- Estimate the E_T^{miss}/M_{eff} shapes of background processes using control sample Determine the normalization of backgrounds with low E_T^{miss} regions of control and signal samples.
- Can be used for both W and top backgrounds in 0-lepton, 1-lepton and 2lepton channels (results shown here for 1-lepton)

•Satisfying performances with the M_{τ} discrimination technique.

•However, taking account of SUSY signal contamination in the control sample, this estimate appears to be over the mark (By a factor of 2.5 for SU3). It would not prevent discovery.

HT2 method

HT2 = \sum (pt jets 2,3,4) + \sum (pt e,µ)

- leading jet is not included in order to avoid correlation with MET
- use MET significance rather than MET to reduce correlation

one lepton mode

ttbar (lvlv and lvgg), W(ev)+jets, W(µv)+jets

also works for OS di-lepton mode

2-lepton channel

Increasing the number of leptons

- Reduces the signal because of (model dependent) leptonic BRs
- Heavily supresses the background
- Statistical significance is smaller but S/B ratio larger. Top is dominant background
- The Same Sign channel has the best S/B ratio but limited by signal rate

Back to SUSY discovery

When the detector performance and the 14 TeV SM physics will be understood, we will be able to use the full power of our experiments for SUSY searches.

• Hopefully, we will still have an excess....

5*σ*-discovery potential on m_{1/2}-m₀ (m_{gluino}-m_{squark}) space is shown for **1 fb**⁻¹ Require S>10 and S/sqrt(B)>5 Factor of 2 generator-level uncertainty included (hatched)

What next ?

"Othervation of an excess of events in multijet+MET events in pp collisions at 14 TeV with the ATLAS detector"

Large (>100GeV) Missing ET events: Smoking gun of SuperSymmetry

Measurement of the "effective mass" peak correlates with the SUSY mass scale (average squark, gluino mass) Meff = MET+PT,1+PT,2+PT,3+PT,4 15% (40%) precision on M(SUSY) with 10fb⁻¹ for mSUGRA (MSSM) 38

Conclusions

• The installation and commissioning of the LHC accelerators and the detectors is well advanced

• Next year, first pp collision at 14 TeV will push the energy frontier back by one order of magnitude

• Hopefully, they will also lead to a deeper understanding of the laws of Nature. It's time to move beyond the Standard Model !

- Supersymmetry is a particularly promising possibility
- The key to uncover evidence for SUSY signals will be the understanding of our detector and Standard Model physics at 14 TeV
- ATLAS physicist are working hard to be prepared to exploit the potential of the LHC
- We will have to work even harder when first collision data will be recorded on disk.... but we are looking forward to those days nevertheless!

Backup slides

Table from J. Wenninger (CERN-FNAL LHC school) with guesses by F. Gianotti

Parameter	Phase A	Phase B	Phase C	Nominal
k / no. bunches	43-156	936	2808	2808
Bunch spacing (ns)	2021-566	75	25	25
N (10 ¹¹ protons)	0.4-0.9	0.4-0.9	0.5	1.15
Crossing angle (µrad)	0	250	280	280
$\sqrt{(\beta^*/\beta^*_{nom})}$	2	$\sqrt{2}$	1	1
$\sigma^{\star} \; (\mu m, IR1\&5)$	32	22	16	16
L (cm ⁻² s ⁻¹)	6x10 ³⁰ -10 ³²	1032-1033	(1-2)x10 ³³	10 ³⁴
Year ? (June schedule) ∫Ld†? (my guess)	2008 ≤ 100 pb ⁻¹	2009 1-few fb ⁻¹	2009-2010	> 2010

To achieve 100 pb $^{-1}$ need 10 6 s of good running at $\mathcal{L} = 10^{32}$

One year at regime now corresponds to $\sim 6 \times 10^6 \text{ s} \rightarrow 6 \text{ fb}^{-1}$ at 10^{33} Pileup at $10^{32} \text{ cm}^{-2}\text{s}^{-1}$ running with 156 bunches: ~ 5 events per crossing Pileup at $10^{33} \text{ cm}^{-2}\text{s}^{-1}$ running with 75 ns beam spacing: ~ 7 events per crossing

INFN tuto Nazional Supersymmetry: how promising? The MSSM is an " SUSY is so cool! ugly theory with We can find out 137 free parameters about String Theory and almost certainly by measuring wrong ! superpartner mass Spectra !!! » SUSY is interesting! We Naturally, different opinions need some quidance exist about how promising as to what the is supersymmetry.... possible. mass Spectra are The LHC will tell....

ttbar background

Top mass is largely uncorrelated with E_T^{miss}

used as a calibration variable
 Select semi-leptonic top candidates

mass window: 140-200 GeV
 Contributions of combinatorial BG to top mass are estimated from the

side-band events

(200GeV<m_{top}<260GeV)

- Normalize the E_T^{miss} distribution in low E_T^{miss} region where SUSY signal contamination is small.
- 5. Extrapolate it to high E_T^{MISS} region and estimate the background with SUSY signal selection.

Several other techniques also under investigation

