Black Holes at the LHC :on and off the brane

Seong Chan Park (SNU) IPMU workshop, Dec.18 2007

Rotating Black Holes at future colliders

I: Greybody factors for brane fields

D. Ida, K.-y. Oda, SCP, Phys.Rev.D67:064025,2003, Erratum-ibid.D69:049901,2004.

II: Anisotropic scalar field emission

D. Ida, K.-y. Oda, SCP, **Phys.Rev.D71:124039,2005.**

III: Determination of black hole evolution

D. Ida, K.-y. Oda, SCP, **Phys.Rev.D73:124022,2006.**

IV: Case with bulk Standard Model fields
Hopefully Coming soon

Goal of this talk is as follows.

- In this talk, I just try to summarize the current status of bh studies (include some new things in RS1+the bulk SM)
- Try to give you brief ideas about BH production mechanism.
- Try to tell you how we can calculate `black hole signals' via Hawking radiation where you need to know 'greybody factors'.
- Try to call for your attention/help for future studies.

Some basic facts about Black holes

- A Solution of Einstein eq. → BH is best known as a classical object. We know some of quantum properties of bh such as Hawking radiation.
- Classically BH is stable. Nothing can escape from BH
- In 4D, BH is unique. Topology for 4D bh=S²
- (M, J, Q) specify the hole. (No hair theorem)
- Kerr-Newman solution (4D) is the most general one.
- How a bh forms? Hoop conjecture

Hoop Conjecture

- HC states (Kip Thorne 1972)

 "An imploding object forms a Black Hole when, and only when, a circular hoop with a specific critical circumference could be placed around the object and rotated. The critical circumference is given by 2 times Pi times the black hole radius corresponding to the object's mass (and angular momentum)."
- In short, "Black Hole forms when [C< 2 pi R]" or "big energy is concentrated in small space".
- HC seems true in any space-time dimension(D>2).
- No rigorous proof available yet.

Higher Dimensional Black objects

- Various Solutions with Topology = S(n+2), S2XSn, S2XR found.
- S2XSn=Black Ring
- S2XR =Black String

Both seem unstable

- Myers-Perry solution=(4+n)Dim. Rotating BH sol.
- For `small' bh (<< compactification radius or curvature radius), Myers-Perry solution provides the best description. $r_h(M,J) = \frac{r_s(M)}{(1+a^2)^{1/n+1}}$

$$\begin{cases} r_{S}(M)^{1/n+1} = \frac{16\pi G_{4+n}M}{(n+2)\Omega_{2+n}} & \Omega_{2+n} = \frac{2\pi^{\frac{n+3}{2}}}{\Gamma(\frac{n+3}{2})} \\ a = \frac{(n+2)J}{2M} \end{cases}$$

Quantum nature of Black Hole

- Quantum Mechanically BH is unstable.
- Anything can come out of BH via Hawking radiation.
- Temperature= Surface Gravity at the event horizon.
- Small, light bhs are hot!! All things will come out if it is `almost planck size' bh which is the hottest one.
- Entropy= Surface Area/4G, small bh will be eventually non-classical object. Then we need to know QG.
- Greybody factor determines the spectrum of Hawking radiation. $T = \frac{(n+1)+(n-1)a^2}{4\pi(1+a^2)r_b} \rightarrow \frac{n+1}{4\pi r_b}$

$$S = \frac{M}{(n+2)T} (n+1 - \frac{2a^2}{1+a^2}) \to \frac{\Omega_{2+n} r_h^{2+n}}{4G_{4+n}}$$

Greybody factor

- = Absorption Probability of wave mode (s, I, m) by BH.
- = Modification factor of the curved geometry

$$-\frac{d}{dt}\binom{M}{J} = \frac{1}{2\pi} \sum_{s,l,m} g_s \int d\omega \frac{\Gamma_{s,l,m}}{e^{\omega - m\Omega/T} \mp 1} \binom{\omega}{m}$$

(NOTE)

4D: 1970s Teukolsky, Page (4+n)D brane fields: 2003-Ida-Oda-Park I,II,III Kanti et.al. Implemented in BlackMax

Production Cross section

estimation

(based on Hoop conjecture, taking angular momentum into account)

$$\Delta = r^{2} \left(1 - \left(\frac{r_{s}}{r} \right)^{1+n} + \frac{a^{2}}{r^{2}} \right) = 0$$

$$M = \frac{(n+2)A_{n+2}}{16\pi G} \mu, \quad J = \frac{2}{n+2} Ma,$$

$$T_{R}(M,J) = r_{S}(M)(1+a^{2})^{-1/n+1}$$

$$r_{S}(M) = C_{n}(G_{4+n}M)^{1/n+1}, C_{n} = O(1)$$

Hoop Conjecture:

$$b < 2r_h(M, J) = 2r_h(M_i, bM_i/2),$$

$$\sigma = \pi b_{\text{max}}^2 = 4 \left[1 + \left(\frac{n+2}{2} \right)^2 \right]^{\frac{-2}{n+1}} \pi r_s^2$$

D. Ida, K.-y. Oda, SCP,

Phys.Rev.D67:064025,2003, Erratum-ibid.D69:049901

Conventions

Planck scale (I would take PDG convention)

$$S = \frac{1}{8\pi G_{4+n}} \int d^{4+n}x \frac{R}{2}$$

$$8\pi G_{4+n} = \frac{N_n}{M_D^{2+n}} \qquad N_n = (2\pi)^n (PDG), 1(RS), 8\pi (DL), 2(2\pi)^n (GT)..$$

I would follow the PDG convention

$$r_{S}(M) = k(n) \left(\frac{M}{M_{D}}\right)^{\frac{1}{n+1}} \frac{1}{M_{D}}$$

$$k(n) = \left(\frac{(2\pi)^{n}}{(n+2)\Omega_{2+n}}\right)^{\frac{1}{n+1}} = 0.46(n=1) - 2.4(n=6)$$

Physical quantities (PDG convention)

$$T(n=1) = 0.34 M_5 \left(\frac{M_5}{M}\right)^{1/2}$$

$$T(n=6) = 0.23M_{10} \left(\frac{M_{10}}{M}\right)^{1/7}$$

$$S(n=1) = 1.9 \left(\frac{M}{M_5}\right)^{3/2}$$

$$S(n=6) = 3.8 \left(\frac{M}{M_{10}}\right)^{8/7}$$

$$\sigma(n=1) = \frac{32}{39} \left(\frac{\sqrt{\hat{s}}}{M_5} \right) \frac{1}{{M_5}^2}$$

$$\sigma(n=6) = 33 \left(\frac{\sqrt{\hat{s}}}{M_{10}}\right)^{2/7} \frac{1}{M_{10}^{2}}$$

In TeV gravity scenarios

- Such as ADD, RS1
- Gravity becomes `strong' at around 1TeV.
- Black Hole production expected at `Trans-Planckian' collisions (>TeV)
- From now on I would focus on BH production in RS1 (less discussed than ADD)
- considering the SM `off the brane' (less discussed than `on the brane' case)

RS1
$$ds^2 = e^{-2y/l} dx^2 - dy^2$$

- 'scale' is position dependent. $M(y) = e^{-y/l}M$
- UV/IR hierarchy is due to the warping.

$$\frac{M_{IR}}{M_{IIV}} = e^{-d/l} \approx 10^{-15}; d \approx 35l$$

BH production on UV brane

$$\sigma_0 = \frac{32}{39} \left(\frac{\sqrt{\hat{s}}}{M} \right) \frac{1}{M^2}$$

We will not see this event since it is Mpl suppressed!

BH production at an arbitrary 'y'

BH production on IR brane

Y=0

Y=d

*Note: (E/M) is scale invariant.

*Cross section \sim 1/TeV 2 .

$$\sigma_{IR} = \frac{32}{39} \left(\frac{\sqrt{\hat{s}}}{M} \right) \frac{1}{M^2} e^{2d/l}$$
$$= \frac{32}{39} \left(\frac{\sqrt{\hat{s}}}{M} \right) \frac{1}{\overline{M}^2}$$

RS1-orginal

- All the SM particles lie on the IR brane.
- They `feel' strong gravity at the IR scale.
- BH production rate
 ~1/TeV²
- The LHC as a BH factory

RS1-bulk SM

- To address the hierarchy problem, we would put the Higgs boson on the IR brane (or in the vicinity of the IR brane)
- For flavor problem, longevity of proton, better low energy data fit, etc., we would put 1st,2nd generations on the UV brane (or in the vicinity of UV brane).
- 3rd generation (bR, tL, tR) may be on the IR brane. As a bonus, Large Yukawa for the top is also understandable due to the large overlap with the Higgs.
- (Massless, zero-mode) Gauge bosons are `flat' in the bulk.
- (Probably) The most realistic set-up in RS1 models.

Profile: RS1-bulk SM

Gravity scale for the SM particles

- Higgs, top, bottom as well as the longitudinal components of (W, Z) 'feel' the TeV gravity.
- The IR-tip of gluon, photon and the transverse components of (W, Z) `feel' the TeV gravity.
- Others (such as 1st, 2nd generation fermions) `feel' the Planck –weak- gravity.

BH production in RS1-bulk

PP-collider

$$\sigma \approx \sigma_{bb+b\bar{b}} + \sigma_{gg} + \sigma_{gb+g\bar{b}} + \sigma_{W_LW_L + Z_LZ_L} + \sigma_{gW_L + gZ_L}$$

• Bottom: small PDF

$$1/\sqrt{2d/l} \sim 1/\sqrt{70}$$

- Gluon: wave function suppression for each gluon
- WL, ZL: weak vertex suppression by $\alpha_w/4\pi$
- Indeed, Thermal black hole production is highly suppressed. (See e.g. Patrick-Lisa's paper)

Closer look: bb+bbbar

$$\sigma_{bb+b\bar{b}}(s) = \int dx_1 \int dx_2 f_b(x_1, \sqrt{x_1 x_2 s}) f_b(x_2, \sqrt{x_1 x_2 s}) \hat{\sigma}(\sqrt{x_1 x_2 s}) + (b \leftrightarrow \bar{b})$$

$$\hat{\sigma}(\sqrt{\hat{s}}) = \frac{32}{39} \left(\frac{\sqrt{\hat{s}}}{M} \right) \frac{1}{\overline{M}^2}$$

Suppressed by PDF!

Closer look: gg

- Only `tip' of the gluon contribute to the bh formation.
- `Bulk' contribution is exponentially suppressed.(negligible)

$$\sigma_{gg}(s) = \int dx_1 \int dx_2 f_g(x_1, \sqrt{x_1 x_2 s}) f_g(x_2, \sqrt{x_1 x_2 s}) \hat{\sigma}(\sqrt{x_1 x_2 s})$$

$$\hat{\sigma}(\sqrt{\hat{s}}) = \frac{32}{39} \left(\frac{\sqrt{\hat{s}}}{M}\right) \frac{1}{\overline{M}^2} \times \left(\frac{1}{\sqrt{2d/l}}\right)^2$$

Closer look: WL, ZL

- By the equivalence theorem, the longitudinal components of the weak gauge bosons are effectively the unphysical Higgs.
- Localized on the IR brane and feel the TeV gravity.
- Suppressed by $\frac{\alpha_w/4\pi}{(\alpha_w/4\pi)^2}$

Production Cross section

Indeed, Thermal black hole production is highly suppressed. (See e.g. Patrick-Lisa's paper on 'Quantum' black hole production)

However, BH is still interesting!

• Signal is totally different from any others.

Exotic signals expected

- Same-sign leptons: e-e-, e-e-e- ...
- Lepton number violation, Baryon number violation
- Black hole does not preserve any 'global' quantum number.
- Most probably, we may not need to have huge number of bhs for discovery.

Additional words on Decay channels

- Mainly to the particles on the IR brane thanks to the locality.
- Gluon emission is suppressed by 1/sqrt(70)
- Large number of bjets and top quarks
- Higgs, WL, ZL signals
- Bulk Graviton emission suppressed in RS1. (due to small number of polarization, Z2 symmetry and large warping etc..). This is good for us since they are mostly 'missing energy'.

No conclusion.

I just would like to call for your attention/help.

- First of all, Bgrd study required. (e.g. 3j,4j,5j,6j...) (Steffen, Giacomo, Tomasso suggested 2j+2l,3j+2l..etc would be better channels. Let's see.)
- No known ways of Mass reconstruction, Angular momentum reconstruction etc.
- Seeks for `golden channel' for bh discovery
- Even gen. BlackMax: full greybody factor implemented
- http://www-pnp.physics.ox.ac.uk/~issever/BlackMax/blackmax.html