Phenomenology of Littlest Higgs Model with T-parity

C.-P. Yuan

MICHIGAN STATE

(Based on the talk given by Chuan-Ren Chen at Argonne National Laboratory, 12/12/07)

In collaboration with Sasha Belyaev, Qing-Hong Cao, Chuan-Ren Chen and Kazuhiro Tobe

Phys. Lett. B640, 263 (2006) Phys. Rev. D74, 115020 (2006) Phys. Rev. D76, 075007 (2007) hep-ph/0612243

C.-P. Yuan (MSU)

Outline

Motivation and Model

- Little Hierarchy Problem
- Littlest Higgs Model with T-parity
- Higgs Physics in the LHT
- Top Physics in the LHT
- Production and Decay of new particles at the LHC
- Searching for the T-odd gauge boson at the LHC and LC
- Summary

Effective SM

Electroweak precision measurements prefer a light Higgs boson

 $m_{\mu} \leq 182 \, GeV \quad @95\% \, C.L.$

Effective SM

Schmaltz et al, hep-ph/0502182, and references therein

broken symmetry	operators	scale Λ (TeV)
B, L	$(QQQL)/\Lambda^2$	10 ¹³
flavor (1&2), CP	$(ar{d} s ar{d} s) / \Lambda^2$	1000
flavor (2&3)	$m_{b}igl(\overline{s}\sigma_{\mu u}F^{\mu u}bigr)/\Lambda$	² 50
Custodial SU(2)	$\left(oldsymbol{h}^{\dagger}oldsymbol{D}_{\mu}oldsymbol{h} ight)^{2}oldsymbol{/}\Lambda^{2}$	5
non (S-parameter)	$\left(oldsymbol{D}^2oldsymbol{h}^\dagger oldsymbol{D}^2oldsymbol{h} ight) / \Lambda^2$	5

• NO new physics is needed up to ~5 TeV

Summary tension between 1 TeV and 5 TeV !! (fine-tunning)

solution: cancellation of quadratic divergences

 Λ^2 Canceled !! at least, at one-loop level

e.g. Supersymmetry, Little Higgs models

Littlest Higgs model with T-parity

- Higgs is a pseudo-Nambu-Goldstone boson Georgi, Pais
- The quadratic divergences are canceled by the particles with the same spin statistics
- Higgs mass is protected by two independent symmetries, i. e., Higgs is massless unless two or more couplings exist simultaneously (collective symmetry breaking)
 Arkani-Hamed, Cohen, Georgi,

if $\lambda_1 \sim \lambda_2 \sim 1$, f = 1 TeV, $\Lambda \sim 4\pi f$

Arkani-Hamed, Cohen, Georgi, hep-ph/0105239

 $\rightarrow \delta m_h^2 \sim -O(100 \text{GeV})^2$

Littlest Higgs model with T-parity Littlest Higgs model SU(5) / SO(5) non-linear sigma model Arkani-Hamed, Cohen, Katz, Nelson hep-ph/0206021 Global SU(5) \longrightarrow SO(5) Gauged [SU(2) x U(1)]² \longrightarrow SU(2) x U(1) at scale f $\mathsf{VEV} \quad \Sigma_{0} = \begin{bmatrix} 1 \\ 1 \\ 1_{2 \times 2} \end{bmatrix}_{5 \times 5} \quad \mathsf{GB} \quad \Pi = \begin{bmatrix} \omega_{2 \times 2} & h & \phi_{2 \times 2} \\ h^{\dagger} & \eta & h^{T} \\ \phi_{2 \times 2}^{\dagger} & h^{*} & \omega_{2 \times 2}^{T} \end{bmatrix}_{5 \times 5}$ The Higgs boson is $\Sigma = \exp\{\frac{2i\Pi}{f}\}\Sigma_0$ an exact GB under

both $SU(3)_1$ and $SU(3)_2$

Littlest Higgs model with T-parity

• ρ parameter \neq 1 at tree level

Chen, Dawson, hep-ph/0311932

 $f \geq 4 TeV$

new particle ~ few TeV, need fine-tunning again

Csaki, Hubisz, Kribs, Meade and Terning, hep-ph/0211124 Hewett, Petriello and Rizzo, hep-ph/0212228

C.-P. Yuan (MSU)

Chen, Cheung, Yuan, hep-ph/0605314 Perelstein, Spray, hep-ph/0610357 Hubisz, Meade, hep-ph/0411264 Asano, Matsumoto, N. Okada, Y. Okada, hep-ph/0602157 Birkedal, Noble, Perelstein, Spray, hep-ph/0603077

C.-P. Yuan (MSU)

Top sector

Low, hep-ph/0409025 Hubisz, Meade, hep-ph/0411264

$$\begin{split} \mathcal{L}_{t} &= -\frac{\lambda_{1}f}{2\sqrt{2}} \epsilon_{ijk} \epsilon_{xy} \begin{bmatrix} (\bar{Q}_{1})_{i} \Sigma_{jx} \Sigma_{ky} - (\bar{Q}_{2} \Sigma_{0})_{i} \tilde{\Sigma}_{jx} \tilde{\Sigma}_{ky} \end{bmatrix} u_{R} \\ &-\lambda_{2}f \left(\bar{U}_{1} U_{R_{1}} + \bar{U}_{2} U_{R_{2}} \right) + \text{h.c.} & \text{i,j,k summed over 1,2,3} \\ &Q_{1} &= (q_{1}, U_{1}, 0, 0)^{\mathrm{T}}, \quad Q_{2} = (0, 0, U_{2}, q_{2})^{\mathrm{T}} & \text{x,y summed over 4,5} \\ &Q_{1} & \checkmark & -\Sigma_{0} Q_{2} & \Sigma \rightarrow \tilde{\Sigma} \stackrel{\mathrm{T}}{\equiv} \Sigma_{0} \Omega \Sigma^{\dagger} \Omega \Sigma_{0} \end{split}$$

$$\mathcal{L}_{t} = \frac{-\lambda_{1}\lambda_{2}}{\sqrt{\lambda_{1}^{2} + \lambda_{2}^{2}}} \bar{t} t h + \frac{\lambda_{1}^{2}}{2\sqrt{\lambda_{1}^{2} + \lambda_{2}^{2}}} \bar{T}_{+} T_{+} h h - \frac{\lambda_{1}^{2}}{\sqrt{\lambda_{1}^{2} + \lambda_{2}^{2}}} \bar{t}_{L} T_{+R} h$$
$$-\sqrt{\lambda_{1}^{2} + \lambda_{2}^{2}} f \bar{T}_{+} T_{+} - \lambda_{2} f \bar{T}_{-} T_{-} + \cdots$$
Before EWSB: T-even $m_{\star} = 0$ $m_{T} = \sqrt{\lambda_{1}^{2} + \lambda_{2}^{2}} f$

 m_t $V \qquad T_{+} \qquad V \qquad T_{1} \qquad V \qquad T_{2}$

$$\Gamma - \text{odd} \qquad m_{\text{T}_{-}} = \lambda_2 f$$

Sum = $0 \cdot \Lambda^2 + \cdot \cdot$

T-even heavy T₊ contributions cancel Λ^2

C.-P. Yuan (MSU)

Littlest Higgs model with T-parity

Additional T-odd fermion fields

 $L_{\kappa} = -\kappa f \left(\overline{\Psi}_{2} \xi \Psi_{c} + \overline{\Psi}_{1} \Sigma_{0} \Omega \xi^{\dagger} \Omega \Psi_{c} \right) + h.c.$

Low, hep-ph/0409025 Hubisz, Meade, hep-ph/0411264

$$\Psi_{1} = (q_{1}, 0, 0, 0)^{T} \quad \Psi_{2} = (0, 0, 0, q_{2})^{T} \quad \Psi_{c} = (q_{c}, x_{c}, \tilde{q}_{c})^{T}$$

$$\xi = \exp\{i\Pi/f\}$$

includes Higgs

$$\Psi_{1} \leftarrow \nabla_{0}\Psi_{2} \quad \Psi_{c} \leftarrow \nabla - \Psi_{c} \quad \xi \leftarrow \nabla - \Omega\xi^{\dagger}\Omega$$

$$m_{odd} = \sqrt{2}\kappa f$$

T-odd fermions are unique for the model with T-parity!

summary: Little Higgs models solve the little hierarchy problem

T-parity relaxes EWPO constrains, new particles could be light

T-even: $u \times 3$, $d \times 3$, $e \times 3$, $v \times 3$, T_{\downarrow} , Particle spectrum W^{\pm}, Z, γ, h $m_{T_1} \sim \sqrt{\lambda_1^2 + \lambda_2^2} f$ T-odd: $u \times 3$, $d \times 3$, $e \times 3$, $v \times 3$, T, $m_u \sim m_d \sim \sqrt{2}k_a f$ $W_{H}^{\pm}, Z_{H}, A_{H}, \phi$ $m_e \sim m_v \sim \sqrt{2}k_l f$ triplet Higgs " heavy photon " $m_T \sim \lambda_2 f$ (dark matter candidate) $m_{W_u} \sim m_{Z_u} \sim g f$ $m_{A_{u}} \sim g' f / \sqrt{5}$ $m_{\phi} \sim \sqrt{2m_{h}f/v}$

Constrains on T-odd fermions

Hubisz, Meade, hep-ph/0411264 Hubisz, Meade, Noble, Perelstein, hep-ph/0506042

$$\sim \frac{-\kappa^2}{128\,\pi^2 f^2} \bar{f} \,\gamma^\mu f \,\bar{f} \,\gamma_\mu f$$

universal κ $m_{odd} \leq 4.8 \left(\frac{f}{1 \, TeV}\right)^2 TeV$ $m_{odd} \sim \sqrt{2} \kappa f$

 $\begin{array}{ll} \mathsf{non-universal} \ \kappa & O(eedd) \\ (\mathsf{lepton} \neq \mathsf{quark}) \end{array}$

Cao, Chen, arXiv: 0707.0877[hep-ph]

$$\frac{\kappa_l^2 \kappa_q^2}{\kappa_l^2 - \kappa_q^2} \ln\left(\frac{\kappa_l}{\kappa_q}\right) \leq \frac{128 \pi^3 f^2}{\left(26.4 \, TeV\right)^2}$$

C.-P. Yuan (MSU)

Littlest Higgs model with T-parity

Impacts of T-odd fermions

C.-P. Yuan (MSU)

Higgs search at the LHC

gluon-gluon fusion dominates !!

~ factor 5 larger than the 2nd largest one 0² (WW fusion), when 0 Higgs is light

C.-P. Yuan (MSU)

1

C.-P. Yuan (MSU)

C.-P. Yuan (MSU)

C.-P. Yuan (MSU)

Phenomenology of LHT

g

Higgs physics in the LHT

Contributions form new particles

both T-even and T-odd particles will contribute

the contributions from new particles in LHT will reduce the production rate via gluon-gluon fusion process

Higgs physics in the LHT

Contributions form new particles

Heavy T-even top loop

$$A_{T_{+}}^{LHT} \propto m_{T_{+}} g_{hT_{+}T_{+}} \frac{1}{m_{T_{+}}^{2}} g_{hT_{+}T_{+}} \frac{1}{m_{T_{+}}^{2}} m_{T_{+}} \sim \sqrt{\lambda_{1}^{2} + \lambda_{2}^{2}} f$$

$$\frac{\delta A_{T+t}}{A_{SM}} = \frac{-3}{4} \frac{v^{2}}{f^{2}}$$

Heavy T-odd quark loop

$$\frac{\delta A_{total}}{A_{SM}} = \frac{-3}{4} \frac{v^2}{f^2} + \frac{-1}{4} \frac{v^2}{f^2} \times 3 = \frac{-3}{2} \frac{v^2}{f^2}$$

Higgs physics in the LHT

Production

Corrections to the Higgs boson production total cross section via gluon-gluon fusion at the LHC $\delta \sigma_{gg \rightarrow h} \equiv \sigma^{LHT} (gg \rightarrow h) - \sigma^{SM} (gg \rightarrow h)$ 0 $\delta\sigma_{gg \rightarrow h}/\sigma_{gg \rightarrow h}^{sM}$ 1 TeV -0.11 TeV -0.2700 GeV 600 GeV -0.3 700 GeV T-even top sector+ T-odd fermions -0.4 T-even top sector f = 600 GeV-0.5 100 200 300 500 400 m_h [GeV]

The production rate could be significantly suppressed ! Chen, Tobe, Yuan, hep-ph/0602211

C.-P. Yuan (MSU)

Correction to single-top production

Shift in W-t-b coupling

 $W \\ \downarrow \\ \overline{b} \\ W \\ \downarrow \\ \overline{b} \\ W \\ \downarrow \\ \overline{b} \\ \overline{b} \\ W \\ \downarrow \\ \overline{b} \\ \overline{b} \\ V \\ \downarrow \\ \overline{b} \\ V \\ \overline{b} \\ \overline$

 $iV_{tb}\frac{g}{\sqrt{2}}\gamma_{\mu}\left(1-\frac{s_{\alpha}^{4}}{2}\frac{v^{2}}{f^{2}}\right)P_{L}$

Cao, Li, Yuan, hep-ph/0612243

$$s_{\alpha} \equiv \sin \alpha = \frac{\lambda_1}{\sqrt{\lambda_1^2 + \lambda_2^2}}$$

t-channel single-top production

 $\sigma(t) \propto g_{Wtb}^2$

deviation from SM prediction

$$\delta = \frac{\sigma_{SM} - \sigma_{LHT}}{\sigma_{SM}} = 2\delta g_{Wtb} = s_{\alpha}^4 \frac{v^2}{f^2}$$

Top Physics in the LHT

Correlation between the deviation in single-top production and new particle productions

• single T_1 and T_2 pair rates are also large.

C.-P. Yuan (MSU)

Top Physics in the LHT

Top quark polarization

predominately right-handed polarized top

Right-handed top is preferred in LHT while left-handed top in SM background

C.-P. Yuan (MSU)

Top Physics in the LHT

Spin correlation of top quarks in T-odd T_ pair production

$$\mathcal{A}_{LR} \equiv \frac{\sigma(t_L) - \sigma(t_R)}{\sigma(t_L) + \sigma(t_R)}$$

$$\begin{array}{cc} \text{LHT} & \text{SM} \\ \mathcal{A}_{LR} < 0 & \mathcal{A}_{LR} > 0 \end{array}$$

- Powerful tool to kill
 SM backgrounds
- A good probe to the symmetry breaking scale f

For the mass measurement of T-, see

Meade, Reece, hep-ph/0601124; Matsumoto, Nojiri, Nomura, hep-ph/06112249.

Hubisz, Meade, hep-ph/0411264

Freitas, Wyler, hep-ph/0609103

Belyaev, Chen, Tobe, Yuan, hep-ph/0609179

http://hep.pa.msu.edu/LHT/

LanHEP : generate Feynman rules for input Lagrangian

CalcHEP : calculate production cross sections and decay decay branching ratios

Numerical

Lagrangian

results

We categorize productions of all the new heavy particles and their signatures at the LHC.

Production and decay

$$\begin{array}{c|c} f = 1 \ \text{TeV} \\ \kappa = 1 \\ m_h = 120 \ \text{GeV} \end{array} & \begin{array}{c|c} A_H & Z(W)_H & T_+ & T_- & u(d)_- & \phi \\ \hline 0.15 & 0.65 & 1.4 & 1 & 1.4 & 0.69 \end{array} (\text{TeV}) \end{array}$$

Heavy particle decay branching ratios

Particle	Decay mode	BR (%)	Particle	Decay mode	BR (%)
U_	$W_{H}^{+} d$	61	d_	$W_{H}^{-} u$	62
	Z_{H} u	30		Z_H d	31
	A_{H} u	8.6		A_{H} d	6.3
<i>b</i> _	$W_{H}^{-}t$	60		$W_{_{H}}^{_{+}} b$	62
	$Z_{H} b$	32		Z_{H} t	29
	$A_{H} b$	6.6		$A_{H} t$	8.2
T ₊	$W^+ b$	46	<i>T</i> _	A_{H} t	100
	Z t	22	W_{H}^{+}	$A_{H}W^{+}$	100
	h t	20	Z_{H}	A_{H} h	100
	$A_{H} T_{-}$	12	ϕ^+	$A_{H}W^{+}$	100
$\phi^{ ho}$	A_{H} h	100	ϕ^0	$A_{H}Z$	100

T-odd quark productions (1st and 2nd generation)

a gauge boson + Higgs + $\not{\!\!E}_{_{T}}$ + jets: 1L +Higgs + $\not{\!\!E}_{_{T}}$ + jet, Higgs + $\not{\!\!E}_{_{T}}$ + jets,

$$\left(q \, \underline{\to} \, oldsymbol{Z}_{H} q \,, \,\, oldsymbol{Z}_{H} \, \overline{\to} \, h \, oldsymbol{A}_{H}
ight)$$

Production and decay

Belyaev, Chen, Tobe, Yuan, hep-ph/0609179

Carena, Hubisz, Perelstein, Verdier, hep-ph/0610156

Production and decay

3rd generation heavy quarks

signatures:

a top pair + $\not E_{T}$

Single Heavy T-even T

A top pair + Z-boson and Higgs

Production and decay

Boson-quark associated production

signatures:

- * gauge boson pair + jets + \not{E}_{T}
- * a Higgs + a gauge boson +jets + \not{E}_{T}
- *a Higgs pair + 1 Jet + \not{E}_{T}
- * a gauge boson + 1 Jet + $\not E_{\tau}$
- * a Higgs + 1 Jet + \not{E}_{T}

Production and decay

Boson pair production

Signatures:

* a gauge boson

Production and Decay

1.0

Cao, Chen, arXiv: 0707.0877[hep-ph]

Decay of W_H

(a) mass relation

$$\begin{split} M_{AH} &\approx 0.156 f \\ M_{WH} &\approx 0.653 f \\ M_{L-} &\approx 1.414 \kappa_{I} f \\ M_{q-} &\approx 1.414 \kappa_{q} f \end{split}$$

$$\begin{array}{c} 0.8 \\ -W_{H} \rightarrow WA_{H} \\ 0.6 \\ W_{H} \rightarrow q_{-} q \\ 0.4 \\ -W_{H} \rightarrow q_{-} q \\ 0.4 \\ -W_{H} \rightarrow q_{-} q \\ -W_{H} \rightarrow L_{-}L \\ 0.0 \\ 0.0 \\ -0.2 \\ 0.4 \\ -0.6 \\ -0.8 \\ -$$

C.-P. Yuan (MSU)

Signature at the LHC

Signature $e \mu + \not{E}_{T}$:

$$pp \to W_H W_H \to A_H W (\to e v_e) A_H W (\to \mu v_\mu)$$

$$pp \to W_H W_H \to v_e E_- (\to eA_H) v_\mu M_- (\to \mu A_H)$$

Backgrounds: $pp \rightarrow WW, WWZ, t\overline{t}, Wt$

C.-P. Yuan (MSU)

Kinematics

C.-P. Yuan (MSU)

Kinematics after cuts

cuts: $p_T^e > 20 \, GeV, \ p_T^{\mu} > 20 \, GeV, \ | \ \eta^e | < 2.0, \ | \ \eta^{\mu} | < 2.0$ $E_T > 175 \, GeV, \ \cos \theta_{e\mu} < 0.6$

Discovery potential at the LHC

C.-P. Yuan (MSU)

LHC : di-lepton + \mathcal{E}_{τ} Has a great discovery potential !! **BUT** ... \triangleright Can NOT determine masses of W_{μ} and A_{μ} \triangleright Can NOT reconstruct kinematics of A_{μ} \blacktriangleright Can NOT measure the spin of W_{μ} $L \not H C$: Can $M \not H$ determine masses of W_H and A_H Can Can construct kinematics of A_{μ} Can Measure the spin of W_{μ} With 4 jets + $\boldsymbol{\mathcal{F}}_{\tau}$ signature $e^+e^- \rightarrow W_H W_H \rightarrow A_H W(\rightarrow j j) A_H W(\rightarrow j j)$

Production at LC

C.-P. Yuan (MSU)

Searching at the LC

Signature 4 jets + \mathcal{E}_{τ}

Intrinsic background : $e^+ e^- \rightarrow Z W W \rightarrow v \bar{v} j j j j$ (~5.6 fb)

C.-P. Yuan (MSU)

 W_H

Require :

$$p_T^j \ge 15 \, GeV$$
, $|\eta| \le 3.0$, $\Delta R > 0.5$

Reconstruct W boson

* order 4 jets with respect to their transverse momentum $p_T^{j_1} > p_T^{j_2} > p_T^{j_3} > p_T^{j_4}$

* also require
$$MIN(\Delta = \sqrt{(m_1(jj) - m_W)^2 + (m_2(jj) - m_W)^2})$$

* identify Ws : $W_1 \equiv m(j_1 j_x)$, the other one is W_2

→> 99 % accuracy

Kong, Park, hep-ph/0703057

$$M_{W_{H}} = \sqrt{\frac{s}{2}} \frac{\sqrt{E_{+}E_{-}}}{E_{+}+E_{-}} \sqrt{1 + \frac{m_{W}^{2}}{E_{+}E_{-}}} + \sqrt{(1 - \frac{m_{W}^{2}}{E_{+}^{2}})(1 - \frac{m_{W}^{2}}{E_{-}^{2}})}$$
$$M_{A_{H}} = M_{W_{H}} \sqrt{1 - 2\frac{(E_{+}+E_{-})}{\sqrt{s}} + \frac{m_{W}^{2}}{M_{W_{H}}^{2}}}$$

(Similar technique has been widely used in SUSY analysis.)

C.-P. Yuan (MSU)

Reconstruction of masses of W₁ and A₁

C.-P. Yuan (MSU)

Effects of detector effects

$\frac{\Delta E}{E} = \frac{0.5}{\sqrt{E}}$ Reconstruct the mass of W_{μ} with smearing effects (b) f = 700 GeV $\frac{d \sigma}{dE_w}$ $\frac{d \sigma}{dE_w}$ W, W_{j} 0.05 0.05 0.00 0.00 300 500 100 200 300 100 200 400 0 400 500 0 $E_w(GeV)$ E_w (GeV) $E_{+}=355 \, GeV, E_{-}=130 \, GeV$ smeared $E_{+}=345 \, GeV, E_{-}=130 \, GeV$ $(\boldsymbol{M}_{W_{\mu}}, \boldsymbol{M}_{A_{\mu}}) \approx (432, 109) \, \boldsymbol{GeV}$ $(\boldsymbol{M}_{W_{\mu}}, \boldsymbol{M}_{A_{\mu}}) \approx (435, 126) \, \boldsymbol{GeV}$ $true(450,101) \, GeV \qquad \delta \approx 4\%, 8\%$

C.-P. Yuan (MSU)

Probing the Weak Boson Sector in $e^+e^- \rightarrow W^+W^-$ K. Hagiwara, R. D. Peccei and D. Zeppenfeld, Nucl.Phys.B282:253,1987.

boost back to the rest frame of W_H

C.-P. Yuan (MSU)

Reconstruction of kinematics

 $e^{+}e^{-} \rightarrow AA' \rightarrow B'C' \qquad \text{Hagiwara, Peccei, Zeppenfeld, Nucl. Phys. B282:253, 1987.}$ $p_{e^{+}} = \left(E_{t}, 0, 0, E_{t}\right) \quad p_{e^{-}} = \left(E_{t}, 0, 0, -E_{t}\right) \quad m_{A} = m_{A'}, m_{B} = m_{B'}, m_{C} = m_{C'}$ $\vec{p}_{A} = \vec{p}_{B} + \vec{p}_{C}, \quad \vec{p}_{A'} = \vec{p}_{B'} + \vec{p}_{C'}, \quad E_{A} = E_{B} + E_{C}, \quad E_{A'} = E_{B'} + E_{C'}$ $\vec{p}_{B} + \vec{p}_{C} + \vec{p}_{B'} + \vec{p}_{C'} = 0$

$$\frac{2\vec{p}_{B}\cdot\vec{p}_{C}=E_{A}^{2}-m_{A}^{2}-\left(E_{B}^{2}-m_{b}^{2}\right)-\left(E_{C}^{2}-m_{C}^{2}\right)}{2\vec{p}_{B}\cdot\vec{p}_{C}=\left(E_{c}^{2}-m_{c}^{2}\right)-\left(E_{A}^{2}-m_{A}^{2}\right)-\left(E_{B}^{2}-m_{C}^{2}\right)-2\vec{p}_{B}\cdot\vec{p}_{B'}}$$

$$p_{C}^{2}=E_{C}^{2}-m_{C}^{2}$$

 $\vec{p}_{C} = \alpha \vec{p}_{B} + \beta \vec{p}_{B'} + \gamma \vec{p}_{B} \times \vec{p}_{B'}$

Spin of W_H

Spin of W_H

Distinguishing different models

Summary

- Little Higgs mechanism provides a solution for solving the "little hierarchy" problem.
- T-parity forbids the mixing btw the SM and heavy gauge bosons
 avoiding EWPT, lowering f, LHC could copiously produce new particles.
- * The Higgs boson production rate via gluon fusion is suppressed.
- * Polarization states of top quarks could provide the evidence of LHT.
- * The LHC has a great potential to discover the signatures of new particles (W_{μ}) predicted in the LHT.
- * The physics quantities (mass, spin) could be measured at the LC, different models could be distinguished.