Tilman Plehn

Jets

Parameters

Measurements

Markov chains

MSSM

Extra dimensions

SFitter: Measuring Supersymmetry

Tilman Plehn

University of Edinburgh

IPMU, 12/2007

Tilman Plehn

- Jets
- Parameters
- Measurements
- Markov chains
- MSSM
- Extra dimensions

New physics and jets

Outline

Supersymmetric parameter space

LHC measurements

Markov chains

MSSM parameters

If time allows: large extra dimensions

Tilman Plehn

Jets

- Parameters
- Measurements
- Markov chains
- MSSM
- Extra dimensions

Just as a side remark: jets and heavy states [Rainwater, TP, Skands]

- squarks and gluinos always with many jets
- cascade studies sensitive to jet activity? [compare to Pythia shower]
- matrix element $\tilde{g}\tilde{g}$ +2j and $\tilde{u}_L\tilde{g}$ +2j [$\rho_{T,j} > 100 \text{ GeV}$]
- hard scale μ_F huge for SUSY

New physics and jets

- obvious: $p_{T,i}$ spectra fine with jet radiation
- miracle: angular correlations better than 10%
- ⇒ QCD not a problem in new-physics signals [as long as particles heavy]

σ [pb]	tī ₆₀₀	ĝĝ	ũĮĝ
σ_{0i}	1.30	4.83	5.65
σli	0.73	2.89	2.74
σ _{2j}	0.26	1.09	0.85

Tilman Plehn

Jets

Parameters

- Measurements
- Markov chains
- MSSM
- Extra dimensions

Supersymmetric parameter space

From kinematics to SUSY parameters [Fittino; SFitter: Lafaye, TP, Rauch, Zerwas]

- complex models, including dark matter, flavor physics, low-energy physics,...
- model parameters: weak-scale Lagrangean
- measurements: masses or edges branching fractions cross sections
- errors: general correlation, statistics & systematics & theory
- problem in grid: huge phase space, no local maximum? problem in fit: domain walls, no global maximum? problem in interpretation: bad observables, secondary maxima?

First go at problem

- ask a friend how SUSY is broken \Rightarrow mSUGRA
- ${
 m fit} m_0, m_{1/2}$ [only one best-fitting point]
- no problem, include indirect constraints
- best-fitting pre-LHC point [Ellis,...]
- technically trivial [Minuit]
- dominated by dark matter and $(g-2)_{\mu}$
- ⇒ no theory bias, except it's mSUGRA

Tilman Plehn

Jets

Parameters

- Measurements
- Markov chains
- MSSM
- Extra dimensions

Supersymmetric parameter space

From kinematics to SUSY parameters [Fittino; SFitter: Lafaye, TP, Rauch, Zerwas]

- complex models, including dark matter, flavor physics, low-energy physics,...
- model parameters: weak-scale Lagrangean
- measurements: masses or edges branching fractions cross sections
- errors: general correlation, statistics & systematics & theory
- problem in grid: huge phase space, no local maximum? problem in fit: domain walls, no global maximum? problem in interpretation: bad observables, secondary maxima?

Same thing for LHC

- ask same friend how SUSY is broken \Rightarrow mSUGRA
- fit $m_0, m_{1/2}, A_0, \tan \beta, y_t, ...$
- \Rightarrow best-fitting point to LHC/ILC measurements

	SPS1a	$\Delta_{endpoints}$	Δ_{ILC}	$\Delta_{LHC+ILC}$	$\Delta_{endpoints}$	Δ_{ILC}	$\Delta_{LHC+ILC}$		
			exp. errors	3	exp. and theo. errors				
m ₀	100	0.50	0.18	0.13	2.17	0.71	0.58		
m _{1/2}	250	0.73	0.14	0.11	2.64	0.66	0.59		
tan β	10	0.65	0.14	0.14	2.45	0.35	0.34		
A	-100	21.2	5.8	5.2	49.6	12.0	11.3		
mt	171.4	0.26	0.12	0.12	0.97	0.12	0.12		

Tilman Plehn

Jets

Parameters

Measurements

Markov chains

MSSM

Extra dimensions

LHC measurements

Simulated LHC measurements in SPS1a

- kinematic endpoints from ascade decays

 statistical error: Gaussian systematic error (JES, LES): Gaussian [measured in parallel] theory error: flat [no bias of higher orders] combination: RFit scheme [same as CKMFitter]

- 15 measurements from LHC

	type	nominal	stat	LES	JES	theo
m _h m+		108.99 171.40	0.01	0.25	1.0	2.0
$m_{\tilde{l}_L} - m_{\chi_1^0}$		102.45	2.3	0.1		2.2
$m_{\tilde{g}} - m_{\chi_1^0}$		511.57	2.3		6.0	18.3
$m_{\tilde{q}_R} - m_{\chi_1^0}$		446.62	10.0		4.3	16.3
$m_{\tilde{q}} - m_{\tilde{b}_{1}}$		88.94	1.5		1.0	24.0
$m_{\tilde{g}} - m_{\tilde{b}_2}$		62.96	2.5		0.7	24.5
$m_{\parallel}^{\text{max}}$:	three-particle edge $(\chi_2^0, \tilde{l}_B, \chi_1^0)$	80.94	0.042	0.08		2.4
m ^{max} :	three-particle edge($\tilde{q}_L, \chi_2^0, \chi_1^0$)	449.32	1.4		4.3	15.2
m ^{low} :	three-particle edge($\tilde{q}_L, \chi^0_2, \tilde{l}_R$)	326.72	1.3		3.0	13.2
$m_{\parallel}^{\text{max}}(\chi_4^0)$:	three-particle edge $(\chi_4^0, \tilde{l}_R, \chi_1^0)$	254.29	3.3	0.3		4.1
$m_{\tau \tau}^{\max}$:	three-particle edge $(\chi_2^0, \tilde{\tau}_1, \chi_1^0)$	83.27	5.0		0.8	2.1
m ^{high} :	four-particle edge $(\tilde{q}_L, \chi_2^0, \tilde{l}_R, \chi_1^0)$	390.28	1.4		3.8	13.9
m ^{thres} :	threshold($\tilde{q}_L, \chi^0_2, \tilde{l}_R, \chi^0_1$)	216.22	2.3		2.0	8.7
m ^{thres} :	threshold($\tilde{b}_1, \chi^0_2, \tilde{l}_R, \chi^0_1$)	198.63	5.1		1.8	8.0

Tilman Plehn

Jets

Parameters

Measurements

Markov chain

MSSM

Extra dimensions

LHC measurements

Simulated LHC measurements in SPS1a

- kinematic endpoints from ascade decays

 statistical error: Gaussian systematic error (JES, LES): Gaussian [measured in parallel] theory error: flat [no bias of higher orders] combination: RFit scheme [same as CKMFitter]

- results from χ^2 fit

	LHC		ILC		LHC+II	SPS1a	
tan β	10.0±	4.5	$12.1\pm$	7.0	12.6±	6.2	10.0
M1	$102.1\pm$	7.8	$103.3 \pm$	1.1	$103.2\pm$	0.95	103.1
M2	$193.3 \pm$	7.8	$194.1\pm$	3.3	$193.3 \pm$	2.6	192.9
M ₃	$577.2\pm$	14.5	fixed 5	00	$581.0 \pm$	15.1	577.9
Μ _{τ̃L}	227.8±C	v(10 ³)	190.7 \pm	9.1	190.3 \pm	9.8	193.6
M _Ť	164.1± <i>C</i>	v(10 ³)	$136.1\pm$	10.3	$136.5\pm$	11.1	133.4
M _ℓ	193.2 \pm	8.8	194.5 \pm	1.3	194.5 \pm	1.2	194.4
M _{ℓ̃R}	$135.0\pm$	8.3	135.9 \pm	0.87	$136.0\pm$	0.79	135.8
м _{ĝ31}	$481.4\pm$	22.0	499.4±℃	9(10 ²)	$493.1\pm$	23.2	480.8
M _t	415.8±℃	9(10 ²)	434.7±℃	2(10 ²)	$412.7\pm$	63.2	408.3
M _Ď	$501.7\pm$	17.9	fixed 5	00	$502.4\pm$	23.8	502.9
M _ĝ	$524.6\pm$	14.5	fixed 5	00	$526.1\pm$	7.2	526.6
M _ĝ	$507.3\pm$	17.5	fixed 5	00	$509.0\pm$	19.2	508.1
A_{τ}	fixed	0	613.4±℃	2(10 ⁴)	764.7 $\pm C$	(10 ⁴)	-249.4
A _t	-509.1 \pm	86.7	-524.1±C	2(10 ³)	-493.1 \pm	262.9	-490.9
Ab	fixed 0		fixed	0	199.6 $\pm C$	9(10 ⁴)	-763.4
m _A	406.3±C	v(10 ³)	$393.8\pm$	1.6	$393.7\pm$	1.6	394.9
μ	$350.5\pm$	14.5	$354.8\pm$	3.1	$354.7\pm$	3.0	353.7
m _t	171.4±	1.0	$171.4\pm$	0.12	171.4±	0.12	171.4

 \Rightarrow works for MSSM

Tilman Plehn

Jets

Parameters

Measurements

Markov chains

MSSM

Extra dimensions

Markov chains

From kinematics to weak-scale parameters [Fittino; SFitter: Lafaye, TP, Rauch, Zerwas]

- model parameters: weak-scale Lagrangean
- problem in grid: huge phase space, no local maximum? problem in fit: domain walls, no global maximum? problem in interpretation: bad observables, secondary maxima?

Probability maps of new physics [Baltz,...; Roszkowski,...; Allanach,...; SFitter]

- starting point: probability measure for each continuous model hypothesis fully exclusive likelihood map p(d|m) over m [hard part]
- LHC problem: remove pathetic directions [e.g. endpoints or dark matter vs rates]
- (1) Bayesian: $p(m|d) \sim p(d|m) p(m)$ with theorists' bias p(m) [cosmology, BSM] advantage: proper probability distribution problem: integration measure needed: p(m) problem: noise from integration over flat directions [volume effects]
- (2) frequentist: best-fitting point max_m p(d|m) [flavor] advantage: no measure in profile likelihood advantage: high resolution without noise problem: size of likelihood peaks arbitrary
 - LHC era: (1) compute high-dimensional map p(d|m)
 - (2) find and rank local maxima in p(d|m)
 - (3) Bayesian–frequentist dance to reduce dimensions

Tilman Plehn

Jets

Parameters

Measurements

Markov chains

MSSM

Extra dimensions

Markov chains

From kinematics to weak-scale parameters [Fittino; SFitter: Lafaye, TP, Rauch, Zerwas]

- model parameters: weak-scale Lagrangean
- problem in grid: huge phase space, no local maximum? problem in fit: domain walls, no global maximum? problem in interpretation: bad observables, secondary maxima?

Bayesian or frequentist?

- toy potential $V(\vec{x})$ in 5 dimensions [2 spheres, cigar, 2 cubes]
- best-fitting point: small sphere most likely scenatio: large sphere [water in spoon/cloud]
- two-fold SFitter output: list & map

V=74.929 @(655.00,253.72,347.83,348.57,349.59) V=59.972 @(850.04,224.99,650.00,649.99,654.56) V=58.219 @(849.97,225.01,587.08,650.01,650.02) V=25.110 @(750.00,749.99,450.00,450.01,450.01) V=16.042 @(245.45,253.44,552.51,542.58,544.75) V=12.116 @(350.70,650.40,650.36,650.40,650.38)

Tilman Plehn

Jets

- Parameters
- Measurements

Markov chains

MSSM

Extra dimensions

Markov chains

From kinematics to weak-scale parameters [Fittino; SFitter: Lafaye, TP, Rauch, Zerwas]

- model parameters: weak-scale Lagrangean
- problem in grid: huge phase space, no local maximum?
 problem in fit: domain walls, no global maximum?
 problem in interpretation: bad observables, secondary maxima?

Bayesian or frequentist?

- toy potential $V(\vec{x})$ in 5 dimensions [2 spheres, cigar, 2 cubes]
- best-fitting point: small sphere most likely scenatio: large sphere [water in spoon/cloud]
- two-fold SFitter output: list & map
- same for MSUGRA today [Allanach, Cranmer, Lester, Weber]
- 'Which is the most likely parameter point?'
 'How does dark matter annihilate/couple?'

Tilman Plehn

Jets

- Parameters
- Measurements
- Markov chains
- MSSM
- Extra dimensions

Markov chains

Weighted Markov chains [SFitter, Ferrenberg & Swendsen]

- classical: produce representative set of spin states compute average energy based on this reduced sample
- $\Rightarrow\,$ map (chain) based on probability of a state expensive energy function on sample
 - BSM physics: produce map p(m|d) of parameter points evaluate same probability from (binned) density typical problem: two bins with probability 10% : 90%
- ⇒ weighted Markov chains [like weighted Monte Carlo]
- binning weighted events without double counting $P_{\rm bin}(p\neq 0)=\frac{N}{\sum_{i=1}^{N}1/p}$
- MSUGRA: error dominated by weighted events
- MSSM: error dominated by zero region? [at some point...]
- already for mSUGRA: MCMC resolution not sufficient
- \Rightarrow use additional probability maximization to rank maxima

Tilman Plehn

Jets

- Parameters
- Measurements
- Markov chains

MSSM

Extra dimensions

Toy model: MSUGRA map from LHC [LHC endpoints with free yt]

 SFitter output #1: fully exclusive likelihood map SFitter output #2: ranked list of local maxima

MSSM parameters

Ė

- strong correlation e.g. of A_0 and y_t [including all errors]

200						10000	⁰ χ ²	<i>m</i> 0	$m_{1/2}$	$\tan \beta$	A ₀	μ	mt
190						10000	0.3e-04 27 42	100.0	250.0 251.6	10.0 11.7	-99.9 848 9	+	171.4 181.6
180						10	54.12	107.2	243.4	13.3	-97.4	-	171.1
170						1	70.99	108.5	246.9	13.9	26.4	-	1/3.6
170							88.53	107.7	245.9	12.9	802.7	-	182.7
160			÷.,										
-10	00 -500	0 500 A.	1000	1500	2000								

 \Rightarrow correlations and secondary maxima significant

Tilman Plehn

- Jets
- Parameters
- Measurements
- Markov chains
- MSSM
- Extra dimensions

Toy model: MSUGRA map from LHC [LHC endpoints with free yt]

- SFitter output #1: fully exclusive likelihood map SFitter output #2: ranked list of local maxima
- strong correlation e.g. of A₀ and y_t [including all errors]
- \Rightarrow correlations and secondary maxima significant

MSSM map from LHC

MSSM parameters

- shifting from 6D to 19D parameter space [killing grids, Minuit, laptop-style fits...]
- SFitter outputs #1 and #2 still the same [weighted Markov chain plus hill climber]
- 1. Markov chain + Minuit over entire parameter space [flat proposal]
 - 2. high-res Markov chain + Minuit over M_i , $\mu \tan \beta$, m_t [flat proposal]
 - 3. high-res Markov chain + Minuit over orthogonal space [Breit-Wigner proposal]
 - 4. Minuit over all parameters
- three neutralinos observed 4 solutions for M₁, M₂, μ
 - 2 solutions for $\pm |\mu|$
 - 2 solutions for $\pm |A_t|$

⇒ secondary maxima degenerate in MSSM

Tilman Plehn

Jets

- Parameters
- Measurements
- Markov chains
- MSSM
- Extra dimensions

MSSM parameters

Toy model: MSUGRA map from LHC [LHC endpoints with free yt]

- SFitter output #1: fully exclusive likelihood map SFitter output #2: ranked list of local maxima
- strong correlation e.g. of A_0 and y_t [including all errors]
- \Rightarrow correlations and secondary maxima significant

MSSM map from LHC

- shifting from 6D to 19D parameter space [killing grids, Minuit, laptop-style fits...]
- SFitter outputs #1 and #2 still the same [weighted Markov chain plus hill climber]
- 1. Markov chain + Minuit over entire parameter space [flat proposal]
 - 2. high-res Markov chain + Minuit over M_i , $\mu \tan \beta$, m_t [flat proposal]
 - 3. high-res Markov chain + Minuit over orthogonal space [Breit-Wigner proposal]
 - 4. Minuit over all parameters
- three neutralinos observed 4 solutions for M_1, M_2, μ 2 solutions for $\pm |\mu|$ 2 solutions for $\pm |A_t|$

- ⇒ secondary maxima degenerate in MSSM
- ⇒ no perfect statistical approach

Tilman Plehn

- Jets
- Parameters
- Measurements
- Markov chains
- MSSM
- Extra dimensions

Toy model: MSUGRA map from LHC [LHC endpoints with free y_t]

- SFitter output #1: fully exclusive likelihood map SFitter output #2: ranked list of local maxima
- strong correlation e.g. of A_0 and y_t [including all errors]
- ⇒ correlations and secondary maxima significant

MSSM map from LHC

MSSM parameters

- shifting from 6D to 19D parameter space [killing grids, Minuit, laptop-style fits...]
- SFitter outputs #1 and #2 still the same [weighted Markov chain plus hill climber]
- ⇒ secondary maxima degenerate in MSSM
- \Rightarrow no perfect statistical approach

Theorists' goal [SFitter + Kneur]

- unification and supersymmetry
- test mass unification with errors [Cohen, Schmalz]
- properly: RGE running bottom-up
- error analysis yet missing
- ⇒ LHC: fundamental physics from weak scale

Tilman Plehn

Jets

Parameters

Measurements

Markov chains

MSSM

Extra dimensions

If time allows: large extra dimensions

Also solving the hierarchy problem [Arkani-Hamed, Dimopoulos, Dvali]

- weak gravity = large Planck scale $G_N \sim 1/M_{\rm Planck}^2~_{\rm [M_{Planck} \sim 10^{19}~GeV]}$
- Einstein-Hilbert action in 4 + n dimensions [on torus periodic boundaries]

$$\int d^{4}x \sqrt{|g|} M_{\text{Planck}}^{2} R \to \int d^{4+n}x \sqrt{|g|} M_{*}^{2+n} R = (2\pi r)^{n} \int d^{4}x \sqrt{|g|} M_{*}^{2+n} R$$
$$M_{\text{Planck}} = M_{*} (2\pi r M_{*})^{n/2} \gg M_{*} \sim 1 \text{ TeV}$$

- to get numbers right: $r = 10^{12}, 10^{-3}, ...10^{-11}$ m for n = 1, 2, ...6
- ⇒ fundamental Planck scale at TeV

Kaluza-Klein gravitons

- Fourier-transform extra dimensions [QCD massless] $(\Box + m_k^2) G_{\mu\nu}^{(k)} = -\frac{T_{\mu\nu}}{M_{\text{Planck}}} \qquad \delta m \sim \frac{1}{r} = 2\pi M_* \left(\frac{M_*}{M_{\text{Planck}}}\right)^{2/n} \lesssim 0.05 \text{ GeV}$
- graviton couplings to quarks and gluons

$$f(k_1) - f(k_2) - G_{\mu\nu}$$
: $-\frac{i}{4M_{\text{Planck}}} (W_{\mu\nu} + W_{\nu\mu})$ with $W_{\mu\nu} = (k_1 + k_2)_{\mu} \gamma_{\nu}$

 \Rightarrow single gravitons tightly spaced and coupled as $1/M_{\text{Planck}}$

Tilman Plehn

Jets

Parameters

Measurements

Markov chains

MSSM

Extra dimensions

Large extra dimensions

Hope for collider searches

- real radiation of continuous KK tower
$$[dm/d|k| \sim 1/r]$$

 $\sigma^{\text{tower}} \sim \sigma^{\text{graviton}} \int dm \, S_{n-1} m^{n-1} r^n = \sigma^{\text{graviton}} \int dm \, \frac{S_{n-1} \, m^{n-1}}{(2\pi M_*)^n} \left(\frac{M_{\text{Planck}}}{M_*}\right)^2$

- higher-dimensional operator from virtual gravitons

$$\mathcal{A}(s;m) = \frac{1}{M_{\text{Planck}}^2} T_{\mu\nu} T^{\mu\nu} \frac{1}{s-m^2} \rightarrow \frac{S_{n-1}}{2M_*^4} \left(\frac{\Lambda}{M_*}\right)^{n-2}$$

 $\Rightarrow 1/M_*$ coupling for KK tower

Tilman Plehn

Jets

Parameters

Measurements

Markov chains

MSSM

Extra dimensions

Large extra dimensions

Hope for collider searches

- real radiation of continuous KK tower
$$[dm/d|k| \sim 1/r]$$

 $\sigma^{\text{tower}} \sim \sigma^{\text{graviton}} \int dm \, S_{n-1} m^{n-1} r^n = \sigma^{\text{graviton}} \int dm \, \frac{S_{n-1} \, m^{n-1}}{(2\pi M_*)^n} \left(\frac{M_{\text{Planck}}}{M_*}\right)^2$

- higher-dimensional operator from virtual gravitons

$$\mathcal{A}(s;m) = \frac{1}{M_{\text{Planck}}^2} T_{\mu\nu} T^{\mu\nu} \frac{1}{s-m^2} \rightarrow \frac{S_{n-1}}{2M_*^4} \left(\frac{\Lambda}{M_*}\right)^{n-2}$$

 $\Rightarrow 1/M_*$ coupling for KK tower

Tilman Plehn

- Jets
- Parameters
- Measurements
- Markov chains
- MSSM
- Extra dimensions

Large extra dimensions

Hope for collider searches

- real radiation of continuous KK tower
$$[dm/d|k| \sim 1/r]$$

 $\sigma^{\text{tower}} \sim \sigma^{\text{graviton}} \int dm \ S_{n-1} m^{n-1} r^n = \sigma^{\text{graviton}} \int dm \ \frac{S_{n-1} \ m^{n-1}}{(2\pi M_*)^n} \left(\frac{M_{\text{Planck}}}{M_*}\right)^2$

- higher-dimensional operator from virtual gravitons

$$A(s;m) = \frac{1}{M_{\text{Planck}}^2} T_{\mu\nu} T^{\mu\nu} \frac{1}{s-m^2} \rightarrow \frac{S_{n-1}}{2M_*^4} \left(\frac{\Lambda}{M_*}\right)^{n-2}$$

 $\Rightarrow 1/M_*$ coupling for KK tower

Virtual gravitons at LHC

- s-channel $gg \rightarrow \mu^+\mu^-$
- LHC rates (or reach) dependent on cut-off Λ
- effective theory not useful at LHC
- ⇒ UV completion necessary

[Antoniadis, Benakli, Laugier; Cullen, Perelstein, Peskin,...]

KK

- contranta

KK

-00000000

Tilman Plehn

- Jets
- Parameters
- Measurements
- Martin Alexandra
- MSSM
- Extra dimensions

Large extra dimensions

Hope for collider searches

- real radiation of continuous KK tower $[dm/d|k| \sim 1/r]$ $\sigma^{\text{tower}} \sim \sigma^{\text{graviton}} \int dm \ S_{n-1}m^{n-1}r^n = \sigma^{\text{graviton}} \int dm \ \frac{S_{n-1}m^{n-1}}{(2\pi M_*)^n} \left(\frac{M_{\text{Planck}}}{M_*}\right)^2$
- higher-dimensional operator from virtual gravitons

$$A(s;m) = \frac{1}{M_{\text{Planck}}^2} T_{\mu\nu} T^{\mu\nu} \frac{1}{s-m^2} \rightarrow \frac{S_{n-1}}{2M_*^4} \left(\frac{\Lambda}{M_*}\right)^{n-2}$$

 $\Rightarrow 1/M_*$ coupling for KK tower

Virtual gravitons at LHC

- s-channel $gg \rightarrow \mu^+\mu^-$
- LHC rates (or reach) dependent on cut-off Λ
- effective theory not useful at LHC
- ⇒ UV completion necessary

[Antoniadis, Benakli, Laugier; Cullen, Perelstein, Peskin,...]

Tilman Plehn

- Jets
- Parameters
- Measurements
- Markov chains
- MSSM
- Extra dimensions

Large extra dimensions

Renormalization flow of gravity [Reuter,...; Litim,...]

- dimensionless coupling $g(\mu)=G(\mu)\mu^{2+n}=G_0Z_G^{-1}(\mu)\mu^{2+n}$
- UV fixed point [anomalous dimension: $\eta = -\mu \partial_{\mu} \log Z_G \propto g$] $\mu \frac{\partial}{\partial \mu} g(\mu) = (2 + n + \eta(g)) \ g(\mu) = 0 \quad \text{for} \quad g \neq 0 \qquad \eta(g) = -2 - n$
- asymptotic safety ${\it G}(\mu) \sim Z_G^{-1} \sim \mu^{-(2+n)}
 ightarrow 0$ [Weinberg]
- ⇒ gravity weak enough for LHC predictions?

Graviton propagator [Litim, TP; Hewett & Rizzo]

- iterative approach: start with anomalous dimension [similar to QCD analyses]
- UV: dressed scalar propagator $[1/(Z_G(|p|) p^2) \sim 1/p^{4+n}]$

Tilman Plehn

Jets

- Parameters
- Measurements
- Markov chains
- MSSM

Extra dimensions

Supersymmetry at the LHC

TeV-scale new physics

- know there is BSM physics
- trust solution of hierarchy problem
- explain dark matter

Theory/Phenomenology in the LHC era

- (1) look for solid new-physics signals [missing energy?]
- (2) measure weak-scale Lagrangian [highD parameter spaces?]
- (3) determine fundamental physics
 - test discrete new-physics properties
 - construct sensible new-physics hypotheses
 - avoid getting killed by QCD
 - never talk about CMSSM analyses again
- ⇒ LHC more than a discovery machine!

Tilman Plehn

Jets

Parameters

Measurements

Markov chains

MSSM

Extra dimensions