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Constructing local operators

AdS can be visualized as an infinite cylinder.

AdSD / CFTd

ds2 =
R2

Z2

(
−dT 2 + |dX|2 + dZ2

)

Poincaré coordinates: boundary at

Z = 0, horizon at Z = ∞



Consider a scalar field of mass m in AdS, with 
normalizeable fall-off near the boundary.

φ(T, X, Z) ∼ Z∆φ0(T, X) as Z → 0

∆ = d

2
+

√
d2

4
+ m2R2

The boundary field     is dual to an operator of 
dimension    in the CFT.

φ0

∆

φ0(T, X)SUGRA ↔ O(T, X)CFT

Can we reconstruct the bulk field   given its 
boundary behavior    ?φ0

φ



However this is not a standard Cauchy problem.  
Neither existence nor uniqueness is guaranteed.

For now we’ll study this in the semiclassical limit

!s, !P → 0 in the bulk

N, λ → ∞ on the boundary

The basic idea is to represent

Banks, Douglas, Horowitz, Martinec
Balasubramanian, Giddings, Lawrence
Bena

φ(T, X, Z) =
∫

dT ′dX ′ K(T ′, X ′|T, X, Z)φ0(T ′, X ′)



A cure for these problems - at least in a pure AdS 
background - is to Wick rotate to de Sitter space.

This is de Sitter space in flat FRW coordinates, 
with      conformal time.

set X = iY

ds
2

=
R2

Z2

(
−dT

2
− dY

2
+ dZ

2
)

Z =

z 
=
∞

z = 0



We now have a standard Cauchy problem, and can 
solve for the bulk field in terms of data on the 
past boundary.

bulk point

dS boundary

Explicit expressions are pretty simple.

φ(T, X, Z) = const.
∫

dT ′dY ′
(

Z
2−T

′2−|Y ′|2

Z

)∆−d

φ0(T + T ′, X + iY ′)

imaginary spacesmear in: real time



In the semiclassical limit this lets us reproduce 
bulk correlators.

〈φ1φ2〉SUGRA =
∫

K(x′

1|x1, Z1)K(x′

2|x2, Z2)〈O1O2〉CFT

This works just because    and    have identical 
correlators.

φ0 O



φ = ∞

Semiclassical horizons and singularities
AdS3 can also be described in Rindler coordinates

ds2
= −

r2
− r2

0

R2
dt2 +

R2

r2
− r2

0

dr2
+ r2dφ2

−∞ < φ < ∞

Identify             to make a BTZ black hole.φ ≈ φ + 2π

φ = −∞



Wick rotating         again takes us to de Sitter 
space, now in static coordinates.

φ = iy

For points in the right Rindler 
wedge, we get a compact 
smearing function on the 
right Rindler boundary.

For points inside the horizon, 
the smearing function extends 
out of the right Rindler 
wedge.  Use the antipodal 
map to move it to the other 
boundary.}



So the region inside the horizon can be described 
by using both copies of the thermofield-doubled 
CFT. Maldacena

Kraus, Ooguri, Shenker
Fidkowski, Hubeny, Kleban & Shenker
Festuccia & Liu

What about a singularity?

As the bulk point approaches the (future, past) 
horizon the smearing function extends to
                      on the boundary.  That’s our 
signal of a horizon.
(t = +∞, t = −∞)



Semiclassically to make a BTZ black hole we just 
identify             .  But this doesn’t change the 
smearing functions at all (if the boundary field is 
periodic, so is the bulk field).

φ ≈ φ + 2π

We can make boundary correlators periodic with 
an image sum.

〈φ0φ0〉BTZ =
∞∑

n=−∞

〈φ0(t, φ)φ0(t, φ + 2πn)〉AdS

But        is a fixed point of the isometryr = 0

φ → φ + const.

Lifschytz & Ortiz

′ ′



So the image sum diverges at       , and we get 
a divergent correlator - both from the bulk and 
boundary points of view.

r = 0

More precisely as r → 0, r
′
→ ∞

〈φφ〉BTZ ∼
∑

n

1(
r

r0
cosh(φ + 2πn) + sinh t

)∆

The image sum is cut off at                 and the 
correlator diverges logarithmically as        .r → 0

n ∼ log(r0/r)



Behavior at finite N

The whole program seems to crash at finite N.  
For bulk points inside the horizon the smearing 
functions grow on the boundary as         .t → ∞

K(t, φ|·) ∼ e(∆−d)t

In the semiclassical limit this is okay, because 
boundary correlators decay exponentially.

〈OO〉 ∼ e
−∆t

But at finite N, correlators do not decay at late 
times.



How do correlators behave?

For a classical chaotic system phase space volume 
increases exponentially with time.

Γ(t) ∼ Γ(0)eht
h = KS entropy

The entropy increases linearly with time.

S(t) = S(0) + ht

In the quantum theory this means an initial 
excitation gets spread among    possible states, soΓ

〈φ(t)φ(0)〉 ∼ e−ht

Ropotenko

That’s the typical behavior of a thermal system.



In a black hole background we expect correlators 
to decay on a timescale set by the quasinormal 
frequencies           .ωn ∼ TH Birmingham, Sachs, Solodukhin

=> identify KS entropy h ∼ TH

How long can the entropy keep increasing?  Until 
the system reaches its equilibrium thermal 
entropy, at time                .t ∼ S/h ∼ βS

At that point the system realizes it has a finite 
phase space and correlators stop decaying.



This timescale          is much shorter than the 
recurrence time            after which the system
returns to its initial state.

t ∼ βS

tr ∼ βeS

But it does seem to match the time at which the 
saddle point approximation breaks down in AdS.

Maldacena

AdS black hole: 〈φφ〉 ∼ e−t/β

thermal AdS: 〈φφ〉 ∼ e−S ×O(1)

The thermal AdS saddle point starts to compete 
after         .t ∼ βS



What does this mean for us?

These late-time tails make correlators of smeared 
operators ill-defined inside the horizon.

K(t, φ|·) ∼ e(∆−d)t
as t → ∞

But when is the tail really important?  Suppose we 
just set the boundary correlator to zero for
                .  Equivalently suppose we declare
that the smearing functions vanish for           .
When would that make a difference in our bulk 
correlators?

t > tmax = βS

t > tmax



We can study this in the semiclassical limit.  With a 
cutoff at       the smearing function looks liketmax

tmax

−tmax

The white squares are spacelike separated from the 
support of the smearing function.  This is like 
putting a cutoff at           .φ ≈ tmax



But remember for         there was already a
cutoff on the image sum, at

r > 0

So the additional cutoff at           is 
unimportant for

φ ≈ tmax

n ∼ φ ∼ log(r0/r)

tmax > log(r0/r)

r > r0e
−tmax

With our previous estimate for      this suggests 
that one can approach the singularity, getting as 
close as         , before noticing deviations from
semiclassical behavior.  Interpretation?

r0e
−βS

tmax



Conclusions

In the semiclassical limit one can define local 
operators in the bulk of AdS.

Their correlators are well-defined at the 
horizon and diverge at the singularity.

At finite N this breaks down, since CFT 
correlators stop decaying after a time       .

This seems to generate a new length scale 
on the gravity side:         .

∼ βS

r0e
−βS



Corrolary: bulk operators commute at spacelike 
separation => corresponding smeared operators 
commute, even though they overlap!

Special property of large 
N limit (commutators are 

c-numbers)

Recall that in the semiclassical limit, correlation 
functions of smeared boundary operators exactly 
reproduce bulk correlators.

Bulk locality?  (semiclassical limit)



Bulk locality and holography at finite N?

What we’ve done so far is exact in the semiclassical 
limit (statement about wave equations in AdS).

What about finite N?  No guarantees, but we could 
just use the same smearing functions at finite N.  
For example in 

makes sense at any N.

N = 4 Yang-Mills

Φ(T, X, Z) =
∫

dT ′d3X ′ K(T ′, X ′|T, X, Z) Tr F 2



In fact this seems singled out by the symmetries.

AdS-invariant distance:

σ =
Z2 + Z ′2 + ∆X2

− ∆T 2

2ZZ ′

K = lim
Z′→0

(σZ
′)∆−d

Note that

ds2 =
R2

Z2

(
−dT 2 + dX2 + dZ2

)

isometry (T,X,Z) → λ(T,X,Z)

scale transformation on boundary,

Z has conformal weight −1

So K transforms covariantly with weight d − ∆



That’s exactly what we need for         to behave 
like a bulk scalar.

=> our smearing functions are the unique 
covariant way to map a primary operator in 

the CFT to a bulk scalar field

∫
KO

This seems very strange - we’ve defined an infinite 
number of bulk operators.  Seems incompatible 
with holography.

When do these operators commute?



Work on a fixed-T hypersurface, with operators 
placed at some radial position Z.

Smearing functions have extent

Will be spacelike separated on boundary provided 
bulk operators have longitudinal separation

∆T = Z

∆X > Z

X

T XΔ



           commuting operators per coordinate 
area on the boundary

           commuting operators per proper area 
in the bulk

So we expect

1/Zd−1

1/Rd−1

One commuting operator per AdS radius of 
curvature.  Locality breaks down on the AdS scale!

With a redshift factor       this meansR/Z



How is this compatible with holography?

holographic bound
(entropy per longitudinal coordinate area)

S < N2/Zd−1

The bound is saturated if we have     commuting 
operators in the CFT.  Seems reasonable - NxN 
matrices, central charge 

N2

∼ N2

What about quasi-local bulk physics at finite 
N?  The commuting operators we can build from
        aren’t enough to describe a local bulk 
dilaton on distances less than an AdS radius!
Tr F 2



Our best guess: there are other operators which 
don’t commute, but whose commutators are small 
enough at low energies that they can be ignored.

(matrix elements of commutator between 
low-energy states is small)

I don’t have an explicit construction.


