
.

SUSY exclusive analyses

Giacomo Polesello

INFN, Sezione di Pavia



Introduction

Tommaso’s talk: how LHC experiment will try to discover RP conserving SUSY

A certain number of generic assumptions:

• Detection through discovery of squark and gluino production

• Squark and gluino decay to jets + some kind of SU(2)× U(1) gaugino/higgsino

• Mass difference between squark/gluino and gauginos with dominant BR such as to yield high pT

jets. More or less guaranteed in case of gluino accessible and gaugino mass unification

• Gauginos will decay into “something” and finally into an invisible LSP

Searches are therefore: 2 to 4 jets, depending on relation between gluino and squark

masses + /ET + “something”

Examples of “something”: nothing, 1,2,3 leptons (e, µ) τ (hadronic), b-jets, Z , h

Generic variables: PT/η of ingredients + estimator of mass of system. Canonically:

Meff = ∑
i |pT (i)| + Emiss

T



How generic?

Typically reach shown on mSUGRA plane (to fix the “something”), but shown to

cover other χ̃0
1 LSP scenarios e.g NUHM (ATLAS Tokyo, N. Kanaya, S. Asai)

Will also e.g. cover most cases in GMSB (gravitino LSP)

• NLSP is χ̃0
1 →. If long lived as for mSUGRA (checked as well by ATLAS Tokyo group). If short

lived: add photons to the “something” If medium lived (decay inside the detector), discovery OK,

need care to figure out photons

• NLSP is slepton/stau. If short lived OK, additional leptons in the “something”.

If long-lived need detector-specific studies

Specific searches for cases where assumption of accessible squarks/gluino breaks:

• light stops

• direct gaugino/higgsino search in 3-lepton channel

• long lived heavy particles (staus or R-hadrons)

Also cases with very degenerate spectra need attention (see talk this week)



Light stops

Search for direct t̃1t̃1 production in models with stop lighter than top

Model proposed in Les Houches 2005, compatible with CDM and baryogenesis:

m(q̃) = m(˜̀) = 10 TeV, and M1 : M2 = α1 : α2

M1 = 60.5 GeV µ = 400 GeV tan β = 7 M3 = 950 GeV

m(Q3) = 1500 GeV m(t̃R) = 0 GeV m(b̃R) = 1000 GeV At = −642.8 GeV

Masses: m(t̃1) = 137 GeV, m(χ̃±1 ) = 111 GeV, m(χ̃0
1) =58 GeV.

BR(t̃1 → bχ̃±1 → bW ∗χ̃0
1) = 100% ⇒ Signature as for tt̄:

2 b-jets, /ET and either 2 ` (e, µ) (4.8% BR) or 1 `+ 2 jets (29% BR)

σ(pp → t̃1t̃1) = 412 pb (CTEQ5L NLO Prospino) Consider semi-leptonic channel

for analysis

Perform ATLFAST analysis on ∼ 2 fb−1. ATLAS full simulation study ongoing

Consider backgrounds from tt̄ and from Wbbjj production

Case where m(t̃1) < m(χ̃±1 ) much more difficult: either t̃1 → cχ̃01 or 4-body decay. First one

impossible, second one still to be studied (MC generator)



Event selection

• One and only one isolated lepton (e, µ), pl
T > 20 GeV.

• At least four jets PT (J1, J2) > 35 GeV, PT (J3, J4) > 25 GeV, Emiss
T > 20 GeV.

• Exactly two b-tagged jets with pT > 20 GeV. Assume εb = 60%, Rj = 100

Consider m(jj)min minimum invariant mass of any non-b jets in event with pT > 25 GeV for signal

and ttbar. m(jj)min < m(χ±)−m(χ̃0
1) for signal
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By requiring m(jj) < 60 GeV, Achieve S/B=1/10 for signal eff. of ∼0.24%



The m(bjj)min variable

Define m(bjj)min as the minimum invariant mass for the combination a b-tagged

jet and the two non-b jets.

The end-point of the m(bjj)min distribution should be m(t̃1)−m(χ̃0
1) = 79 GeV

for stop and 175 GeV for top
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Clear shoulder from stop, need precise determination of shape for top to see it

An equivalent variable (m(bl)min) can be built on the lepton side



Data-driven background subtraction

Define a pure top control sample: require that on the lepton side m(lbν) compatible

with top mass within 15 GeV.

Reduce signal contamination by requiring m(lb)min > 60 GeV

No signal in sample for m(bjj)min >80 GeV, can use this region for normalisation

Control sample (points with errors) matches well distribution for top
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After subtracting m(bjj)min for normalised top control sample from m(bjj)min for

“data”, reproduce the distribution for signal



SUSY mass scale from inclusive analysis

Start from multijet + /ET signature.

Simple variable sensitive to sparticle mass scale:

Meff =
∑
i
|pT (i)| + Emiss

T

where pT (i) is the transverse momentum of jet i
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Define the SUSY mass scale as:

M eff
susy =

Msusy −
M 2

χ

Msusy

 , with MSUSY ≡
∑

i Miσi∑
i σi

15 parameters  MSSM

mSUGRA : 5 parameters

Meff (GeV)

Meff (GeV)

MSUSY (GeV)

MSUSY

Estimate Meff peak by a gaussian fit to

background-subtracted signal distributions

Test the correlation of Meff with M eff
susy on

random sets: mSUGRA and MSSM

Excellent correlation in mSUGRA, less

good for MSSM

Can one think of a variable (on x or y)

which gives better correlation for MSSM?



Precision of mass scale estimate

p

% precision on MSUSY vs MSUSY

MSUSY (GeV)

Evaluate uncertainty in mass scale

from spread in correlation plots.

• 10 fb−1 - stars

• 100 fb−1 - open circles

• 1000 fb−1 - filled circles

∼ 10% precision on SUSY mass scale

for one year at high luminosity

Needs to be updated with more precise

background estimates and their sys-

tematic uncertainties



What might we know after inclusive analyses?

Assume we have a MSSM-like SUSY model with mq̃ ∼ mg̃ ∼ 600 GeV

Observe excesses in /ET + jets inclusive, and in some of the /ET + jets +

“something” channels. Null results in specialised searches

• Undetectable particles in the final state: /ET . Stableor ling-lived?

• Primary particles with mass∼600 GeV (Meff study)

• Assigning spin hypotheses to produced sparticles can get an idea of couplings (exp. difficulty:

need some assumption on gaugino spectrum to evaluate selection efficiency)

• Many more things depending on the excesses observed for the different “something”. Examples:

– Excess of of same-sign lepton pairs: some of the primary particles are Majorana

– See same number of leptons and muons: lepton flavour ∼ conserved in first two generations

– .............



How can we use it?

Too little information to zoom into a model

Probably with guess the composition of the produced primary particles

One can exclude detailed implementations of model
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However, more detailed info can be extracted from the data



What kind of info for establishing SUSY?

Long lists of requests. Need to demonstrate that:

• Every particle has a superpartner

• Their spin differ by 1/2

• Their gauge quantum numbers are the same

• Their couplings are identical

• Mass relations predicted by SUSY hold

Available observables:

• Sparticle masses, • BR’s of cascade decays

• Production cross-sections, • Angular decay distributions

Measurements of observables depends on detail of model and requires development

of ad-hoc techniques. Over last ten years strategy based on detailed MC study of

reasonable candidate models

Did we focus too much on a too restricted class of models?



What path from the observbles to the model?

The problem is the presence of a very complex spectroscopy due to long decay

chains, with crowded final states.

Many concurrent signatures obscuring each other

General strategy:

• Select signatures identifying well defined decay chains

• Extract constraints on masses, couplings, spin from decay kinematics/rates

• Try to match emerging pattern to template models, SUSY or anything else

• Having adjusted template models to measurements, try to find additional signatures to

discriminate different options

Most of work done on sparticle mass measurement

Show today some recent ATLAS full simulation work on some cases providing

“easy” mass constraints

Discuss thereafter the broader landscape of mass measurement techniques



The easiest mass constraint: cascade of two two-body decays

The problem: R-parity conservation ⇒ two undetected LSP’s per event

⇒ no mass peaks, but invariant mass distributions can give constraints

For single 2-body decay a → b + c, in a rest frame

|~p|2 = [m2
b, m

2
a, m

2
c] where [x, y, z] ≡ x2+y2+z2−2(xy+xz+yz)

4y

q

b

p

ac

c q
θ

p

a

b

In rest frame of b: m2
pq = m2

p + m2
q + 2(EpEq − |~pp||~pq| cos θ)

Take the maximum (cos θ = −1) and p and q massless (quarks or leptons)

(mmax
p,q )2 = 4|~p||~q| = 4

√
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Invariant mass distribution

If spin of intermediate particle b is zero, the decay distribution is:

dP

d cos θ
=

1

2

Where cos θ is the angle between visible p and q in b rest frame.

If p, q are massless: m2
pq = 2|~pp||~pq|(1− cos θ) and (mmax

pq )2 = 4|~pp||~pq|

Define the dimensionless variable:

m̂2 =
m2

pq

(mmax
pq )2

=
1

2
(1− cos θ) = sin2 θ

2

By a changement of variable:

dP
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= 2m̂
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Show examples of ATLAS full simulation analyses where this distribution

observable



The lepton-lepton edge

ATLAS Point SU1:

m0 = 70 GeV, m1/2 = 350 GeV A = 0 GeV, tan β = 10, µ > 0

Both `R and `L lighter than χ̃0
2

Require two OSSF (Opposite-sign Same

Flavour leptons), jets and /ET

Plot the flavour-subtracted invariant mass

OS-OF flavour-correlated signal from

q̃L → χ̃0
2 q

|→ ˜̀±
R(L) `∓

|→ χ̃0
1 `±
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Can clearly observe after flavour subtraction the two edges for the two different

slepton helicities



Lepton-lepton edge: fast discovery

ATLAS Point SU3: bulk Point, SPS1a family

m0 = 100 GeV, m1/2 = 300 GeV A = −300 GeV,

tan β = 6, µ > 0

Canonical decay χ̃0
2 → `± ˜̀∓

R → `±`∓χ̃0
1

Signal visible with 1 fb−1

Perhaps best chance for early discovery

ATLAS Preliminary

0.35 fb-1

SU4

ATLAS
preliminary

ATLAS Point SU4: low mass

m0 = 200 GeV, m1/2 = 160 GeV A = −400 GeV,

tan β = 10, µ > 0, σ = 262 pb

In this case 3-body decay of χ̃0
2:

BR(χ̃0
2 → `±`∓χ̃0

1)=6.2% (` = e, µ)



The lepton-jet sneutrino edge

Always Point SU1, study the decay q̃L → qχ̃±1 q`±ν̃l → q`±νlχ̃
0
1

Lepton-Jet invariant mass should present an edge depending on m(χ̃±1 ), m(ν̃`) m(χ̃0
1)

Very difficult to find the correct jet-lepton pairing → combinatorial

Hard cut on leading and second leading jet and /ET : PT (j) > 200 GeV, /ET > 200 GeV

Exclude events for which 60 < MT (`, Emiss
T ) < 100 GeV to reduce top background

Mixed-event technique to estimate combinatorial:

randomly pairwith lepton jets from a different

event satisfying same event selection

After subtraction of ’mixed event’ sample recover

triangular shape. End-point in expected position

Technique works in this case, need to study how

general is the result
ATLAS Preliminary



The top-bottom edge

Work on Point SU4: BR(g̃ → t̃1t)=42%, σ(g̃g̃ + g̃q̃) ∼ 165 pb

Study decay chain g̃ → t̃1t → tbχ̃±1

Channel previously studied by Hisano, Kawagoe, Nojiri in fast sim

Reconstruct fully hadronic top, and sub-

tract jjb combinatorial using sidebands
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For this very low mass point, edge in principle visible with very little statistics

In practice need really good understanding of detector to attack this channel



Model independent mass determination

Shown realistic examples in which kinematic edges observed

Conforting to see that full simulation studies at low statistics tell us that these

features may be observed beyond ATLFAST (no real life, though....). One step

further is needed: extract from event kinematics absolute values for some of the

masses.

Three families of techniques (and variations) proposed:

• Edge method (Many contributions: e.g. Paige, Hinchliffe, Lester, Miller, Osland)

•Mass relation method ( Kawagoe, GP, Nojiri, Chen et al.)

•MT2 kink method ( Lester, Barr, Cho et al.) method very recent and interesting:

do not need long chains.

Significant recent advance, I will only comment on first two, as we have dedicated

talk tomorrow on MT2 by one of proponents



The edge method

With two decays only single mass combination ⇒ only one edge constraint

Consider longer chain. Key result (Paige, Hinchliffe):

If a chain of at least three two-body decays can be isolated, can measure masses

and momenta of involved particles in model-independent way.

Example: full reconstruction of squark decays in models with light ˜̀
R (m˜̀

R
< mχ̃0

2
):
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Three visible particles: 4 invariant mass combinations: (12), (13), (23), (123)

For first three minimum value is zero: only Mmax constraint. For fourth both Mmax

and Mmin constraint: total 5 constraints



Complete results for q̃L → ˜̀̀ decay chain: (Allanach et al. hep-ph/0007009)

l+l− edge (mmax
ll )2 = (ξ̃ − l̃)(l̃ − χ̃)/l̃

l+l−q edge (mmax
llq )2 = (q̃ − ξ̃)(ξ̃ − χ̃)/ξ̃

qL

qL

lR
-

χ2
0

lR
+ (near)

lR
-  (far)

χ1
0

l+l−q thresh (mmin
llq )2 =



[ 2l̃(q̃ − ξ̃)(ξ̃ − χ̃)

+(q̃ + ξ̃)(ξ̃ − l̃)(l̃ − χ̃)

−(q̃ − ξ̃)
√
(ξ̃ + l̃)2(l̃ + χ̃)2 − 16ξ̃l̃2χ̃ ]

/(4l̃ξ̃)

l±nearq edge (mmax
lnearq

)2 = (q̃ − ξ̃)(ξ̃ − l̃)/ξ̃

l±farq edge (mmax
lfarq

)2 = (q̃ − ξ̃)(l̃ − χ̃)/l̃

With χ̃ = m2
χ̃0

1
, l̃ = m2

l̃R
, ξ̃ = m2

χ̃0
2
, q̃ = m2

q̃



Example: Point SPS1a

Snowmass Point 1

m0 = 100 GeV, m1/2 = 250 GeV A = −100 GeV,

tan β = 10, µ > 0

Total cross-section: ∼50 pb, BR(χ̃0
2 → ˜̀

R`)=12.6%

SPA: similar point, compatible with WMAP:

m0 = 70 GeV, m1/2 = 250 GeV A = −300 GeV,

tan β = 10, µ > 0
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Select events with high jet multiplicity and /ET

Require two opposite-sign same-flavour e, µ (OSSF)

SUSY background: uncorrelated χ̃±1 decays

Subtract SUSY and SM background via flavour correlation:

e+e− + µ+µ− − e±µ∓

Fit to sharp edge + Gaussian smearing



Lepton-lepton-jet edges ��
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Distributions fall ∼linearly to end point.

Shapes modified by resolutions and back-

grounds, recently progress in using full

shape

Statistical uncertainty from linear fit at

the % level

5 edge constraints: generate MC experiments as sets of edge measurements normal

distributed according to estimated errors

For each set solve numerically system of equations for sparticle masses.



Results and limitations of Edge method

Strong correlation, kinematic constraints of the

form (m2
a −m2

b)(m
2
b −m2

c)/m
2
b , measure mass dif-

ferences rather than absolute scale

Key contribution to scale measurement from

threshold, most difficult one to measure

Error for χ̃0
1, χ̃0

2,
˜̀
R masses ∼ 5 GeV

for q̃L mass ∼ 9 GeV (300 fb−1)

Mass differences measured to ∼ 250 MeV
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Limitations of method based on kinematic edges:

• Only events near end-point are used: loss of information

• Different edge formulas depending on mass hierarchy: multiple solutions

• Need good statistics to observe end-point

• Unknown systematics from shape of edge distribution



Mass relation method

Consider a chain of 4 two-body decays: e.g

g̃ → q̃q2 → χ̃0
2q1q2 → ˜̀q1q2`2 → χ̃0

1q1q2`1`2.

for each event 5 constraints from mass-shell conditions of 5 sparticles:

m2
χ̃0

1
= p2

χ̃0
1
,

m2
˜̀ = (pχ̃0

1
+ p`1)

2,

m2
χ̃0

2
= (pχ̃0

1
+ p`1 + p`2)

2,

m2
b̃ = (pχ̃0

1
+ p`1 + p`2 + pb1)

2,

m2
g̃ = (pχ̃0

1
+ p`1 + p`2 + pb1 + pb2)

2. (1)

9 Unknowns: 4-mom of χ̃0
1 (different event by event)+5 masses (common)

For each event solve the system by eliminating the χ̃0
1 4-momentum

Solution is quadratic form in the space of sparticle masses:

f (mg̃, mq̃, mχ̃0
2
, m˜̀

R
, mχ̃0

1
) = 0

Coefficients of quadratic form are functions of 4-momenta q1, q2, `1, `2



Intersection of 5 quadratic forms: point in 5-dim mass space

5 events enough in principle to measure masses of 5 sparticles

Simplified version for visualization Consider simple case

in which all the sparticle masses are known except 2:

mg̃, mq̃

Quadratic form is a parabola in (mg̃, mq̃) plane

With two events have two parabolas

Intersection of two parabolas gives two points, measure-

ment of masses with twofold ambiguity
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If larger number of events used, multiple solutions creduced to one

Need to develop a viable technique for finding maximally populated point in 5-dim

space in situation where momenta of measured quarks are smeared by detector

Exploratory exercise: assume 3 lowest masses already measured, e.g. using the Edge

method



Practical application

Apply technique to measurement of gluino and sbottom mass in SPS1a

• Life easier than for light squarks: b-jets in chain minimize combinatorial BG

• Life harder as b jets measured with worse resolution in detector

• g̃ decays to two b̃: b̃1, b̃2 and mb̃2
−mb̃1

∼ 35 GeV: benchmark sensitivity of method

Take into account smearing of measurement of momenta of b-partons: represent each event not as

parabola, but as a probability density function in the (mg̃, mb̃1
) plane: L(mg̃, mb̃1

)

Main ingredient: knowledge of the response function of ATLAS detector to b partons

Examples of L functions in (mg̃, mg̃ −mb̃1
) plane for 3 random events



Combine likelihoods for all the events as:

logLcomb(mg̃, mb̃) ≡
∑

events
logL(mg̃, mb̃)

m(g̃) = 595 GeV

m(g̃)−m(b̃1) = 103 GeV

Good combined measurement of mg̃ and mb̃ even for low statistics tan β = 20 case

Search for maximum probability indeed rejects multiple solutions

Possibly shoulder from second sbottom

We did not develop detailed estimator for final error on masses

Need anyway to feed in errors on assumed sparticle masses



Variations on mass relation method

Can constrain masses if at least one constraint left over after 4-momenta of all invisible particles χ̃0
1

eliminated from system of constraints.

• 1 leg: 4 χ̃0
1 unknowns ⇒ need 5 constraints: 4 step chain

Example: g̃ → q̃q2 → χ̃0
2q1q2 → ˜̀q1q2`2 → χ̃0

1q1q2`1`2.

• 2 legs: 4× 2 χ̃0
1 unknowns minus 2 Emiss

T constraint:

px(χ̃
0
1(1)) + px(χ̃

0
1(2)) = Emiss

x py(χ̃
0
1(1)) + py(χ̃

0
1(2)) = Emiss

y ,

⇒ need 7 constraints: 2 steps on one side, 3 steps on the other side

Example: side 1: q̃ → χ̃0
2q1 → ˜̀q1`2 → χ̃0

1q1`1`2 side 2: χ̃0
2 → ˜̀̀

2 → χ̃0
1`1`2

Two-leg approaches:

Cheng et al.: Consider two legs with two steps (6 event unknowns and 6 constraints)

Assuming a given value for sparticle masses can calculate 4-momenta of two χ̃0
1.

Solution for all the events for limited region in 3-dim mass space (broad constraint on masses)

By scanning on (m1,m2,m3) mass space, point in which sudden drop of number of events with

solution happens is estimator of solution



Mass relation on two legs (preliminary!)

Work in progress: consider two legs with three steps each:

q̃ → χ̃0
2q1 → ˜̀q1`2 → χ̃0

1q1`1`2. 6 event unknowns/ 8 constraints

• Take SPS1a. Select events with 4 reconstructed leptons in parametrized smearing. No cuts.

• Preliminarly, assume that visible particle can be assigned unique position in chain

• Assume as unknowns m(q̃), m(χ̃0
2), m(˜̀R). Calculate m(χ̃0

1) from m(χ̃0
2), m(˜̀R) and `` edge

• Scan on (m(χ̃0
2), m(˜̀R)) grid. For each event and leg calculate m(q̃) from on-shell constraints.

• N solutions (0, 2, 4) per legs ⇒ for each event and leg N surfaces in (m(χ̃0
2), m(˜̀R), m(q̃)) space
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m(q̃L) = 540 GeV, m(χ̃0
2) =

176 GeV, m(˜̀R) = 143 GeV



For each experiment take bin with maximum occupancy as measure of masses

Take ∼100 events per 300 fb−1 experiment

Perform exercise for ∼ 900 experiments (forced generation)

Plot measured values for each experiment
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Poor precision, factor almost two worse than

edge method

Need to perform proper analysis to assess

correct number of events with unique particle

assignation

Used smeared jets and leptons, but no

correction applied for the smearing, pessimitic

approach

Test likelihood as was done for single-leg

exercise, should give more stable results

What if one tries to add event-by-event constraints to the edge method?



Hybrid method

Consider again two legs with three steps each: (Tovey, G.P., Nojiri)

q̃ → χ̃0
2q1 → ˜̀q1`2 → χ̃0

1q1`1`2.

Assume that all the 5 edges from edge method are measured in the experiment (”expt”)

Based on 4-momenta of 4 leptons and 2 jets, for each point in the (m(q̃), m(χ̃0
2), m(˜̀R), m(χ̃0

1))

space and for each event can calculate:

• expected value of edges (”evt”) (Lester et al. formulas)

• expected value of Emiss
x , Emiss

y from solved χ̃0
1 momenta (on-shell mass constraints)

Extimate 4 unknown masses for each event by minimizing χ2:

χ2 =

m(ll)max
evt −m(ll)max

expt

σm(ll)max


2

+

m(llq)max
evt −m(llq)max

expt

σm(llq)max


2

+

m(llq)min
evt −m(llq)min

expt

σm(llq)min


2

+

m(lq)max
hi;evt −m(lq)max

hi;expt

σm(lq)max
hi


2

+

m(lq)max
lo;evt −m(lq)max

lo;expt

σm(lq)max
lo


2

+

px(χ̃
0
1(1)) + px(χ̃

0
1(2))− Emiss

x

σEmiss
x


2

+

py(χ̃
0
1(1)) + py(χ̃

0
1(2))− Emiss

y

σEmiss
y


2

, (2)

Mass estimate for experiment is average value of event-wise estimates



Take SPS1a, require 4 leptons (2 OSSF pairs), /ET , 2 jets, Meff

Reject events where more than one assignment of jets and leptons consistent with edges

Final statistics is 38 events for 100 fb−1

By building many MC experiments estimate precision on masses:
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2 177.2 7.7 176.4 5.3

q̃L 540.4 12.6 540.7 8.5

Gain 30% in mass precision by adding

/ET constraint

σ(m(q̃L)−m(χ̃0
2) = 4 GeV, comparable

to squark width (5 GeV) and ũL − d̃L

mass difference (6 GeV)



Where do we go from masses?

The mass measurements do not depend a priori on a special choice of the model

For instance, we can state that in the data appear the decays:

a → b q

|→ c `∓

|→ d `±

a → b q

|→ e τ∓
|→ d τ±

Where we know the masses of a, b, c, d, e, and we might conjecture that a, b, d

appearing in both decays are the same having the same masses

So we have a mass hierarchy, some of the decays related these particles and,

perhaps, the relative rates



Having decay chains help restricting the possibilities, if one imposes some

conservations, e.g. charges or quantum numbers

Model dependence enters when we try to give a name to the particles, and match

them to a template decay chain

Among the models proposed to solve the hierarchy problem, various options

providing a full spectrum of new particles, with cascade decays:

• Universal extra-dimensions: first KK excitation of each of the SM fields

• Little Higgs with T parity

Special feature of SUSY: if one identifies the heavy partners through their quantum

numbers, the spins of all of them are wrong by 1/2

Next step is investigating if exploiting the identified chains one can obtain

information on the sparticle spins



Conclusions

If SUSY discovery long path to understand the nature of the involved signal

Main focus is in ensuring discovery, combining very inclusive signatures to more

exclusive ones

We do not forget however to work on a strategy for going beyond discovery

Work ongoing in ATLAS to verify in full simulation that the kinematic features of

SUSY events can indeed be observed in real life

Results mostly still preliminary as we are finalizing work on a dedicated ATLAS note

Recently new ideas on how to build on kinematic features to reconstruct masses in

model-independent way

Better and better nderstanding of measurements on chains with two invisible

particles at the end


