Opening Up Jets and Missing Energy Searches (at the Tevatron)

Jay Wacker SLAC

IPMU LHC Focus Week December 20, 2007

Work in progress with J. Alwall, M-P. Le, M. Lisanti

Outline

Introduction **Generalized Gluinos** Matching Backgrounds **Projected Reach** Outlook

High Energy Frontier

No "sure thing" theory to discover Tevatron, Flavor, Precision EW, Higgs LHC may not burst into a superfire

Many BSM possibilities to search for Supersymmetric Standard Model Universal Extra Dimensions Randall-Sundrum Little Higgs

Different TeV scale physics, but similar signals Inverse problem hard

Discovery first

Jets plus Missing Energy A common signature

New Colored Particle Decays to WIMP

Existing searches based upon MSSM

 ${ ilde q}{ ilde q} { ilde g}{ ilde g} { ilde g}{ ilde g$

Very general template to start from

Can find SSM, UED, RS/LH w/ T-parity

Jets + Missing Energy Cuts at D0 1fb⁻¹ analysis

	Gg	$\widetilde{q}\widetilde{q}$	$\widetilde{q}\widetilde{g}$	$ ilde{g} ilde{g}$
	$1j + \not\!\!E_T$	$2j + \not\!\!E_T$	$3j + \not\!\!E_T$	$4j + \not\!\!E_T$
$E_{T j_1}$	≥ 150	≥ 35	≥ 35	≥ 35
$E_{T j_2}$	< 35	≥ 35	≥ 35	≥ 35
$E_{T j_3}$			≥ 35	≥ 35
$E_{T j_4}$				≥ 20
$\not\!$	≥ 150	≥ 225	≥ 150	≥ 100
H_T	≥ 150	≥ 300	≥ 400	≥ 300

(Not exclusive searches)

Will these discover anything visible in these channels?

 $H_T = \sum E_{T j}$

What we know about gluino limits

mSugra is not representative of the MSSM $m_{\tilde{g}}: m_{\tilde{B}} = 6:1$

> Anomaly Mediation Mirage Mediation non-Minimal Gauge Mediation

Never varies decay kinematics

Are there visible signals that are not being analyzed? Possible because the background is challenging

Outline

Introduction

Generalized Gluinos

Matching

Backgrounds

Projected Reach

Outlook

Examining $\tilde{g}\tilde{g}$ more carefully The "gluino" module Turn on one decay mode $\tilde{g} \rightarrow q \bar{q} \tilde{\chi}^0$ Keep masses and total cross section free $m_{\tilde{\chi}} \qquad \sigma(p\bar{p} \to \tilde{g}\tilde{g}X)$ $m_{\tilde{q}}$

Captures many models (MSSM, UED, etc) Misses heavy flavor and cascades

Where has the Tevatron probed "gluinos"?

Two Kinematic Limits

"Normal" Widely Spaced States $m_{\tilde{g}} \gg m_{\tilde{\chi}}$

Same multijet searches over the past 20+ years No cascades, or t-channel squarks

Easy to simulate

Degenerate Search

Useful when not phase space limited $Q = m_{\tilde{g}} - m_{\tilde{B}} > m_{\tilde{B}}$

If
$$Q < m_{\tilde{B}}$$

Bino carries away energy but not momentum

As gluinos get boosted, jets become collinear and $\not\!\!\!E_T$ aligned with jets

$$\Delta \Phi^{j \not \!\!\! E_T} \sim \frac{1}{\gamma_{\tilde{g}}}$$

Producing Degenerate Gluinos

Need additional hard jets Want the spectrum as well

> 120 GeV

Producing Degenerate Gluinos

Need additional hard jets Want the spectrum as well

Producing Degenerate Gluinos

Need additional hard jets Want the spectrum as well

Gluinos are produced copiously

Searches useful in gluino searches

Reduced efficiency as neutralino mass is decreased

Outline

Introduction Generalized Gluinos Matching Backgrounds **Projected Reach** Outlook

Calculating Additional Jets

Parton Showering

QCD Bremstrahlung Soft/Collinear Approximation Resums large logs Computationally Cheap Unlimited number of partons

Matrix Elements

Necessary for well-separated jets Includes quantum interference Fixed order calculation Computationally expensive Limited number of partons

Matching merges best of both worlds Necessary to avoid double counting

Calculating Additional Jets

Transition from PS to ME

Outline

Introduction **Generalized Gluinos** Matching Backgrounds **Projected Reach** Outlook

Backgrounds

Want to vary cuts to maximize discovery potential

Generate SM events and compare to D0 Madgraph \rightarrow Pythia \rightarrow PGS

Backgrounds

Want to vary cuts to maximize discovery potential

Generate SM events and compare to D0 Madgraph \rightarrow Pythia \rightarrow PGS

Three Dominant Backgrounds W/Z + jets t tbar QCD

Subdominant Backgrounds Diboson Single top

W/Z + jets Backgrounds Hit Z+jets to within QCD K-factors W+jets need a ~30% MET-independent scaling probably PGS efficiency at losing a lepton

W/Z + jets Backgrounds Hit Z+jets to within QCD K-factors W+jets need a ~30% MET-independent scaling probably PGS efficiency at losing a lepton

Top Background Need MET-dependent K-factor ...until matching 2 additional jets $t\bar{t} 2j \rightarrow (b\ell\nu) \ (\bar{b}\ell\nu) \ 2j$

W/Z + jets Backgrounds Hit Z+jets to within QCD K-factors W+jets need a ~30% MET-independent scaling probably PGS efficiency at losing a lepton

Top Background Need MET-dependent K-factor ...until matching 2 additional jets $t\bar{t} 2j \rightarrow (b\ell\nu) \ (\bar{b}\ell\nu) \ 2j$

A quick comparison

But how much do we trust this? 30%??

Need to be aware of S/B for counting experiments

Outline

Introduction **Generalized Gluinos** Matching Backgrounds **Projected Reach** Outlook

Exclusive Jets + MET Search

4 Separate Searches, Individually Optimized

	$1j + \not\!\!E_T$	$2j + \not\!\!E_T$	$3j + \not\!\!E_T$	$4j + \not\!\!E_T$			
$E_{T j_1}$	≥ 150	≥ 35	≥ 35	≥ 35			
$E_{T j_2}$	< 35	≥ 35	≥ 35	≥ 35			
$E_{T j_3}$	< 35	< 35	≥ 35	≥ 35			
$E_{T j_4}$	< 20	< 20	< 20	≥ 20			
$\begin{array}{c} \not\!$							
Maximize significance for each $m_{\tilde{a}}, m_{\tilde{\nu}}$							

4⁺Jets Search

Standard Model 360, 60 (mSugra) 360, 60

Cascade decays turn missing energy to visible energy Significantly degrade search

At the Boundary of Visibility Accentuates the difference

Standard Model 360,120 360, 200

Multijet Searches

Harder cuts than D0

Looser cuts than D0

The Degenerate Region

Good in degenerate region

Fills in some gaps

Final Exclusion plot for 2fb⁻¹

Outline

Introduction Generalized Gluinos Matching Backgrounds **Projected Reach** Outlook

Have only focused on \tilde{g} module

Other modules

$$\widetilde{q} \qquad \widetilde{q} \rightarrow q\chi \qquad 3 \text{ parameters}$$

 $\widetilde{q}\widetilde{g} \qquad \widetilde{q} \rightarrow q\chi, \widetilde{g} \rightarrow q\overline{q}\chi \qquad 4 \text{ parameters}$

$$\tilde{g} \qquad \tilde{g} \to q\bar{q}\chi', \chi' \to q\bar{q}\chi \qquad 5 \text{ parameters}$$

 $\tilde{g} \qquad \tilde{g} \to q\bar{q}\chi'', \chi'' \to q\bar{q}\chi', \chi' \to q\bar{q}\chi \quad 7 \text{ parameters}$

• • •

Should be a better way of searching Don't want to miss a visible signal

Jets plus MET Searches are effectively: Jet classification criterion Visible Energy and Missing Energy Cuts

As parameters in a module vary, visible and missing energy change dramatically

We are probing the Energy Frontier

Don't know what we are looking for

Models are just motivation

We need more model-independent searches

Worst tragedy is to not discover a visible signal