Studying spin through quantum interference

Hitoshi Murayama (Berkeley / IPMU Tokyo) Focus week on LHC@IPMU, Dec 18, 2007

work with Matt Buckley, Willie Klemm, Vikram Rentala arXiv:0711.0364 and many more to follow

Motivation

missing E_T, multiple jets, b-jets, (like-sign) leptons

SUSY

missing E_T, multiple jets, b-jets, (like-sign) leptons

UED

SUSY

missing E_T, multiple jets, b-jets, (like-sign) leptons

missing E_T, multiple jets, b-jets, (like-sign) leptons

 \tilde{g}

 \widetilde{g}

 W^+

 W^+

 v_1

UED

spin 1

SUSY spin 1/2 technicolor spin O

 P_8^0

 P_{8}^{0}

 P_8^0

 W^{+}

www

W

 \overline{q}

precision new physics measurements

spectroscopy

 kinematic fits, partial wave analysis, Dalitz analysis, etc

precision mass, BR measurements

ø key: spin-parity

precision new physics

Squarks

J=0?

PDG 2012

The following data are averaged over all light flavors, presumably u, d, s, c with both chiralities. For flavor-tagged data, see listings for Stop and Sbottom. Most results assume minimal supergravity, an untested hypothesis with only five parameters. Alternative interpretation as extra dimensional particles is possible. See KK particle listing.

SQUARK MASS

<u>VALUE (GeV)</u> 538±10	DOCUMENT ID OUR FIT	<u>TECN</u>	<u>COMMENT</u> mSUGRA assumptions
532±11	¹ ABBIENDI 11D	CMS	Missing ET with mSUGRA assumptions
541±14	² ADLER 110	ATLAS	Missing ET with mSUGRA assumptions
• • • We do not u	ise the following data f	or averages, fit	ts, limits, etc • • •
652±105	³ ABBIENDI 11K	CMS	extended mSUGRA with 5 more parameters

¹ABBIENDI 11D assumes minimal supergravity in the fits to the data of jets and missing energies and set $A_0=0$ and $\tan\beta=3$. See Fig. 5 of the paper for other choices of A_0 and $\tan\beta$. The result is correlated with the gluino mass M_3 . See listing for gluino.

²ADLER 110 uses the same set of assumptions as ABBIENDI 11D, but with tan $\beta = 5$. ³ABBIENDI 11K extends minimal supergravity by allowing for different scalar massessquared for Hu, Hd, 5* and 10 scalars at the GUT scale.

MODE	<u>BR(%)</u>	DOCUMENT ID	TECN	COMMENT
j+miss	32±5	ABE 10U	ATLAS	
j l+miss	73±10	ABE 10U	ATLAS	lepton universality
j e+miss	22±8	ABE 10U	ATLAS	
j μ +miss	25±7	ABE 10U	ATLAS	
d χ^+	seen	ABE 10U	ATLAS	

SQUARK DECAY MODES

kinematic fits, p
 wave analysis, I
 analysis, etc

spectroscopy

med

precision mass, measurements

key: spin-parity

precision new physics measurements

spectroscopy

 kinematic fits, partial wave analysis, Dalitz analysis, etc

precision mass, BR measurements

ø key: spin-parity

precision new physics measurements

ø key: spin-parity

precision new physics measurements Spin 0?

spectroscopy
 kinematic fits, partive analysis, Dalitz analysis, etc
 precision mass, BR measurements

ø key: spin-parity

relies on the absence of t,u-channel!

Model-independent information on spin

How can we obtain information on spins without any model assumptions?

Back to basics: quantum mechanics

angular momentum generates rotation $U(ec{ heta})=e^{iec{J}\cdotec{ heta}/\hbar}$

there is no orbital angular momentum along the momentum, and spin can be isolated

General Principle

Helicity and phase

The Decay of particle with spin halong the momentum axis Rotations about z-axis of decay plane given by $\mathcal{M} \propto e^{i J_z \phi}$ $J_z = \frac{(\vec{s} + \vec{x} \times \vec{p}) \cdot \vec{p}}{|\vec{p}|}$ $= \frac{\vec{s} \cdot \vec{p}}{|\vec{p}|} = h$

rotational invariance: a single helicity state has flat distribution in φ

If particles produced in multiple helicities:

$$\sigma \propto \left| \sum_{mathcal{M}} \mathcal{M}_{prod} \mathcal{M}_{decay} \right|^2$$
$$\mathcal{M}_{decay} = e^{ih\phi} \mathcal{M}_{decay}(h, \phi = 0)$$

If particles produced in multiple helicities:

$$\sigma \propto \left| \sum \mathcal{M}_{prod.} \mathcal{M}_{decay} \right|^2$$
$$\mathcal{M}_{decay} = e^{ih\phi} \mathcal{M}_{decay}(h, \phi = 0)$$

Different helicities interfere once they decay!

If particles produced in multiple helicities:

$$\sigma \propto \left| \sum_{main local} \mathcal{M}_{prod.} \mathcal{M}_{decay} \right|^2$$
$$\mathcal{M}_{decay} = e^{ih\phi} \mathcal{M}_{decay}(h, \phi = 0)$$

Different helicities interfere once they decay!

dependence of cross section tells us what helicities contributed to the interference.

If particles produced in multiple helicities:

$$\sigma \propto \left| \sum \mathcal{M}_{prod.} \mathcal{M}_{decay} \right|^2$$
$$\mathcal{M}_{decay} = e^{ih\phi} \mathcal{M}_{decay}(h, \phi = 0)$$

Different helicities interfere once they decay!

- dependence of cross section tells us what helicities contributed to the interference.
- Can measure only helicity differences (akin to neutrino oscillation)

Spin and Quantum Interference

Sector Boson Decay:

Spinor Decay:

$$egin{array}{lll} \mathcal{M}_{\uparrow} & \propto & e^{i\phi_1/2} \ \mathcal{M}_{\downarrow} & \propto & e^{-i\phi_1/2} \end{array}$$

 $\left|\sum \mathcal{M}\right|^{2} = A_{0} + A_{1} \cos \phi + A_{2} \cos 2\phi \quad \left|\sum \mathcal{M}\right|^{2} = A_{0} + A_{1} \cos \phi$ • In general: $\sigma = A_{0} + A_{1} \cos(\phi) + \dots + A_{n} \cos(n\phi), \ n = 2 \times \text{spin}$

 $e_{L}^{-}e_{R}^{+} \rightarrow \tilde{w}^{-}\tilde{w}^{+} \rightarrow (\mu^{-}\tilde{\nu}_{\mu}^{*})(e^{+}\tilde{\nu}_{e})$ $\mathcal{M}(-+) \propto (1+\cos\theta)\cos\frac{\hat{\theta}_1}{2}e^{-i\hat{\phi}_1/2}\cos\frac{\hat{\theta}_1}{2}e^{-i\hat{\phi}_2/2}$ $\mathcal{M}(+-) \propto (1-\cos\theta)\sinrac{ heta_1}{2}e^{+i\hat{\phi}_1/2}\sinrac{ heta_1}{2}e^{+i\hat{\phi}_2/2}$ $\mathcal{M}(--) \propto -\sin\theta \frac{M}{E} \cos\frac{\hat{\theta}_1}{2} e^{-i\hat{\phi}_1/2} \sin\frac{\hat{\theta}_1}{2} e^{+i\hat{\phi}_2/2}$ $\mathcal{M}(++) \propto -\sin\theta \frac{M}{E} \sin\frac{\hat{\theta}_1}{2} e^{+i\hat{\phi}_1/2} \cos\frac{\hat{\theta}_1}{2} e^{-i\hat{\phi}_2/2}$ (HM: LCWS 2000 @ Fermilab)

Real-life Examples

LEP-II

study semileptonic
W⁻ → l⁻ nu
W⁺ → j j
√s = 200 GeV
A₁/A₀=-26%
A₂/A₀=-8.6%

LEP-II

study semileptonic
W⁻ → l⁻ nu
W⁺ → j j
√s = 200 GeV
A₁/A₀=-26%
A₂/A₀=-8.6%

Tevatron

p pbar → Z + gluon
 study Z → I+ I A₁/A₀=6.0%
 A₂/A₀=12%
 used p_T(g)>7 GeV

Tevatron

Other distributions

 cos θ distribution of the production shows t- and u-channel process, no spin information cos θ distribution of the decay does not show a big spin effect because the process is primarily near threshold

We can extract interesting spin information from the existing data

We can extract interesting spin information from the existing data

@ effect particularly strong near threshold
 (good news for future hadron collider!)

We can extract interesting spin information from the existing data

@ effect particularly strong near threshold
 (good news for future hadron collider!)

seeing cos(nφ) dependence implies spin≥n/2

We can extract interesting spin information from the existing data

@ effect particularly strong near threshold
 (good news for future hadron collider!)

Seeing cos(nф) dependence implies spin≥n/2
 works well if fully reconstructible

Challenges

Many new physics scenarios have more than one invisible particle in their events

Many new physics scenarios have more than one invisible particle in their events

makes the reconstruction more difficult

Many new physics scenarios have more than one invisible particle in their events

makes the reconstruction more difficult

𝔅 ILC KK muon pair, KK μ₁ → μ + KK B₁

Many new physics scenarios have more than one invisible particle in their events
makes the reconstruction more difficult
ILC KK muon pair, KK μ₁ → μ + KK B₁
ILC smuon pair, smuon → μ + neutralino

Many new physics scenarios have more than one invisible particle in their events

makes the reconstruction more difficult

𝔅 ILC KK muon pair, KK μ₁ → μ + KK B₁

 \oslash ILC smuon pair, smuon $\rightarrow \mu$ + neutralino

once masses measured, reconstructible up to a two-fold ambiguity

Fake solution

 We do not fully understand yet how exactly the fake solutions contribute to the apparent cos(nφ) dependence

- Obviously it can be studied within a model
- but we wish to subtract the fake contribution with as little model-dependent assumptions as possible

Spin at LHC

✓ Lose two constraints: center of momentum frame and √ŝ
 ✓ Still can reconstruct up to two-fold ambiguity
 4+4 unknown LSP/LKP momenta -2 measured \$\nother{\nu}_T\$

-6 mass relations

 Much higher statistics available;

- $\sigma \sim 1 \text{ pb}$
- Not studied yet!

Spin at LHC

\odot In e⁺e⁻ or p pbar collisions:

 Sign ambiguity with identical beams $\phi \to \phi + \pi$
 Makes odd $\cos n \phi$ non-physical

Spin at LHC

The Can still determine $\cos \phi$ contribution from correlations of ϕ_1,ϕ_2

$$\langle \cos \phi_1 \cos \phi_2 \rangle \propto A_1^2 / A_0^2$$

Solver Look at sign asymmetry between

$p p \rightarrow t t bar$

 \oslash dominated by gg \rightarrow t that at LHC \oslash <cos ϕ_1 cos ϕ_2 >=0.8% @ small but statistically possible at LHC (>1M/year) Systematics in reconstruction, background, "cross talk" between two tops via gluon exchange, etc The W spin effect has only $\cos \phi$ in top rest frame because $t \rightarrow bW^+$ decay has only h=0,-1 for W⁺

Quantum interference among helicities exists

Quantum interference among helicities exists
Completely model-independent method to study spin

 Quantum interference among helicities exists
 Completely model-independent method to study spin
 Should be demonstrable in the existing LEP-II and Tevatron data

 Quantum interference among helicities exists
 Completely model-independent method to study spin
 Should be demonstrable in the existing LEP-II and Tevatron data

particularly useful near threshold when other spin correlations are not very prominent

- Quantum interference among helicities exists
 Completely model-independent method to study spin
 Should be demonstrable in the existing LEP-II and Tevatron data
- The particularly useful near threshold when other spin correlations are not very prominent
- Full reconstruction really helps

- Quantum interference among helicities exists
 Completely model-independent method to study spin
 Should be demonstrable in the existing LEP-II and Tevatron data
- particularly useful near threshold when other spin correlations are not very prominent
- Full reconstruction really helps
- ø partial reconstruction may be used, but more studies needed