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Introduction

Motivation

Issues in Quantum Gravity
• Information loss paradox
• Black hole microstates
• Allowed semi-classical geometries
• Cosmic censorship

Main theme
• Propose to discuss some of these issues using concepts from a low

energy (condensed matter) perspective.
• Focus on simple models which can teach us some lessons about

Quantum Gravity.
• Exploit the broad framework of the gauge-gravity correspondence.
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Introduction

Motivation

The information loss problem
• Can one establish concretely how the semi-classical computation of

Hawking evaporation fails?
• Explicit model for unitary evolution, say from a dual perspective.

Black hole & microstates
• Are there good diagnostics for geometric characteristics of black

holes, viz., singularities, horizons, etc?
• Can one tell apart black holes from microstates (say fuzzball

geometries)?
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Introduction

Motivation

Restrictions on semi-classical geometries?
• Are there any restrictions on semi-classical geometries that are

allowed in a full quantum theory of gravity?
• Can one postulate precise conditions on causal structures that are

acceptable?

Cosmic censorship & Singularities
• Does the gauge-gravity correspondence provide a framework to

prove cosmic censorship?
• Can one understand physics in the vicinity of spacelike

singularities?
• Singularity resolution?
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Quantum Quench and Information Loss Quantum Quench

Quantum Quench: The problem

Sudden quenches
• Consider a quantum system with Hamiltonian H(λ) where λ is a

control parameter.
• Lets take the Hamiltonian to be

H =

{
H(λ0) = H0 , for t < 0
H(λ1) = H1 , for t ≥ 0

which we achieve by suddenly tuning λ – this the the quench.
• Start off with the system in the ground state |ψ0 〉 of H0.
• |ψ0 〉 is not the ground state of H1: rather it is an excited state.
• Physically relevant in studies of cold atoms, optical traps, etc..
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Quantum Quench and Information Loss Quantum Quench

Quantum Quench: Observables

Sudden quenches
• The main question concerns the evolution of observables:

correlation functions of local observables in the state ψ0 evolved
now with H1

〈O 〉0 = 〈ψ0 | e−i H1 t O({xi}) ei H1 t |ψ0 〉

• In particular, we are interested in the asymptotic behaviour of the
correlation functions at late times.

• Conventional intuition would tell us that:
? If |ψ0 〉 is a generic excited state, we should expect the system

thermalize.
? In particular, the correlator should show signs of exponential

decay at late times.
• Similarity with the issue of black hole formation: evolution of an

highly excited, but pure state.
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Quantum Quench and Information Loss Asymptotics of correlators

Boundary CFT and the quench problem

Quench & CFT
• To extract the asymptotic late-time behaviour of the correlator,

one can use CFT techniques if H1 corresponds to a critical point.
Calabrese & Cardy

• Basic idea: compute the correlation functions in Euclidean time
with an appropriate i ε prescription with |ψ0 〉 providing the
boundary conditions.

• To compute asymptotics, one can replace the state |ψ0 〉 by an
effective state |ψ∗ 〉 which is RG invariant.

• Encode the distinction between |ψ0 〉 and |ψ∗ 〉 by a single
parameter, the extrapolation length, τ0.

• Claim: Correlation functions can be computed by looking at CFT
correlators on a strip of width 2 τ0.
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Quantum Quench and Information Loss Asymptotics of correlators

Boundary CFT and the quench problem
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Quantum Quench and Information Loss Asymptotics of correlators

Boundary CFT and the quench problem

Asymptotics from CFTs
• One-point functions of generic operators relax to their ground

state values exponentially.

〈O(t) 〉0 ∝ e−
π ∆O
2 τ0

t

• Relaxation time is set by the conformal dimension ∆O.
• The connected two point function also damps out exponentially:

〈O(r, t) O(0, t) 〉c0 ∝

{
0 for t < x/2
e−c1x−c2 t for t > x/2

.

• Correlation functions share characteristics of thermal correlators,
with effective temperature

Teff =
1

4 τ0
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Quantum Quench and Information Loss Lessons for Black Holes

Quench and information loss

Lessons for the information loss paradox
• The quench problem confirms our basic intuition: systems started

off in a highly excited state tend to thermalize.
• Of course, thermalization is the effect of coarse-graining.
• Following the system with arbitrary precision will allow us to

distinguish the precise state we are in.
• Focussing on the thermodynamic limit one sees non-unitary

evolution. Festuccia & Liu; Izuka, Polchinski + Okuda
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Quantum Quench and Information Loss Lessons for Black Holes

Quench and information loss

The Generalized Gibbs Ensemble
Conjecture: The asymptotic behaviour of the correlation function is
given in terms of a stationary state governed by a Gibbs ensemble

ρ =
1
Z

e−αm Qm

where Qm is the maximal set of commuting, linearly independent
integrals of motion. Rigol, Djunko,Yurovsky, Olshanii

• The effective temperature is determined by αm, which are fixed by
the initial state condition.

• Does this imply that black holes are best thought of a mixed
states governing thermal equilibrium?
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Black hole, microstates and all that Microstates and Macrostates

On microstates and geometries

Microstate perspective
• Black hole microstates correspond to smooth, horizon free

‘geometries’. Mathur, Lunin, Bena, Warner, · · ·

• The microstate geometries differ from the black hole spacetime
inside the horizon, being comprised of some spacetime foam.

Can correlation functions 〈O(x) O(y) 〉∗ distinguish
• microstates from each other?
• individual microstates from thermal state?
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Black hole, microstates and all that Microstates and Macrostates

On microstates and geometries

For a system with large entropy S:
• Classical degeneracy expected to be broken by quantum effects

with
∆E ∼ e−S

Balasubramanian, Marolf, Rozali

• Expect e−S to govern characteristic scales of deviations between
microstates =⇒ resolving power of e−S.

• The relevant time scale from analysis of correlation functions in
the canonical and micro-canonical ensembles is the Poincaré time

tdist ∼ eS
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Black hole, microstates and all that Microstates and Macrostates

On microstates and geometries

Macrostate perspective
• Black holes are characterized by non-trivial causal structure.
• Microstate geometries do not have complicated causal structure;

the spacetime foam can however act coherently.
• Two spacetime boundaries for eternal black holes versus one

boundary for microstates.
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Black hole, microstates and all that Microstates and Macrostates

On microstates and geometries

• AdS/CFT correspondence can be interpreted as an isomorphism
between Hbulk and HCFT, for pure states and for density matrices.

|pure〉bulk ↔ |pure〉CFT

ρbulk ↔ ρCFT

? Easy to construct geometries dual to density matrices in the
field theory, like black hole or Wheeler bags of gold.

Frievogel, Hubeny, Maloney, Myers, MR, Shenker

• Having a dual semi-classical geometry is neither necessary nor
guaranteed for most states in the CFT.
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Black hole, microstates and all that Microstates and Macrostates

On microstates and geometries

• Eternal black holes in AdS correspond to the thermal density
matrix.

• Should be able to tell apart the black hole from a microstate.
• Use the double boundary picture seriously – analytic continuation.

Balasubramanian, Czech, Hubeny, Larjo, MR, Simón

• We however have to first deal with influence of statistics on our
notions of distinguishability of microstates: the bane of ensemble
equivalence.
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Black hole, microstates and all that On ensembles & variances

Basis states in the microcanonical ensemble

Consider the microcanonical ensemble at energy E, with energy
resolution O(∆E). We can choose to parameterize the states by
• Energy eignestates:

Mbas = { |s〉 : H|s〉 = es|s〉 ; E ≤ es ≤ E + ∆E }

• Normalized superpositions of energy eigenstates:

Msup =

{
|ψ〉 =

∑
s

cψs |s〉

}
,

∑
s

|cψs |2 = 1

Note that
dim(Msup) = dim(Mbas)− 1 = eS
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Black hole, microstates and all that On ensembles & variances

Variances in the microcanonical ensemble

Consider some local operator O whose correlator we want to measure
in the ensemble of microstates.

Entropic suppression

The variance in the ensemble of superpositions is diminished by a
factor of eS in comparison to the variance in the ensemble comprising
of energy eigenstates:

Var(O)Msup =
1

eS + 1
Var(O)Mbas

• Msup gives us the worst case scenario for distinguishing
microstates.

• We need to defeat the exponential suppression in order to be able
to distinguish the microstates (apart from the usual statistical
suppression).
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Black hole, microstates and all that Black holes versus microstates: Toy models

Canonical versus microcanonical ensemble

• Calculation in the microcanonical ensemble in general is
non-trivial.

• Compare the canonical expectations to get an estimate of how the
variance behaves.

• This will certainly give us information about how the canonical
ensemble differs from the microcanonical: distinguish pure states
from mixed!

Two toy models
• Free chiral boson with E� 1 for statistics.
• D1-D5 system and the M = 0 BTZ black hole.
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Black hole, microstates and all that Black holes versus microstates: Toy models

Results from toy models

• In the free chiral boson case, we can can show that variances get
large for

τbas ∼
β

2

τsup ∼ 3β
2

• In the more interesting D1-D5 system which captures the physics
of fractionation, variances get large for imaginary time

τbas ∼ S
τsup ∼ S2

• In either case the time scales are much shorter than eS.

Details of free boson Details of D1-D5

Mukund Rangamani (Durham University) Quantum Gravity & Condensed Matter Quantum Black Holes 18 / 30



Black hole, microstates and all that Black holes versus microstates: Toy models

Summary thus far

• Black hole geometries are best thought of as mixed states.
Suggested by the
? Thermalization picture resulting from quantum quenches.
? Hydrodynamic description of interacting QFTs.

• It is possible to distinguish black holes from microstates, provided
we wander off into the complex plane.

• Non-trivial causal structure is key to these complex excursions.
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Causal structures and holography

Causal structures

Restrictions on causal structure
• One important issue in the context of holography as realized by

the gauge-gravity correspondence is the nature of allowed causal
structures in the bulk spacetime.

• Does it suffice for semi-classical spacetimes, to be causal i.e.
devoid of closed causal curves to allow for a dual description? Or
does one need a more stringent criterion?
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Causal structures and holography

Hierarchy of causality conditions

The causality hierarchy

∃ a hierarchy of causality conditions which are inclusive:

Causal ⇐ Distinguishing ⇐ Strong causality
⇐ Stable causality ⇐ Global hyperbolicity

Causality conditions

Question
What is the minimum causality contrainst a spacetime must satisfy in
order for it to admit a dual holographic description?
Naive answer: Stable causality.
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Causal structures and holography Non-relativistic CFTs

Holographic duals for “cold atoms”

• Recently, spacetimes with Schrödinger group isometry have been
discussed as potential playgrounds to understand physics of cold
atoms. Son; Balasubramanian, McGreevy

• The dual spacetimes are of the form

ds2 = r2
(
−2 dudv − r2ν du2 + dx2

)
+

dr2

r2

• ν = 1 is the conformal case and ν = 2 is realized for light-like
non-commutative SYM.

• These spacetimes can be realized as near-horizon limits of
D3-branes probing a Null Melvin geometry.

Herzog, MR, Ross; Maldacena, Martelli, Tachikawa; Adams, Balasubramanian, McGreevy

• These spacetimes are non-distinguishing for ν 6= 0.
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Causal structures and holography Non-relativistic CFTs

Why is the spacetime non-distinguishing?

v

P
Q

R
u

r

——

• The causal future of
p = (u0, v0, r0,~x0) is the
set of points with u > u0.

• So every point on a
plane of constant u
shares the same causal
future.
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Causal structures and holography Non-relativistic CFTs

Why is the spacetime non-distinguishing?

v

P
Q

R
u

r

——

• Effectively, the
spacetime has almost
closed timelike curves.

• Nevertheless, we know
what the field theory
dual is and it is sensible!

Hubeny, MR, Ross
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Causal structures and holography Non-relativistic CFTs

Moral from cold atoms

Non-relativistic symmetry and non-distinguishability
• The fact that the dual theory has non-relativistic invariance,

necessitates that the bulk spacetime be non-distinguishing.
• Otherwise it would not be possible for a sensible bulk spacetime

with local Lorentz invariance to be dual to a theory with Galilean
symmetry.
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Causal structures and holography Non-relativistic CFTs

Moral from cold atoms

Non-relativistic symmetry and non-distinguishability
• Note that the field theory (for ν = 1) is N = 4 SYM deformed by a

(heterotic) star product

f ? g = ei (Vf Rg−Vg Rf) f g

where V is the v-momentum of the field and R refers to a global
U(1)R charge.

• These theories provide a playground to explore interesting physics
in strongly coupled non-relativistic CFTs, e.g. thermodynamics,
transport coefficients, etc..

• At the same time they also provide important lesson for Quantum
Gravity, viz., non-distinguishingness is ‘acceptable’.
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Open issues

Summary

• Condensed matter systems provide a vast theoretical laboratory to
study issues relevant for quantum gravity via gauge/gravity
correspondence and its generalizations.

• Understanding the details of quantum quench phenomenon in
greater generality should shed light on information loss.

• Analytic properties of correlators are a useful diagnostic to
distinguish black holes (eternal) from the microstates.

• The increase in number of “AdS/CFT” examples provides us with
new arenas to explore questions relevant for quantum gravity, such
as nature of causal structure.
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Open issues

Open questions

• A precise formulation for the quench problem in N = 4: In
particular, understand the non-equilibrium physics of evolution
from a generic high energy state.

• How does physics of relaxation feed into the issue of scrambling?
• Clean understanding of the spectrum at E ∼ O(N2): relevant for

quench and also distinguishability of states.
• Manifestation/diagnostics of bulk causal structure in the field

theory?
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Open issues

I. The free field results

• For a free chiral boson one can show that√
var(O(τ))Mbas

〈O(τ)〉Mbas

� 1

for Euclidean time scale τ :

τ ∼ β

2

• The entropic suppression in Msup makes its presence felt by
increasing the relevant time scale:

τ ∼ 3β
2

• The calculation is easy in the canonical ensemble as two-point
functions are linear in the occupation numbers {Nn}.
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Open issues

I. The free field results

Moral from free field

• Simple probes (like Tr
(
X(iXj)

)
are able to distinguish microstates

from thermal state at
τdist ∼ β ∝

1
S

• Contrast this with usual Poincaré recurrence time tP ∼ eS.

Some caveats
• The free field theory doesn’t describe a black hole!
• Single chiral boson is incapable of encoding fractionation that is

crucial to the picture of the microstate geometries.

Back to toy models
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Open issues

II. The D1-D5 system

• For the D1-D5 system at the orbifold point, we can calculate

〈{Nnµ,N′nµ}|A†(t, φ)A(0, 0)|{Nnµ,N′nµ}〉

Balasubramanian, Kraus, Shigemori

• Like the free field case the correlation function is a linear function
of the occupation numbers {Nnµ,N′nµ}.

• Variances easy to estimate in the canonical ensemble from
standard statistical distributions.
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Open issues

II. The D1-D5 system

Moral from fractionated free field
• Variances in the correlation function get large for

τ ∼ log S

• Simple probes (like Tr
(
X(iXj)

)
are able to distinguish microstates

in Mbas from thermal state at

τ ∼ S

• Folding in the exponential supression factor for Msup we find that
the relevant timescale is

τsup ∼ S2

Back to toy models
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Open issues

Causality conditions I: Top-Down

1 Global hyperbolicity: A spacetime is said to be globally hyperbolic if
it admits a Cauchy surface.

Examples of globally hyperbolic spacetimes

Minkowski space, Schwarzschild black hole.

3!

!1

!

!2

!1

2

2 Stable causality: A stably causal spacetime is one that admits a
time-function, i.e.,

∃ smooth t : M→ R,with ‖∇at‖2 < 0 everywhere

3 Strong causality: For point p ∈M, causal curves passing close to p
do not come arbitrarily close to being CCCs.

Causal hierarchy
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——

g1

g2

I
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Open issues

Causality conditions II: Bottom-Up

1 Causal: A causal spacetime is one which is devoid of closed causal
curves.

Examples

Minkowski space, AdS, plane wave spacetimes.

2 Distinguishing: A spacetime is said to be distinguishing if we can
distinguish points on the manifold M based on their causal sets.
For p, q ∈M,

I±(p) = I±(q)⇒ p = q

Causal hierarchy
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Open issues

Causality conditions II: Bottom-Up

1 Causal: A causal spacetime is one which is devoid of closed causal
curves.

Not Examples

Gödel,Minkowski space with periodic time identification.

2 Distinguishing: A spacetime is said to be distinguishing if we can
distinguish points on the manifold M based on their causal sets.
For p, q ∈M,
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Causal hierarchy

Mukund Rangamani (Durham University) Quantum Gravity & Condensed Matter Quantum Black Holes 30 / 30



Open issues

Causality conditions II: Bottom-Up

1 Causal: A causal spacetime is one which is devoid of closed causal
curves.

2 Distinguishing: A spacetime is said to be distinguishing if we can
distinguish points on the manifold M based on their causal sets.
For p, q ∈M,

I±(p) = I±(q)⇒ p = q

Examples of distinguishing spacetimes

Minkowski space, AdS, plane wave spacetimes.
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Open issues

Causality conditions II: Bottom-Up

1 Causal: A causal spacetime is one which is devoid of closed causal
curves.

2 Distinguishing: A spacetime is said to be distinguishing if we can
distinguish points on the manifold M based on their causal sets.
For p, q ∈M,

I±(p) = I±(q)⇒ p = q

Examples of non-distinguishing spacetimes

A large class of pp-wave spacetimes are non-distinguishing.

Causal hierarchy
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