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Black hole

• Schwarzschild black hole

• Horizon at R=2GM. Near the horizon, Rindler space

Singularity at 



• Black hole behaves as an object with 
– Entropy: 

First law (dM=T dS), Generalized second law

– Temperature:

Emits Hawking radiations

• Schwarzschild BH is unstable. 
– Negative specific heat 

– Evaporation time: 



“Information puzzle”

• Naive application of local field theory on a 
global slice (and the semi-classical approx.)

seems to suggest information loss
(pure state evolving into
mixed state).



Complementarity

• Consistent theory should be defined on a 
patch that a single observer can see.

– Interior view: things fall into a BH

– Exterior view: BH is a hot membrane on the 
“stretched horizon” which emits Hawking rad.

• These viewpoints are
“complementary”

(different descriptions of
the same phenomenon).



Complementarity

Hypothesis:

• Hawking radiations should carry information on 
the quantum states that have fallen into the BH.

• Formation and evaporation of BH is a unitary 
process.

• This is supported by
string theory (AdS/CFT,
Matrix theory).



Potential trouble for complementarity

• Isn’t a quantum state cloned?

 There is no problem, if a single observer
cannot copy a quantum state.

Thought experiment
(Susskind-Thorlacius, ‘94):
Can Bob get two copies of 
Alice’s quantum state?



• Bob stays at  

• After time        ,  he jumps into the BH.

• He hits the horizon at                                  . 

• If Alice wants that her message reaches Bob before 
he hits the horizon, she has to send it no later than

after crossing the horizon.

• From the uncertainty principle, 
she cannot send it no sooner 
than 

• Thus, cloning doesn’t happen
if    



Estimate for the retrieval time?

• Consider a system which consists of subsystems 
A and B. The whole system is in a pure state.
– Wave function: 

– Density matrix on A:

– Entanglement entropy: 

– Information in a subsystem: 

• How much info does a “typical” subsystem 
have?



Average info in a subsystem (Page, ‘93)
• Average over possible pure states

• When subsystem A is smaller than half the whole 
system, there is almost no info. 

After “halfway point” of
evaporation, information
comes out.
This is late enough to 
prevent cloning. 



Refined argument (Hayden-Preskill, ‘07)

• Assume Bob has collected all the Hawking radiation 
(since the BH has formed) before Alice jumps into BH.  
Namely,

E: previously emitted Hawking rad.
B: black hole (Assume dim(E)>dim(B))
M: Alice’s message (k bits)
N: reference system (maximally

entangled with M)

V: unitary transformation on BM
R: additionally emitted Hawking rad.
B’: black hole after emitting R



Hayden and Preskill’s result

• For typical unitary V, subsystems B’ and N are almost 
decoupled when slightly more than k bits are emitted.

(s: bits in 
Hawking rad.)

• In other words,  the system RE is maximally correlated  
with N (i.e. Bob has Alice’s info) almost immediately 
after k bits of Hawking radiations are emitted.

• In the above argument, V is completely random on BM. 

• The time scale relevant for info retrieval would be the 
time needed for M to be mixed (“scrambled”) with B.



• Consider a charged particle falling into a BH.
Rindler space (near horizon)

Electric field of the point particle

• “Membrane paradigm”:

Estimate for the scrambling time



• At late time (in ω ),  surface charge is

– charge has spread over

• Thus, time needed for perturbation to spread 
over the whole horizon (scrambling time) is

– Note that this is fast. Usually, diffusion takes time



Conjectures

1. Fastest scramblers in nature take time
log N to scramble information over the whole 
system (N: # of d.o.f. of the whole system).

2. Black holes saturate the bound.

3. Matrix quantum mechanics (dual to the BH) 
saturates the bound.



D0-brane black hole

• Metric (in the “decoupling limit”)

– Charge (number of the D0-branes): n

– Energy (mass above extremality), Entropy, temperature

– String coupling:



Scrambling time for D0 black hole

• Classical gravity analysis: valid when coupling and 
curvature are small at the horizon.

• Scrambling time (in unit of inverse temperature)

• Remark:
True causal structure (including back reaction) is 
believed to be similar to that for Schwarzschild BH.



Matrix theory

• (0+1) D SYM: Lagrangian is (schematically)

• Operator corresponding to the perturbation:
(having angular momentum                                         )

• Basic picture of scrambling: at each time step, # of 
bits “connected” to the perturbed bit grows by a 
factor of 4 (the # of bits in the interaction term).



Conclusions

• Conjecture: 

– Black holes are the fastest scramblers in nature.

– Minimal scrambling time: log N 

– Matrix quantum mechanics saturates the bound.

• Problems for future work:

– More precise definition of scrambling 

– Derivation of the bound including prefactor

– Information retrieval from cosmological horizons?


