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Black hole

 Schwarzschild black hole
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 Horizon at R=2GM. Near the horizon, Rindler space
ds* = —p*dw® + dp*
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* Black hole behaves as an object with
— Entropy: o _ A _ 7R
4G G
First law (dM=T dS), Generalized second law

— Temperature: 7 — 1

AR
Emits Hawking radiations

e Schwarzschild BH is unstable.
— Negative specific heat
— Evaporation time: 1
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“Information puzzle”
* Naive application of local field theory on a
global slice (and the semi-classical approx.)
%(E) = H(Zivl) ® %(Eaut)

seems to suggest information loss

(pure state evolving into S

mixed state).




Complementarity

* Consistent theory should be defined on a
patch that a single observer can see.

— Interior view: things fall into a BH

— Exterior view: BH is a hot membrane on the
“stretched horizon” which emits Hawking rad.

* These viewpoints are
“complementary”

(different descriptions of

the same phenomenon).




Complementarity

Hypothesis:

* Hawking radiations should carry information on
the quantum states that have fallen into the BH.

* Formation and evaporation of BH is a unitary
process.
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* This is supported by
string theory (AdS/CFT,
Matrix theory).




Potential trouble for complementarity

* |sn’t a quantum state cloned?

- There is no problem, if a single observer
cannot copy a quantum state.

Thought experiment
(Susskind-Thorlacius, 94):
Can Bob get two copies of
Alice’s quantum state?




Bobstaysat p=R
After time wwet he jumpsinto the BH. (X7 = Rexp(wiet))
He hits the horizon at X~ < Rexp(—wret) .

If Alice wants that her message reaches Bob before
he hits the horizon, she has to send it no later than
AT = Rexp(—wr) after crossing the horizon.

* From the uncertainty principle,
she cannot send it no sooner

than Ao L 26
M R

* Thus, cloning doesn’t happen
it Wt > log R




Estimate for the retrieval time?

* Consider a system which consists of subsystems
A and B. The whole system is in a pure state.

— Wave function: (a, j)

— Density matrix on A:  (P4)aa’ = de’( B) ()
— Entanglement entropy: $, = —Tr(pqlmg,oq)

— Information in a subsystem:

T4 = Smax — S4., (Smax — dilIl(H__q))

* How much info does a “typical” subsystem
have?



Average info in a subsystem (Page, ‘93)

* Average over possible pure states

 When subsystem A is smaller than half the whole
system, there is almost no info.

12! S.Ll —m — O(BZTH—E\T)
10f 2m — diﬂl(%ﬂ)} QN - diﬂl(%mtal)

After “halfway point” of
evaporation, information
| Information Comes OUt-

| This is late enough to
prevent cloning.

Entanglement entropy

Thermodynamic entropy



Refined argument (Hayden-Preskill, ‘07)

* Assume Bob has collected all the Hawking radiation
(since the BH has formed) before Alice jumps into BH.
Namely,

E: previously emitted Hawking rad.

B: black hole (Assume dim(E)>dim(B))

M: Alice’s message (k bits)

N: reference system (maximally
entangled with M)

V: unitary transformation on BM

R: additionally emitted Hawking rad.
B’: black hole after emitting R



Hayden and Preskill’s result

For typical unitary V, subsystems B’ and N are almost
decoupled when slightly more than k bits are emitted.
(s: bits in

dV||pNB (V) = p(V) @ pB |7 < 272K .
[aVIIeNF (V) = p(V) ® i < Hawking rad.)

In other words, the system RE is maximally correlated
with N (i.e. Bob has Alice’s info) almost immediately
after k bits of Hawking radiations are emitted.

In the above argument, V is completely random on BM.

The time scale relevant for info retrieval would be the
time needed for M to be mixed (“scrambled”) with B.



Estimate for the scrambling time

* Consider a charged particle falling into a BH.
Rindler space (near horizon)
ds* = —p*dw* + dp* + da‘f
= —dt* + dz* + da?
(z = pcoshw, t= psinhw)

Electric field of the point particle
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* “Membrane paradigm”: o=-—E,
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o: surface charge density on stretched horizon



e At late time (in W ), surface charge is

e

(£se9)?[1 + (67 /ly)]?

E, ~

— charge has spread over Az ~ { ¥

* Thus, time needed for perturbation to spread
over the whole horizon (scrambling time) is

w, =log R/{; ~log S

— Note that this is fast. Usually, diffusion takes time

W, ~ N?/d



Conjectures

. Fastest scramblers in nature take time
log N to scramble information over the whole
system (N: # of d.o.f. of the whole system).

. Black holes saturate the bound.

. Matrix quantum mechanics (dual to the BH)
saturates the bound.



DO-brane black hole

* Metric (in the “decoupling limit”)
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— Charge (number of the DO-branes): n
— Energy (mass above extremality), Entropy, temperature
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— String coupling:
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Scrambling time for DO black hole

* Classical gravity analysis: valid when coupling and
curvature are small at the horizon.

1 < (gynn/Ug) < n'/f
e Scrambling time (in unit of inverse temperature)
wy = Clogn, (since Ry ~ (g2\n/U)VA¢,)

e Remark:
True causal structure (including back reaction) is
believed to be similar to that for Schwarzschild BH.




Matrix theory

 (0+1) D SYM: Lagrangian is (schematically)
L=Try Xexe - TrY (X X"
a ab

X®:n x n matrices, N =n X n: total number of d.o.f.

* Operator corresponding to the perturbation: Tr(X - -- X)
(having angular momentum ¢ ~ R, ~ (¢2\n/U3)"* )

e Basic picture of scrambling: at each time step, # of
bits “connected” to the perturbed bit grows by a
factor of 4 (the # of bits in the interaction term).




Conclusions

* Conjecture:
— Black holes are the fastest scramblers in nature.
— Minimal scrambling time: log N
— Matrix guantum mechanics saturates the bound.

* Problems for future work:
— More precise definition of scrambling
— Derivation of the bound including prefactor
— Information retrieval from cosmological horizons?



