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Introduction: 

Black hole information paradox



Black hole evaporation & 

information paradox

 Before and after the formation of 

black hole horizon, the notion of 

`particles‟ & `vacuum‟ changes

 Original `vacuum‟ is no more 

vacuum after horizon formation

 It is perfectly thermal state 

actually black hole radiates as 

thermal black body radiation



Black hole evaporation & 

information paradox

 Hawking‟s argument is quite robust; it works as far as black 
hole horizon is formed by gravitational collapse

 Since after horizon is formed, the vacuum looks completely 
thermal, so black hole radiates thermally

 This thermal radiation is parameterized only by the 
temperature of black hole (surface gravity)

 Therefore, all the information, how black hole is formed etc, 
are totally lost, it seems that pure states evolves into 
thermal or mixed states!?

 But this contradicts with principles of quantum mechanics
(QM): `unitarity‟

 “Do we have to give up some principle of QM once we 
include gravity?”



New development of non-pert. quantum gravity

 Discovery of gauge/gravity dual (AdS/CFT)

 AdS/CFT => string theory (as quantum gravity) in 
asymptotic anti de Sitter (AdS) space = gauge theory 
without gravity

 There are huge number of evidences showing that this 
conjecture is correct, and this number keeps increasing!

 This duality says that quantum gravity physics in 
asymptotic AdS space is equivalent to the physics of some 
gauge theory with less dimension

 For example, the S-matrix of black hole 
formation/evaporation must be unitary, since we can map 
this process by putting it in asymptotic AdS and consider 
it from dual gauge theory viewpoint, which is always
unitary



 What is wrong with the original Hawking‟s argument?

 If information is back, how will it be back? 

 How do we see the quasi-local gravity from gauge theory? 

 How do we see the non-local effects for black holes from 
gauge theory?

 How do we see the black hole complementarity? 

 etc… 

Now does AdS/CFT solved the problem?

=> In principle yes, but no (yet) in practice.

AdS/CFT should be better understood, since we don’t understand



 In this talk, we will concentrate on unitarity issues & 
information problem

 Hawking‟s original argument is based on semi-classical 
approximation. And he showed that black hole radiate 
thermally, so information is lost. 

 This contradicts with gauge/gravity duality, since black 
hole radiation is dual to unitary gauge theory evolution.

 So how things can be consistent?



Gauge/gravity correspondence

 AdS/CFT correspondence; 

 Semiclassical approx. is                                           with 
leading GN correction only for matter, but not for geometry

 This means, Hawking‟s argument is at                theory in the 
dual gauge theory (with infinite „t Hooft)

 But note that in N = , information “can” be lost

 This is because in this limit, we have infinite number of 
states for the system. System can absorb arbitrary amount of 
information as heat bath

 Also note that the number of states are infinity, Poincare 
recurrence time also becomes infinity as

(recurrence time scale) ~ exp(S) ~ exp(N2) 

 On the contrary, if N is finite, then the field theory spectrum 
is discrete (on finite volume), and it evolves as QM system, 
so information is never lost



 So the question we would like to understand;

Can we see the non-unitary black hole physics from 

unitary (at finite N) gauge theory, by taking N  = ?

 Black hole is characterized by its horizon, where 

classically all information is incoming, and lost

 BH horizon makes all information (ie, correlation 

functions) decay exponentially at later time since 

information is absorbed inside the horizon

 Can we see this exponential decay of correlation 

functions from unitary gauge theory at N = ?



 Our goal is to show this property; the exponential decay 
of correlation function in N =  limit, which never 
occurs at finite N

 Note that exponential decay is not guaranteed, since 
power law decay is also consistent with information loss. 

 The late time decay implies that system is thermalized.

 this late time decay can never been seen by perturbation 
theory (it is the properties of quantum chaos)

 We simplify the gauge theory system as much as possible, 
so that we can capture non-pertubative for 



 We would like to find simple enough toy model where 
resumming Feynman diagrams is systematic enough so that 
we can see the full planner physics non-perturbatively

 If we can resum all diagrams, unitarity is guaranteed at 
finite N 

 Our toy model is kind of reduction of D0-brane black hole
with a probe D0-brane. We have one U(N) adjoint and one 
U(N) fundamental representation

 Here, [adjoint field] = black hole degrees of freedom and  

[fundamental field] = open strings or W-bosons between 
the black hole and a probe

 Adjoint play the role of thermal heat bath, whose correlator 
are thermal one with some mass m, and since probe is away 
from black hole, W-bosons masses M are heavy enough

 They couple by Yukawa interaction so that U(N) indices are 
contracted







 Since fundamental mass M are heavy, they evolves QM 
way, one the other hand, adjoint mass are light enough 
they have thermal correlation function 

 We actually assign the free thermal correlation function 
for adjoint field by hand, but we can show that the 
correlation functions of adjoint field in N = 4 SYM 
reduces to free thermal one we use in very high enough 
temperature

 We would like to see how the fundamental fields evolve, 
through the coupling to adjoint field, and how it can 
decay exponentially (quasinormal mode) in planer limit 
which never happen in finite N



A Toy Matrix Quantum Mech. Model

 We focus on the following obsearvable

 Note that due to time ordering, if t < t‟ above quantities 
are zero, so this is retarded Green fn.

 Therefore 

has no pole in upper half plane



 In perturbation expansion, 

Where thermal sum is defined as;

free (bare) propagator

interaction

# op. for matrix X



 Schwinger-Dyson (SD) equation for the fundamental field;

 Mathematically

 With                           and 

(We have only planar graphs)



 K      is adjoint correlation function which we chose 

 In zero temperature case, this reduces to free scalar 

propagator

 Bellow we consider zero temperature/finite temperature 

case of above SD eq (you will see that structure of the SD 

eq are totally different between zero and finite 

temperature)



 Since               has no pole in upper half plane, we can 

close the contour for          by going to the upper half 

plane 

 As a result, we pick up only the pole from 

for SD equation



 So the SD equation reduces to following recurrence eqs

 At zero temperature

 At nonzero temperature

 Even though these two equations are similar, the structure 
of solutions are totally different as we will see



Zero temperature case

At m = 0 case, SD be algebraic equation and solvable as

The pole at                 has been broaden into a branch cut. 

This is because the mass for a is given by g X and the 

distribution of X is given by Wigner semi-circle with width



Zero temperature case

• The Wigner semi-circle for m=0 case splits up into poles at 
nonzero m.

• To see this, note that if there is branch cut at some w = 
w
0

, then the recurrence eq. forces another branch cut at w
0

+ m, w
0
- m, so we have series of branch cut by 

step of m.

• But this contradicts with the fact that at zero T in w = 
, where theory reduces to free, so should approach i/w.
and no branch cut there, unless its amplitudes approaches 
zero 

• We conclude that at zero T, spectrum is bunches of poles, 
no branch cut.



Real part of 

G(w)

for  = 1, 

m = 0.05 at 

a) 0.01 unit 

b) 0.1 unit above 

the real w 

axis. 

The poles merge 

into an 

approximate

semicircle 

distribution



Non-zero temperature case

Again at m = 0 case, with 
T

2
= 2/m (1 – e-m/T ) 

fixed, it gives 

Physically eigenvalue distribution is thermally broaden, but still it 

is power law decay, not exponential.



Non-zero temperature case

Spectrum representation shows negative residues are not 

allowed along real omega axis 

If there is pole, pole must be sandwiched by zero both on the left 

and right, but this gives contradiction. Therefore the poles which 

we see at zero temperature are not allowed!



Non-zero temperature case

This immediately implies that the spectrum is continuous, 

rather than discrete poles, so there is a chance this shows 

quasi-normal modes

 Infinite arrays of branch cut or

 Spectrum continuously spreads all the way from - to + ; ie, 

branch cut spreads over all the real w, and pole we found at zero 

temperature goes into the second Riemann sheet, complex 

omega Im w < 0.

There are two possibilities



Non-zero temperature case

Although this is the model we want, it is still challenging problem 

to solve this eq. Because this eq. is unstable both along increasing 

omega and decreasing omega!

Even numerically this eq. are very hard to solve!

We solved this by fixing /m, and taking the derivative 

w.r.t. T, we allow system evolves from zero temperature 

into finite temperature by solving differential eq w.r.t. T



The real part of G(w) as 

spectrum density with 

various temperature

y = exp(-bm). The 

vertical axis is rescaled. 

The plot is w axis for 

slightly above the real w



The logarithm of 

infinite temperature 

correlator log|G(w)| as a 

function of t, with fixed 


T
= 1, m =0.8. Late 

time exponential decay 

of the correlator is clear. 



Non-zero temperature case

Asymptotic behavior of solution

In the large omega, the coupling be weaker, the propagator 

approaches more to free one, this means magnitude of 

pF(w) = Re[G(w)] approachs 0 at large w.

Consistent solution with above boundary condition is; 

Spectral density behaves asymptotically as 



Conditions for quasinormal mode

 Finite mass of adjoint field; 

 Black hole microscopic degrees of freedom have 

finite mass, their wave function is localized at finite 

scale in space. 

 „t Hooft coupling is nonzero;

 To escape information into infinite phase space, 

mixing of states by interaction is crucial. 

 Finite temperature correlator for adjoint field;

 Black hole should be at deconfinement phase.



Conditions for quasinormal mode

 Finite mass of adjoint field; 

 Black hole microscopic degrees of freedom have 

finite mass, their wave function is localized at finite 

scale in space. 

 „t Hooft coupling is nonzero;

 To escape information into infinite phase space, 

mixing of states by interaction is crucial.

 Finite temperature correlator for adjoint field;

 Black hole should be at deconfinement phase.



Hawking-Page transition and 

Confinement/Deconfinement transition

 Confinement/deconfinement transition is expected to be 
connected with Hawking-Page transition (thermal 
AdS/AdS black hole) in gauge/gravity duality

 In N =  at confinement phase, degrees of freedom are 
glueball (gauge singlet, closed strings). Their propagate 
freely at N =  whatever „t Hooft coupling we take. So at 
this case, theory is in practice free, even though „t Hooft 
is nonzero.

 At deconfinement phase, degrees of freedom are gluons 
(gauge non-singlet, open strings, or `string bits‟). They 
still interact at N =  if „t Hooft coupling are nonzero.



 The system which has dynamical adjoint gauge fields shows 

Hagedorn transition, which is confinement/deconfinement 

transition.

 For example, in d=4, N=4 SYM shows this transition 

(Sundborg, Aharony et al) 

 This transition is characterized by how the VEV of 

Polyakov loop operator along time direction changes S

Zero mode, can be diagonalized



 At confinement phase, U is uniformly distributed, 

So the adjoint thermal propagator reduces to the 

zero temperature one, thermal effect cancel out 

 At deconefinement phase, especially at very high 
temperature, U is localized, delta-functionally peaked, then 
the adjoint thermal propagator reduces to the nonzero 
temperature propagator we used because

• The finite temperature 
adjoint correlator is 
given by summing over 
infinite mirror image 
separated by -ib

• In SD eq for 
fundamental field       , 
X correlator contributes 
after summing over j



i

i i

j



 So the zero temperature case we studied in our model 

corresponds to the confinement phase in the real 

gauge/gravity duality, and the nonzero temperature case, 

especially very high temperature case, corresponds to 

precisely the very high temperature deconfinement phase in 

the real gauge/gravity duality.

 The fact that we don‟t see quasinormal mode when adjoint 

X has zero temperature propagator means that we cannot 

find quasinormal mode when adjoint X is at the 

confinement phase (=thermal AdS phase).



Conclusion



Conditions for quasinormal mode

 Finite mass of adjoint field; 

 Black hole microscopic degrees of freedom have 

finite mass, their wave function is localized at finite 

scale in space. 

 „t Hooft coupling is nonzero;

 To escape information into infinite phase space, 

mixing of states by interaction is crucial.

 Finite temperature correlator for adjoint field;

 Black hole should be at deconfinement phase.



Conclusion

 System can contain infinite information 

 Discrete spectrum at pert.   be continuous by 
strongly-coupled (= non-pert.)  effects

 Poincare recurrence never occurs at finite timescale

 Quasinormal mode (exponential decay) is seen due to 
infinite phase space in deconfinement phase 

 Properties of black hole shows up only at infinite N, in 
finite N, spectrum is discrete, always recurrence appears 

Infinite N, deconfinement phase, and non-pert. 

are responsible for classical black holes



Discussion

 To restore the information, finiteness of N is crucial.

 As far as we use the semi-classical approximation, we never 
restore the information.

 The information loss occurs only at (semi-)classical gravity. 
In full quantum gravity, we expect „horizon-like‟ boundary  
where information flows only along one side never occur.

 At infinite N, spectrum is continuous, but at finite N it is 
collections of delta functional peak.

 The continuous spectrum at nonzero m, T, g2N and infinite 
N should split into poles at finite N 

with spacing dE ~ exp(-O(N2)) 



finite N vs. N  = 

 If we measure the spectrum precisely (measuring each delta 
functional peak at fixed omega) for the black holes, then we 
are able to distinguish each microstate of black hole, and 
this effect is very large, not order exp(-N2)

(Balasubramanian, Marolf, Rozali)

 On the other hand, if we neglect the detail of spectrum, and 
measure the spectrum in rough way, then we see as if black 
hole has continuous spectrum.

 In principle, how accurate can we measure the spectrum?

 Uncertainty principle dE dt  h ~ 1/N# prohibits 
dE ~      exp(-N2) precision measurement in 
time scale of black hole evaporation dt ~ M# ~ N2#, so 
Hawking‟s argument hold

 As far as we observe 2pt fn., this seem inevitable conclusion



To understand furthermore…

 As we see, thermalization occurs due to the nonperturbative 
effect by interaction

 On the other hand, our Schwinger-Dyson equation is too 
complicated to solve analytically even at planar limit

 So non-planar corrections are even more difficult

 To understand better, we would like to have system which 
shows more analytical control: but still complicated enough 
to show information loss physics, i.e., continuous spectrum 
from Schwinger-Dyson equation

 This is the motivation of the second work, where we studied 
more solvable model, seeing its leading 1/N2 corrections

 We saw that leading 1/N2 correction does not change the 
planar physics  

 We want to understand 1/N2 expansion more


