Three-dimensional Black Holes, Einstein and Non-Einstein

Wei Li
IPMU, Tokyo University, Japan

Quantum Black Hole, IPMU, Sep 132008

Reference

1. Chiral Gravity in Three Dimensions
with W. Song and A. Strominger
arXiv:0801.4566
2. Warped AdS_{3} Black Holes
with D. Anninos, M. Padi, W. Song and A. Strominger
arXiv:0807.3040

Overview

3D pure Einstein gravity
ECFT dual

Topologically Massive Gravity (with negative Λ)
Instability at generic $\mu \ell$
Chiral gravity at $\mu \ell=1$
Symmetry enhancement?

New Vacua of TMG
Warped $A d S_{3}$ vacua
Warped black holes
Black hole thermodynamics and conjecture for CFT
Summary.

Outline

Overview
3D pure Einstein gravity ECFT dual

```
Topologically Massive Gravity (with negative \Lambda)
    Instability at generic }\mu
    Chiral gravity at }\mul=
    Symmetry enhancement?
```

New Vacua of TMG
Warped $A d S_{3}$ vacua
Warped black holes
Black hole thermodynamics and conjecture for CFT

Summary.

3D pure Einstein gravity

- 3D pure Einstein gravity is trivial classically.

1. DOF counting:

$$
\begin{aligned}
& \text { Spatial metric }+ \text { Momenta }- \text { Diffeo }- \text { Bianchi } \\
= & 3+3-3-3 \\
= & 0
\end{aligned}
$$

- No propagating DOF.

3D pure Einstein gravity

- 3D pure Einstein gravity is trivial classically.

1. DOF counting:

$$
\begin{aligned}
& \text { Spatial metric }+ \text { Momenta }- \text { Diffeo }- \text { Bianchi } \\
= & 3+3-3-3 \\
= & 0
\end{aligned}
$$

- No propagating DOF.

2. Riemann and Ricci have same number of DOF (=6)

- all solutions have same constant curvature.

3D pure Einstein gravity

- 3D pure Einstein gravity is trivial classically.

1. DOF counting:

$$
\begin{aligned}
& \text { Spatial metric }+ \text { Momenta }- \text { Diffeo }- \text { Bianchi } \\
= & 3+3-3-3 \\
= & 0
\end{aligned}
$$

- No propagating DOF.

2. Riemann and Ricci have same number of DOF ($=6$)

- all solutions have same constant curvature.
- \exists BTZ black holes (when $\Lambda<0$)

3D pure Einstein gravity

- 3D pure Einstein gravity is trivial classically.

1. DOF counting:

$$
\begin{aligned}
& \text { Spatial metric }+ \text { Momenta }- \text { Diffeo }- \text { Bianchi } \\
= & 3+3-3-3 \\
= & 0
\end{aligned}
$$

- No propagating DOF.

2. Riemann and Ricci have same number of DOF ($=6$)

- all solutions have same constant curvature.
- \exists BTZ black holes (when $\Lambda<0$)
\Longrightarrow Non-trivial quantum mechanically.
- Microscopic origin of BTZ black hole entropy?

Negative cosmological constant

- In this talk, focus on $\Lambda<0$.

Negative cosmological constant

- In this talk, focus on $\Lambda<0$.
- \exists black holes (unlike $\Lambda \geq 0$)

Negative cosmological constant

- In this talk, focus on $\Lambda<0$.
- \exists black holes (unlike $\Lambda \geq 0$)
- Use $A d S_{3} /$ CFT $_{2}$

$$
\Lambda=-\frac{1}{\ell^{2}} \quad \ell: A d S_{3} \text { radius }
$$

- Assuming holomorphic factorization, 3D pure gravity

$$
I_{\text {Ein }}=\frac{1}{16 \pi G} \int d^{3} \times \sqrt{g}\left(R+\frac{2}{\ell^{2}}\right)
$$

is conjectured to be dual to Extremal-CFT

$$
\left(c_{L}, c_{R}\right)=(24 k, 24 k) \quad \text { with } \quad k=\frac{\ell}{16 G} \in \mathbb{Z}
$$

- Assuming holomorphic factorization, 3D pure gravity

$$
I_{E i n}=\frac{1}{16 \pi G} \int d^{3} x \sqrt{g}\left(R+\frac{2}{\ell^{2}}\right)
$$

is conjectured to be dual to Extremal-CFT

$$
\left(c_{L}, c_{R}\right)=(24 k, 24 k) \quad \text { with } \quad k=\frac{\ell}{16 G} \in \mathbb{Z}
$$

1. Pure gravity \Rightarrow no state between vacuum and lightest $B T Z$

- Assuming holomorphic factorization, 3D pure gravity

$$
I_{\text {Ein }}=\frac{1}{16 \pi G} \int d^{3} \times \sqrt{g}\left(R+\frac{2}{\ell^{2}}\right)
$$

is conjectured to be dual to Extremal-CFT

$$
\left(c_{L}, c_{R}\right)=(24 k, 24 k) \quad \text { with } \quad k=\frac{\ell}{16 G} \in \mathbb{Z}
$$

1. Pure gravity \Rightarrow no state between vacuum and lightest BTZ \Longrightarrow no primary between identity and $k+1$

- Assuming holomorphic factorization, 3D pure gravity

$$
I_{\text {Ein }}=\frac{1}{16 \pi G} \int d^{3} \times \sqrt{g}\left(R+\frac{2}{\ell^{2}}\right)
$$

is conjectured to be dual to Extremal-CFT

$$
\left(c_{L}, c_{R}\right)=(24 k, 24 k) \quad \text { with } \quad k=\frac{\ell}{16 G} \in \mathbb{Z}
$$

1. Pure gravity \Rightarrow no state between vacuum and lightest BTZ \Longrightarrow no primary between identity and $k+1 \Rightarrow$ ECFT

- Assuming holomorphic factorization, 3D pure gravity

$$
I_{E i n}=\frac{1}{16 \pi G} \int d^{3} x \sqrt{g}\left(R+\frac{2}{\ell^{2}}\right)
$$

is conjectured to be dual to Extremal-CFT

$$
\left(c_{L}, c_{R}\right)=(24 k, 24 k) \quad \text { with } \quad k=\frac{\ell}{16 G} \in \mathbb{Z}
$$

1. Pure gravity \Rightarrow no state between vacuum and lightest BTZ \Longrightarrow no primary between identity and $k+1 \Rightarrow$ ECFT
2. $c=24 k$ with $k \in \mathbb{Z} \Longrightarrow$ Left and right CFT are separately modular-invariant.

- Assuming holomorphic factorization, 3D pure gravity

$$
I_{E i n}=\frac{1}{16 \pi G} \int d^{3} x \sqrt{g}\left(R+\frac{2}{\ell^{2}}\right)
$$

is conjectured to be dual to Extremal-CFT

$$
\left(c_{L}, c_{R}\right)=(24 k, 24 k) \quad \text { with } \quad k=\frac{\ell}{16 G} \in \mathbb{Z}
$$

1. Pure gravity \Rightarrow no state between vacuum and lightest BTZ \Longrightarrow no primary between identity and $k+1 \Rightarrow$ ECFT
2. $c=24 k$ with $k \in \mathbb{Z} \Longrightarrow$ Left and right CFT are separately modular-invariant. \Rightarrow Holomorphic factorized!

- Assuming holomorphic factorization, 3D pure gravity

$$
I_{E i n}=\frac{1}{16 \pi G} \int d^{3} x \sqrt{g}\left(R+\frac{2}{\ell^{2}}\right)
$$

is conjectured to be dual to Extremal-CFT

$$
\left(c_{L}, c_{R}\right)=(24 k, 24 k) \quad \text { with } \quad k=\frac{\ell}{16 G} \in \mathbb{Z}
$$

1. Pure gravity \Rightarrow no state between vacuum and lightest BTZ \Longrightarrow no primary between identity and $k+1 \Rightarrow$ ECFT
2. $c=24 k$ with $k \in \mathbb{Z} \Longrightarrow$ Left and right CFT are separately modular-invariant. \Rightarrow Holomorphic factorized!

- Only $c=24$ ECFT is explicitly known - it has monster symmetry.
- Assuming holomorphic factorization, 3D pure gravity

$$
I_{E i n}=\frac{1}{16 \pi G} \int d^{3} x \sqrt{g}\left(R+\frac{2}{\ell^{2}}\right)
$$

is conjectured to be dual to Extremal-CFT

$$
\left(c_{L}, c_{R}\right)=(24 k, 24 k) \quad \text { with } \quad k=\frac{\ell}{16 G} \in \mathbb{Z}
$$

1. Pure gravity \Rightarrow no state between vacuum and lightest BTZ \Longrightarrow no primary between identity and $k+1 \Rightarrow$ ECFT
2. $c=24 k$ with $k \in \mathbb{Z} \Longrightarrow$ Left and right CFT are separately modular-invariant. \Rightarrow Holomorphic factorized!

- Only $c=24$ ECFT is explicitly known - it has monster symmetry.
- Partition function from ECFT counts BTZ entropy.

Problem with holomorphic factorization

- If assume holomorphic factorization:

$$
Z(q, \bar{q})=Z(q) Z(\bar{q})
$$

Problem with holomorphic factorization

- If assume holomorphic factorization:

$$
Z(q, \bar{q})=Z(q) Z(\bar{q})
$$

- However, when directly compute $Z(q, \bar{q})$ by summing over classical geometries +1 -loop correction:

$$
Z(q, \bar{q}) \neq Z(q) Z(\bar{q})
$$

Yin, Maloney+Witten 2007, Giombi+Maloney+Yin 2008

Problem with holomorphic factorization

- If assume holomorphic factorization:

$$
Z(q, \bar{q})=Z(q) Z(\bar{q})
$$

- However, when directly compute $Z(q, \bar{q})$ by summing over classical geometries +1 -loop correction:

$$
Z(q, \bar{q}) \neq Z(q) Z(\bar{q})
$$

Yin, Maloney+Witten 2007, Giombi+Maloney+Yin 2008

- Possible answers:

1. Quantum pure gravity need to include non-geometric configurations (complex saddlepoints...)

Problem with holomorphic factorization

- If assume holomorphic factorization:

$$
Z(q, \bar{q})=Z(q) Z(\bar{q})
$$

- However, when directly compute $Z(q, \bar{q})$ by summing over classical geometries +1 -loop correction:

$$
Z(q, \bar{q}) \neq Z(q) Z(\bar{q})
$$

Yin, Maloney+Witten 2007, Giombi+Maloney+Yin 2008

- Possible answers:

1. Quantum pure gravity need to include non-geometric configurations (complex saddlepoints...)
2. Cannot be holomorphic factorized.

Problem with holomorphic factorization

- If assume holomorphic factorization:

$$
Z(q, \bar{q})=Z(q) Z(\bar{q})
$$

- However, when directly compute $Z(q, \bar{q})$ by summing over classical geometries +1 -loop correction:

$$
Z(q, \bar{q}) \neq Z(q) Z(\bar{q})
$$

Yin, Maloney+Witten 2007, Giombi+Maloney+Yin 2008

- Possible answers:

1. Quantum pure gravity need to include non-geometric configurations (complex saddlepoints...)
2. Cannot be holomorphic factorized.
3. Alternative?

Problem with holomorphic factorization

- If assume holomorphic factorization:

$$
Z(q, \bar{q})=Z(q) Z(\bar{q})
$$

- However, when directly compute $Z(q, \bar{q})$ by summing over classical geometries +1 -loop correction:

$$
Z(q, \bar{q}) \neq Z(q) Z(\bar{q})
$$

Yin, Maloney+Witten 2007, Giombi+Maloney+Yin 2008

- Possible answers:

1. Quantum pure gravity need to include non-geometric configurations (complex saddlepoints...)
2. Cannot be holomorphic factorized.
3. Alternative?

Deform pure gravity...

Outline

Overview
3D pure Einstein gravity
ECFT dual
Topologically Massive Gravity (with negative Λ)
Instability at generic $\mu \ell$
Chiral gravity at $\mu \ell=1$
Symmetry enhancement?
New Vacua of TMG
Warped $A d S_{3}$ vacua
Warped black holes
Black hole thermodynamics and conjecture for CFT

Summary.

Topologically Massive Gravity (TMG)

- Add a gravitational Chern-Simons term

$$
\begin{aligned}
I & =\frac{1}{16 \pi G}\left[\int d^{3} \times \sqrt{|g|}(R-2 \wedge)+\frac{1}{\mu} I_{C S}\right] \\
I_{c s} & =-\frac{1}{2} \int \operatorname{Tr}\left(\Gamma \wedge d \Gamma+\frac{2}{3} \Gamma \wedge \Gamma \wedge \Gamma\right)
\end{aligned}
$$

Topologically Massive Gravity (TMG)

- Add a gravitational Chern-Simons term

$$
\begin{aligned}
I & =\frac{1}{16 \pi G}\left[\int d^{3} \times \sqrt{|g|}(R-2 \wedge)+\frac{1}{\mu} I_{C S}\right] \\
I_{c s} & =-\frac{1}{2} \int \operatorname{Tr}\left(\Gamma \wedge d \Gamma+\frac{2}{3} \Gamma \wedge \Gamma \wedge \Gamma\right)
\end{aligned}
$$

Deser+Jackiw+Templeton 1982

- \exists one single massive, propagating graviton DOF at generic μ.

Topologically Massive Gravity (TMG)

- Add a gravitational Chern-Simons term

$$
\begin{aligned}
I & =\frac{1}{16 \pi G}\left[\int d^{3} \times \sqrt{|g|}(R-2 \Lambda)+\frac{1}{\mu} I_{C S}\right] \\
I_{\text {cs }} & =-\frac{1}{2} \int \operatorname{Tr}\left(\Gamma \wedge d \Gamma+\frac{2}{3} \Gamma \wedge \Gamma \wedge \Gamma\right)
\end{aligned}
$$

Deser+Jackiw+Templeton 1982

- \exists one single massive, propagating graviton DOF at generic μ.

1. Naive DOF counting stops working.

$$
(\Longrightarrow \mathrm{DOF}=6+6-3-3-4=2 \neq 0)
$$

Topologically Massive Gravity (TMG)

- Add a gravitational Chern-Simons term

$$
\begin{aligned}
I & =\frac{1}{16 \pi G}\left[\int d^{3} \times \sqrt{|g|}(R-2 \wedge)+\frac{1}{\mu} I_{c s}\right] \\
I_{c s} & =-\frac{1}{2} \int \operatorname{Tr}\left(\Gamma \wedge d \Gamma+\frac{2}{3} \Gamma \wedge \Gamma \wedge \Gamma\right)
\end{aligned}
$$

Deser+Jackiw+Templeton 1982

- \exists one single massive, propagating graviton DOF at generic μ.

1. Naive DOF counting stops working.
$(\Longrightarrow \mathrm{DOF}=6+6-3-3-4=2 \neq 0)$
2. μ is mass of the massive graviton in flat space.

Topologically Massive Gravity (TMG)

- Add a gravitational Chern-Simons term

$$
\begin{aligned}
I & =\frac{1}{16 \pi G}\left[\int d^{3} \times \sqrt{|g|}(R-2 \Lambda)+\frac{1}{\mu} I_{C S}\right] \\
I_{\text {cs }} & =-\frac{1}{2} \int \operatorname{Tr}\left(\Gamma \wedge d \Gamma+\frac{2}{3} \Gamma \wedge \Gamma \wedge \Gamma\right)
\end{aligned}
$$

Deser+Jackiw+Templeton 1982

- \exists one single massive, propagating graviton DOF at generic μ.

1. Naive DOF counting stops working.
$(\Longrightarrow \mathrm{DOF}=6+6-3-3-4=2 \neq 0)$
2. μ is mass of the massive graviton in flat space.

One DOF allows more structures

- When $\Lambda=0$, TMG allows black holes

Ait Moussa+Clement+Leygnac 2003

- When $\Lambda<0$, TMG allows warped $A d S_{3}$ and black holes (maybe even more).

Anninos + WL + Padi + Song + Strominger 2008

Topologically Massive Gravity

- The action:

$$
I=\frac{1}{16 \pi G}\left[\int d^{3} \times \sqrt{|g|}(R-2 \Lambda)+\frac{1}{\mu} I_{C S}\right]
$$

- EOM:

$$
\mathcal{G}_{\mu \nu}+\frac{1}{\mu} C_{\mu \nu}=0
$$

- $\mathcal{G}_{\mu \nu}$: c.c.-modified Einstein tensor

$$
\mathcal{G}_{\mu \nu} \equiv R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+\Lambda g_{\mu \nu}
$$

- $\mathcal{C}_{\mu \nu}$: Cotton tensor (Weyl tensor vanishes identically in 3D.)

$$
C_{\mu \nu} \equiv \frac{1}{\sqrt{|g|}} \epsilon_{\mu}{ }^{\alpha \beta} \nabla_{\alpha}\left(R_{\beta \nu}-\frac{1}{4} g_{\beta \nu} R\right)
$$

Topologically Massive Gravity

- The action:

$$
I=\frac{1}{16 \pi G}\left[\int d^{3} \times \sqrt{|g|}(R-2 \Lambda)+\frac{1}{\mu} I_{C S}\right]
$$

- EOM:

$$
\mathcal{G}_{\mu \nu}+\frac{1}{\mu} C_{\mu \nu}=0
$$

- $\mathcal{G}_{\mu \nu}$: c.c.-modified Einstein tensor

$$
\mathcal{G}_{\mu \nu} \equiv R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+\Lambda g_{\mu \nu}
$$

- $C_{\mu \nu}$: Cotton tensor (Weyl tensor vanishes identically in 3D.)

$$
C_{\mu \nu} \equiv \frac{1}{\sqrt{|g|}} \epsilon_{\mu}{ }^{\alpha \beta} \nabla_{\alpha}\left(R_{\beta \nu}-\frac{1}{4} g_{\beta \nu} R\right)
$$

- All solutions of Einstein gravity are also solutions of TMG.

$A d S_{3}$ vacuum

- TMG has an $A d S_{3}$ vacuum

$$
d s^{2}=\ell^{2}\left(-\cosh ^{2} \rho d \tau^{2}+\sinh ^{2} \rho d \phi^{2}+d \rho^{2}\right)
$$

with $\Lambda=-\frac{1}{\ell^{2}}$.

$A d S_{3}$ vacuum

- TMG has an $A d S_{3}$ vacuum

$$
d s^{2}=\ell^{2}\left(-\cosh ^{2} \rho d \tau^{2}+\sinh ^{2} \rho d \phi^{2}+d \rho^{2}\right)
$$

with $\Lambda=-\frac{1}{\ell^{2}}$.

- Isometry : $S L(2, \mathbb{R})_{L} \times S L(2, \mathbb{R})_{R}$.

$A d S_{3}$ vacuum

- TMG has an $A d S_{3}$ vacuum

$$
d s^{2}=\ell^{2}\left(-\cosh ^{2} \rho d \tau^{2}+\sinh ^{2} \rho d \phi^{2}+d \rho^{2}\right)
$$

with $\Lambda=-\frac{1}{\ell^{2}}$.

- Isometry : $S L(2, \mathbb{R})_{L} \times S L(2, \mathbb{R})_{R}$.
- Quantum gravity in $A d S_{3}$ can be defined by holographic dual living on its boundary $(\rho \rightarrow \infty)$.

$A d S_{3}$ vacuum

- TMG has an $A d S_{3}$ vacuum

$$
d s^{2}=\ell^{2}\left(-\cosh ^{2} \rho d \tau^{2}+\sinh ^{2} \rho d \phi^{2}+d \rho^{2}\right)
$$

with $\Lambda=-\frac{1}{\ell^{2}}$.

- Isometry : $S L(2, \mathbb{R})_{L} \times S L(2, \mathbb{R})_{R}$.
- Quantum gravity in $A d S_{3}$ can be defined by holographic dual living on its boundary $(\rho \rightarrow \infty)$.
* Need to specify boundary condition.

Choosing boundary conditions

1. Criteria : As weak as possible while keeping charges finite

- Not too restrictive (to allow non-trivial configuration).
- Not too loose (s.t. charges are finite).

Choosing boundary conditions

1. Criteria : As weak as possible while keeping charges finite

- Not too restrictive (to allow non-trivial configuration).
- Not too loose (s.t. charges are finite).

2. To each set of b.c. corresponds to an Asymptotic Symmetry Group (ASG):

$$
\text { ASG } \equiv \frac{\text { Allowed Symmetry Transformations }}{\text { Trivial Symmtry Transformations }}
$$

- "Allowed" : preserving the given boundary condition
- "Trivial" : associated charges vanish (after implementing constraints).

Choosing boundary conditions

1. Criteria : As weak as possible while keeping charges finite

- Not too restrictive (to allow non-trivial configuration).
- Not too loose (s.t. charges are finite).

2. To each set of b.c. corresponds to an Asymptotic Symmetry Group (ASG):

$$
\text { ASG } \equiv \frac{\text { Allowed Symmetry Transformations }}{\text { Trivial Symmtry Transformations }}
$$

- "Allowed" : preserving the given boundary condition
- "Trivial" : associated charges vanish (after implementing constraints).

3. Physical states are in representation of ASG (annihilated by trivial symmetries.)

Brown-Henneaux boundary condition

- Brown-Henneaux boundary condition:

$$
\begin{aligned}
h_{\rho \rho}, h_{\rho t}, h_{\rho \phi} & \sim \mathcal{O}\left(e^{-2 \rho}\right) \\
h_{t t}, h_{t \phi}, h_{\phi \phi} & \sim \mathcal{O}(1)
\end{aligned}
$$

Brown-Henneaux boundary condition

- Brown-Henneaux boundary condition:

$$
\begin{aligned}
h_{\rho \rho}, h_{\rho t}, h_{\rho \phi} & \sim \mathcal{O}\left(e^{-2 \rho}\right) \\
h_{t t}, h_{t \phi}, h_{\phi \phi} & \sim \mathcal{O}(1)
\end{aligned}
$$

- Allows BTZ and massive graviton
- Valid for both Einstein gravity and TMG

Hotta + Hyakutake+Kubota + Tanida 2008

Brown-Henneaux boundary condition

- Brown-Henneaux boundary condition:

$$
\begin{aligned}
h_{\rho \rho}, h_{\rho t}, h_{\rho \phi} & \sim \mathcal{O}\left(e^{-2 \rho}\right) \\
h_{t t}, h_{t \phi}, h_{\phi \phi} & \sim \mathcal{O}(1)
\end{aligned}
$$

- Allows BTZ and massive graviton
- Valid for both Einstein gravity and TMG

Hotta+Hyakutake+Kubota+Tanida 2008

- ASG : two copies of Virasoro algebra.
- Still true for TMG at generic μ (with central charges shifted)

Brown-Henneaux boundary condition

- Brown-Henneaux boundary condition:

$$
\begin{aligned}
h_{\rho \rho}, h_{\rho t}, h_{\rho \phi} & \sim \mathcal{O}\left(e^{-2 \rho}\right) \\
h_{t t}, h_{t \phi}, h_{\phi \phi} & \sim \mathcal{O}(1)
\end{aligned}
$$

- Allows BTZ and massive graviton
- Valid for both Einstein gravity and TMG

Hotta+Hyakutake+Kubota+Tanida 2008

- ASG : two copies of Virasoro algebra.
- Still true for TMG at generic μ (with central charges shifted)

Central charges of 2D CFT in TMG

- Computing central charges by anomaly matching:

Central charges of 2D CFT in TMG

- Computing central charges by anomaly matching:
- Weyl Anomaly:

$$
c_{L}+c_{R}=\frac{3 \ell}{G}
$$

Central charges of 2D CFT in TMG

- Computing central charges by anomaly matching:
- Weyl Anomaly: $\quad c_{L}+c_{R}=\frac{3 \ell}{G}$
- Gravitational Anomaly: $c_{L}-c_{R}=-\frac{3}{\mu G}$

Central charges of 2D CFT in TMG

- Computing central charges by anomaly matching:
- Weyl Anomaly: $\quad c_{L}+c_{R}=\frac{3 \ell}{G}$
- Gravitational Anomaly: $c_{L}-c_{R}=-\frac{3}{\mu G}$
- Central charge of 2D CFT in TMG

$$
\begin{aligned}
& c_{L}=\frac{3 \ell}{2 G}\left(1-\frac{1}{\mu \ell}\right) \\
& c_{R}=\frac{3 \ell}{2 G}\left(1+\frac{1}{\mu \ell}\right)
\end{aligned}
$$

Central charges of 2D CFT in TMG

- Computing central charges by anomaly matching:
- Weyl Anomaly: $\quad c_{L}+c_{R}=\frac{3 \ell}{G}$
- Gravitational Anomaly: $c_{L}-c_{R}=-\frac{3}{\mu G}$
- Central charge of 2D CFT in TMG

$$
\begin{aligned}
& c_{L}=\frac{3 \ell}{2 G}\left(1-\frac{1}{\mu \ell}\right) \\
& c_{R}=\frac{3 \ell}{2 G}\left(1+\frac{1}{\mu \ell}\right)
\end{aligned}
$$

1. Unitarity $\Longrightarrow c \geq 0$

Central charges of 2D CFT in TMG

- Computing central charges by anomaly matching:
- Weyl Anomaly: $\quad c_{L}+c_{R}=\frac{3 \ell}{G}$
- Gravitational Anomaly: $c_{L}-c_{R}=-\frac{3}{\mu G}$
- Central charge of 2D CFT in TMG

$$
\begin{aligned}
& c_{L}=\frac{3 \ell}{2 G}\left(1-\frac{1}{\mu \ell}\right) \\
& c_{R}=\frac{3 \ell}{2 G}\left(1+\frac{1}{\mu \ell}\right)
\end{aligned}
$$

1. Unitarity $\Longrightarrow c \geq 0 \quad \Longrightarrow \mu \ell \geq 1$

Central charges of 2D CFT in TMG

- Computing central charges by anomaly matching:
- Weyl Anomaly: $\quad c_{L}+c_{R}=\frac{3 \ell}{G}$
- Gravitational Anomaly: $c_{L}-c_{R}=-\frac{3}{\mu G}$
- Central charge of 2D CFT in TMG

$$
\begin{aligned}
& c_{L}=\frac{3 \ell}{2 G}\left(1-\frac{1}{\mu \ell}\right) \\
& c_{R}=\frac{3 \ell}{2 G}\left(1+\frac{1}{\mu \ell}\right)
\end{aligned}
$$

1. Unitarity $\Longrightarrow c \geq 0 \quad \Longrightarrow \mu \ell \geq 1$
2. $\mathbf{c}_{\mathrm{L}}=0$ at $\mu \ell=1$.

BTZ black holes in Einstein gravity

- The only black holes in 3D pure Einstein gravity

$$
d s^{2}=-N(r)^{2} d t^{2}+\frac{d r^{2}}{N(r)^{2}}+r^{2}\left(d \phi+N^{\phi}(r) d t\right)^{2}
$$

where

$$
N(r)^{2}=\frac{\left(r^{2}-r_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}{\ell^{2} r^{2}}, \quad N^{\phi}(r)= \pm \frac{r_{+} r_{-}}{\ell r^{2}}
$$

$r_{ \pm}$: outer and inner horizon.

BTZ black holes in Einstein gravity

- The only black holes in 3D pure Einstein gravity

$$
d s^{2}=-N(r)^{2} d t^{2}+\frac{d r^{2}}{N(r)^{2}}+r^{2}\left(d \phi+N^{\phi}(r) d t\right)^{2}
$$

where

$$
N(r)^{2}=\frac{\left(r^{2}-r_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}{\ell^{2} r^{2}}, \quad N^{\phi}(r)= \pm \frac{r_{+} r_{-}}{\ell r^{2}}
$$

$r_{ \pm}$: outer and inner horizon.

- Conserved ADM charges:

$$
m=\frac{1}{8 G} \cdot \frac{r_{+}^{2}+r_{-}^{2}}{\ell^{2}}, \quad j= \pm \frac{1}{8 G} \cdot \frac{2 r_{+} r_{-}}{\ell}
$$

BTZ black holes in Einstein gravity

- The only black holes in 3D pure Einstein gravity

$$
d s^{2}=-N(r)^{2} d t^{2}+\frac{d r^{2}}{N(r)^{2}}+r^{2}\left(d \phi+N^{\phi}(r) d t\right)^{2}
$$

where

$$
N(r)^{2}=\frac{\left(r^{2}-r_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}{\ell^{2} r^{2}}, \quad N^{\phi}(r)= \pm \frac{r_{+} r_{-}}{\ell r^{2}}
$$

$r_{ \pm}$: outer and inner horizon.

- Conserved ADM charges:

$$
m=\frac{1}{8 G} \cdot \frac{r_{+}^{2}+r_{-}^{2}}{\ell^{2}}, \quad j= \pm \frac{1}{8 G} \cdot \frac{2 r_{+} r_{-}}{\ell}
$$

$\Longrightarrow \quad$ Upper bound on $j: \quad|j| \leq \ell m$

BTZ black hole in TMG

- Also solutions of TMG
- Different conserved charges when measured in TMG (CS term gives additional surface term)

$$
\begin{aligned}
M & =m+\frac{1}{(\mu \ell)} \frac{j}{\ell} \\
J & =j+\frac{1}{(\mu \ell)}(\ell m)
\end{aligned}
$$

BTZ black hole in TMG

- Also solutions of TMG
- Different conserved charges when measured in TMG (CS term gives additional surface term)

$$
\begin{aligned}
M & =m+\frac{1}{(\mu \ell)} \bar{\ell} \\
J & =j+\frac{1}{(\mu \ell)}(\ell m)
\end{aligned}
$$

$$
\text { 1. } M \geq 0 \text { (with }|j| \leq \ell m \text {) }
$$

BTZ black hole in TMG

- Also solutions of TMG
- Different conserved charges when measured in TMG (CS term gives additional surface term)

$$
\begin{aligned}
M & =m+\frac{1}{(\mu \ell)} \bar{\ell} \\
J & =j+\frac{1}{(\mu \ell)}(\ell m)
\end{aligned}
$$

$$
\text { 1. } M \geq 0 \text { (with }|j| \leq \ell m) \quad \Longrightarrow \mu \ell \geq 1
$$

BTZ black hole in TMG

- Also solutions of TMG
- Different conserved charges when measured in TMG (CS term gives additional surface term)

$$
\begin{aligned}
M & =m+\frac{1}{(\mu \ell)} \bar{\ell} \\
J & =j+\frac{1}{(\mu \ell)}(\ell m)
\end{aligned}
$$

1. $M \geq 0$ (with $|j| \leq \ell m) \quad \Longrightarrow \mu \ell \geq 1$
2. $\mathbf{M}=\mathbf{J}(\mathrm{BTZ}$ becomes right moving!) at $\mu \ell=1$.

Massive graviton

- Linearized excitations around $A d S_{3}: g_{\mu \nu}=\bar{g}_{\mu \nu}+h_{\mu \nu}$

Massive graviton

- Linearized excitations around $A d S_{3}: g_{\mu \nu}=\bar{g}_{\mu \nu}+h_{\mu \nu}$
- Primaries of $\left(L_{0}, \bar{L}_{0}\right)$
Left-moving massless :
$(h=2, \quad \bar{h}=0)$
Right-moving massless :
$(h=0, \quad \bar{h}=2)$
Massive :
$\left(h=\frac{3+\mu \ell}{2}, \quad \bar{h}=\frac{-1+\mu \ell}{2}\right)$

1. Unitarity $\Longrightarrow h \geq 0$

Massive graviton

- Linearized excitations around $A d S_{3}: g_{\mu \nu}=\bar{g}_{\mu \nu}+h_{\mu \nu}$
- Primaries of $\left(L_{0}, \bar{L}_{0}\right)$

Left-moving massless : $\quad(h=2, \quad \bar{h}=0)$
Right-moving massless :
$(h=0, \quad \bar{h}=2)$
Massive : $\quad\left(h=\frac{3+\mu \ell}{2}, \quad \bar{h}=\frac{-1+\mu \ell}{2}\right)$

1. Unitarity $\Longrightarrow h \geq 0 \quad \Longrightarrow \mu \ell \geq 1$

Massive graviton

- Linearized excitations around $A d S_{3}: g_{\mu \nu}=\bar{g}_{\mu \nu}+h_{\mu \nu}$
- Primaries of $\left(L_{0}, \bar{L}_{0}\right)$

Left-moving massless : $\quad(h=2, \quad \bar{h}=0)$
Right-moving massless :
$(h=0, \quad \bar{h}=2)$

$$
\text { Massive : } \quad\left(h=\frac{3+\mu \ell}{2}, \quad \bar{h}=\frac{-1+\mu \ell}{2}\right)
$$

1. Unitarity $\Longrightarrow h \geq 0 \quad \Longrightarrow \mu \ell \geq 1$
2. Massive graviton degenerates with left-moving massless one at $\mu \ell=1$.

Massive graviton

- Linearized excitations around $A d S_{3}: g_{\mu \nu}=\bar{g}_{\mu \nu}+h_{\mu \nu}$
- Primaries of $\left(L_{0}, \bar{L}_{0}\right)$

Left-moving massless : $\quad(h=2, \quad \bar{h}=0)$
Right-moving massless :
$(h=0, \quad \bar{h}=2)$
Massive : $\quad\left(h=\frac{3+\mu \ell}{2}, \quad \bar{h}=\frac{-1+\mu \ell}{2}\right)$

1. Unitarity $\Longrightarrow h \geq 0 \quad \Longrightarrow \mu \ell \geq 1$
2. Massive graviton degenerates with left-moving massless one at $\mu \ell=1$.
\Longrightarrow Massive graviton becomes pure gauge in the bulk.

Energy of massive graviton

- Energy of massive graviton:

$$
E_{M} \sim-\frac{1}{\mu}\left(\mu^{2}-\frac{1}{\ell^{2}}\right)
$$

Branch	$\mu \ell<1$	$\mu \ell=1$	$\mu \ell>1$
Massive	+	0	-

- $E_{M} \geq 0 \quad \Longrightarrow \quad \mu \ell \leq 1$

TMG summary

- Summary of TMG so far

	$\mu \ell<1$	$\mu \ell=1$	$\mu \ell>1$
$\left(c_{L}, c_{R}\right)$ of CFT	$(-,+)$	$\left(0, \frac{3 \ell}{G}\right)$	$(+,+)$
(h, \bar{h}) of massive graviton	$(+,-)$	$(2,0)$	$(+,+)$
Energy of BTZ BH	- or +	0 or +	+
Energy of massive graviton	+	0	-

TMG summary

- Summary of TMG so far

	$\mu \ell<1$	$\mu \ell=1$	$\mu \ell>1$
$\left(c_{L}, c_{R}\right)$ of CFT	$(-,+)$	$\left(0, \frac{3 \ell}{6}\right)$	$(+,+)$
(h, \bar{h}) of massive graviton	$(+,-)$	$(2,0)$	$(+,+)$
Energy of BTZ BH	- or +	0 or +	+
Energy of massive graviton	+	0	-

- TMG with $\Lambda=-1 / \ell^{2}$ is unstable for generic μ.

TMG summary

- Summary of TMG so far

	$\mu \ell<1$	$\mu \ell=1$	$\mu \ell>1$
$\left(c_{L}, c_{R}\right)$ of CFT	$(-,+)$	$\left(0, \frac{3 \ell}{6}\right)$	$(+,+)$
(h, \bar{h}) of massive graviton	$(+,-)$	$(2,0)$	$(+,+)$
Energy of BTZ BH	- or +	0 or +	+
Energy of massive graviton	+	0	-

- TMG with $\Lambda=-1 / \ell^{2}$ is unstable for generic μ.
- Exception : $\mu \ell=1$.

Proof of chiral gravity at $\mu \ell=1$

- ASG for Brown-Henneaux b.c.

$$
\begin{aligned}
\zeta & =\left[\epsilon^{+}+\frac{e^{-2 \rho}}{2} \partial_{-}^{2} \epsilon^{-}+\mathcal{O}\left(e^{-4 \rho}\right)\right] \partial_{+} \\
& +\left[\epsilon^{-}+\frac{e^{-2 \rho}}{2} \partial_{+}^{2} \epsilon^{+}+\mathcal{O}\left(e^{-4 \rho}\right)\right] \partial_{-} \\
& +\left[\partial_{+} \epsilon^{+}+\partial_{-} \epsilon^{-}+\mathcal{O}\left(e^{-2 \rho}\right)\right] \partial_{\rho}
\end{aligned}
$$

- $\epsilon^{-}\left(x^{-}\right)$and $\epsilon^{+}\left(x^{+}\right)$parameterize the left and right diffeomorphism.

Proof of chiral gravity at $\mu \ell=1$

- ASG for Brown-Henneaux b.c.

$$
\begin{aligned}
\zeta & =\left[\epsilon^{+}+\frac{e^{-2 \rho}}{2} \partial_{-}^{2} \epsilon^{-}+\mathcal{O}\left(e^{-4 \rho}\right)\right] \partial_{+} \\
& +\left[\epsilon^{-}+\frac{e^{-2 \rho}}{2} \partial_{+}^{2} \epsilon^{+}+\mathcal{O}\left(e^{-4 \rho}\right)\right] \partial_{-} \\
& +\left[\partial_{+} \epsilon^{+}+\partial_{-} \epsilon^{-}+\mathcal{O}\left(e^{-2 \rho}\right)\right] \partial_{\rho}
\end{aligned}
$$

- $\epsilon^{-}\left(x^{-}\right)$and $\epsilon^{+}\left(x^{+}\right)$parameterize the left and right diffeomorphism.
- Diffeomorphism generator:

$$
Q[\zeta]=\int_{\partial \Sigma} \sqrt{\sigma} u^{i} T_{i j} \zeta^{j}
$$

$T_{i j}$: boundary stress tensor.

Proof of chiral gravity at $\mu \ell=1$, cont.

- Boundary stress tensor:

$$
T=\frac{1}{8 \pi G \ell}\left(\begin{array}{cc}
\left(1+\frac{1}{\mu \ell}\right) h_{++} & -h_{+-} \\
-h_{+-} & \left(1-\frac{1}{\mu \ell}\right) h_{--}
\end{array}\right)
$$

Proof of chiral gravity at $\mu \ell=1$, cont.

- Boundary stress tensor:

$$
T=\frac{1}{8 \pi G \ell}\left(\begin{array}{cc}
\left(1+\frac{1}{\mu \ell}\right) h_{++} & -h_{+-} \\
-h_{+-} & \left(1-\frac{1}{\mu \ell}\right) h_{--}
\end{array}\right)
$$

1. Remove h_{+-}using constraint eqs.

Proof of chiral gravity at $\mu \ell=1$, cont.

- Boundary stress tensor:

$$
T=\frac{1}{8 \pi G \ell}\left(\begin{array}{cc}
\left(1+\frac{1}{\mu \ell}\right) h_{++} & -h_{+-} \\
-h_{+-} & \left(1-\frac{1}{\mu \ell}\right) h_{--}
\end{array}\right)
$$

1. Remove h_{+-}using constraint eqs.
2. Take $\mu \ell=1$

Proof of chiral gravity at $\mu \ell=1$, cont.

- Boundary stress tensor:

$$
T=\frac{1}{8 \pi G \ell}\left(\begin{array}{cc}
\left(1+\frac{1}{\mu \ell}\right) h_{++} & -h_{+-} \\
-h_{+-} & \left(1-\frac{1}{\mu \ell}\right) h_{--}
\end{array}\right)
$$

1. Remove h_{+-}using constraint eqs.
2. Take $\mu \ell=1$

$$
\Longrightarrow \quad T=\frac{1}{4 \pi G \ell}\left(\begin{array}{cc}
h_{++} & 0 \\
0 & 0
\end{array}\right)
$$

Proof of chiral gravity at $\mu \ell=1$, cont.

- Boundary stress tensor:

$$
T=\frac{1}{8 \pi G \ell}\left(\begin{array}{cc}
\left(1+\frac{1}{\mu \ell}\right) h_{++} & -h_{+-} \\
-h_{+-} & \left(1-\frac{1}{\mu \ell}\right) h_{--}
\end{array}\right)
$$

1. Remove h_{+-}using constraint eqs.
2. Take $\mu \ell=1$

$$
\Longrightarrow \quad T=\frac{1}{4 \pi G \ell}\left(\begin{array}{cc}
h_{++} & 0 \\
0 & 0
\end{array}\right)
$$

- At $\mu \ell=1$, only right diffeo remains:

$$
Q[\zeta]=\frac{1}{4 \pi G \ell} \int_{\partial \Sigma} d x^{+} T_{i j} \epsilon^{+}
$$

Proof of chiral gravity at $\mu \ell=1$, cont.

- Boundary stress tensor:

$$
T=\frac{1}{8 \pi G \ell}\left(\begin{array}{cc}
\left(1+\frac{1}{\mu \ell}\right) h_{++} & -h_{+-} \\
-h_{+-} & \left(1-\frac{1}{\mu \ell}\right) h_{--}
\end{array}\right)
$$

1. Remove h_{+-}using constraint eqs.
2. Take $\mu \ell=1$

$$
\Longrightarrow \quad T=\frac{1}{4 \pi G \ell}\left(\begin{array}{cc}
h_{++} & 0 \\
0 & 0
\end{array}\right)
$$

- At $\mu \ell=1$, only right diffeo remains:

$$
Q[\zeta]=\frac{1}{4 \pi G \ell} \int_{\partial \Sigma} d x^{+} T_{i j} \epsilon^{+}
$$

- All left-moving diffeo become trivial.
- Left-moving DOF become pure gauge.

Logarithmic mode at chiral point

- At $\mu \ell=1$, massive graviton degenerates into left-moving massless graviton and becomes a pure gauge.

Logarithmic mode at chiral point

- At $\mu \ell=1$, massive graviton degenerates into left-moving massless graviton and becomes a pure gauge.

But, a new mode emerges at $\mu \ell=1$:

$$
\psi^{\mathrm{new}} \equiv \lim _{\mu \ell \rightarrow 1} \frac{h^{M}-h^{L}}{\mu \ell-1}=\log \left(\frac{e^{-i \tau}}{\cosh \rho}\right) h^{L}
$$

Logarithmic mode at chiral point

- At $\mu \ell=1$, massive graviton degenerates into left-moving massless graviton and becomes a pure gauge.

But, a new mode emerges at $\mu \ell=1$:

$$
\psi^{\mathrm{new}} \equiv \lim _{\mu \ell \rightarrow 1} \frac{h^{M}-h^{L}}{\mu \ell-1}=\log \left(\frac{e^{-i \tau}}{\cosh \rho}\right) h^{L}
$$

1. Cannot be gauged away.

Logarithmic mode at chiral point

- At $\mu \ell=1$, massive graviton degenerates into left-moving massless graviton and becomes a pure gauge.

But, a new mode emerges at $\mu \ell=1$:

$$
\psi^{\mathrm{new}} \equiv \lim _{\mu \ell \rightarrow 1} \frac{h^{M}-h^{L}}{\mu \ell-1}=\log \left(\frac{e^{-i \tau}}{\cosh \rho}\right) h^{L}
$$

1. Cannot be gauged away.
2. Violates the Brown-Henneaux boundary conditions logarithmically.

New boundary condition?

- Brown-Henneaux b.c. of AdS_{3} :

$$
\begin{aligned}
h_{\rho \rho}, h_{\rho+}, h_{\rho-} & \sim \mathcal{O}\left(e^{-2 \rho}\right) \\
h_{++}, h_{+-}, h_{--} & \sim \mathcal{O}(1)
\end{aligned}
$$

New boundary condition?

- Brown-Henneaux b.c. of AdS_{3} :

$$
\begin{aligned}
h_{\rho \rho}, h_{\rho+}, h_{\rho-} & \sim \mathcal{O}\left(e^{-2 \rho}\right) \\
h_{++}, h_{+-}, h_{--} & \sim \mathcal{O}(1)
\end{aligned}
$$

- To accommodate $\psi^{\text {new }}$, relaxed b.c. logarithmically (but only for left components):

$$
\begin{aligned}
h_{\rho-} & \sim \mathcal{O}\left(\rho e^{-2 \rho}\right) \\
h_{--} & \sim \mathcal{O}(\rho)
\end{aligned}
$$

New boundary condition?

- Brown-Henneaux b.c. of AdS_{3} :

$$
\begin{aligned}
h_{\rho \rho}, h_{\rho+}, h_{\rho-} & \sim \mathcal{O}\left(e^{-2 \rho}\right) \\
h_{++}, h_{+-}, h_{--} & \sim \mathcal{O}(1)
\end{aligned}
$$

- To accommodate $\psi^{\text {new }}$, relaxed b.c. logarithmically (but only for left components):

$$
\begin{aligned}
h_{\rho-} & \sim \mathcal{O}\left(\rho e^{-2 \rho}\right) \\
h_{--} & \sim \mathcal{O}(\rho)
\end{aligned}
$$

- Important: cannot relax entire b.c. logarithmically, stress tensor would diverge for generic solutions.

TMG with $\mu \ell=1$ remains chiral with new boundary condition

- Stress tensor remains finite and chiral
- New relaxed boundary condition causes a log divergence in T_{--} only (get projected out at $\mu \ell=1$)

TMG with $\mu \ell=1$ remains chiral with new boundary condition

- Stress tensor remains finite and chiral
- New relaxed boundary condition causes a log divergence in T_{--} only (get projected out at $\mu \ell=1$)
- Any additional symmetry with relaxed boundary condition?
- Needs to check whether it is finite and chiral.

TMG with $\mu \ell=1$ remains chiral with new boundary condition

- Stress tensor remains finite and chiral
- New relaxed boundary condition causes a log divergence in T_{--} only (get projected out at $\mu \ell=1$)
- Any additional symmetry with relaxed boundary condition?
- Needs to check whether it is finite and chiral.
- Possible to relax b.c. even more? (with ϵ^{-}trivial)

New mode within Brown-Henneaux boundary condition

- ヨ a new mode that preserves Brown-Henneaux b.c.

Giribet+Kleban+Porrati 2008

New mode within Brown-Henneaux boundary condition

- ヨa new mode that preserves Brown-Henneaux b.c.

Giribet+Kleban+Porrati 2008

1. Descendant of Log mode $\left(\bar{L}_{-1} \psi^{\text {new }}\right)$ breaks Brown-Henneaux less severely:

$$
h_{\rho-} \sim \mathcal{O}\left(\rho e^{-2 \rho}\right)
$$

New mode within Brown-Henneaux boundary condition

- ヨa new mode that preserves Brown-Henneaux b.c.

Giribet+Kleban+Porrati 2008

1. Descendant of Log mode $\left(\bar{L}_{-1} \psi^{\text {new }}\right)$ breaks Brown-Henneaux less severely:

$$
h_{\rho-} \sim \mathcal{O}\left(\rho e^{-2 \rho}\right)
$$

2. Remove remaining log-divergence by a "trivial" gauge transformation $\tilde{\zeta}$:

$$
X_{\mu \nu} \equiv \bar{L}_{-1} \psi^{\text {new }}+\mathcal{L}_{\tilde{\zeta}} g_{\mu \nu} \quad \text { preserves Brown-Henneaux }
$$

- Note: both $\bar{L}_{-1} \psi^{\text {new }}$ and $\tilde{\zeta}$ sit in log-relaxed BHbc.

New mode within Brown-Henneaux boundary condition

- ヨa new mode that preserves Brown-Henneaux b.c.

Giribet+Kleban+Porrati 2008

1. Descendant of Log mode $\left(\bar{L}_{-1} \psi^{\text {new }}\right)$ breaks Brown-Henneaux less severely:

$$
h_{\rho-} \sim \mathcal{O}\left(\rho e^{-2 \rho}\right)
$$

2. Remove remaining log-divergence by a "trivial" gauge transformation $\tilde{\zeta}$:

$$
X_{\mu \nu} \equiv \bar{L}_{-1} \psi^{\text {new }}+\mathcal{L}_{\tilde{\zeta}} g_{\mu \nu} \quad \text { preserves Brown-Henneaux }
$$

- Note: both $\bar{L}_{-1} \psi^{\text {new }}$ and $\tilde{\zeta}$ sit in log-relaxed BHbc.
- A new spin-1 field?

1. Naively it is a $(2,1)$ primiary.
2. Left Virasoro is trivial \rightarrow actually a $(0,1)$ primary.

New mode within Brown-Henneaux boundary condition

- ヨa new mode that preserves Brown-Henneaux b.c.

Giribet+Kleban+Porrati 2008

1. Descendant of Log mode $\left(\bar{L}_{-1} \psi^{\text {new }}\right)$ breaks Brown-Henneaux less severely:

$$
h_{\rho-} \sim \mathcal{O}\left(\rho e^{-2 \rho}\right)
$$

2. Remove remaining log-divergence by a "trivial" gauge transformation $\tilde{\zeta}$:

$$
X_{\mu \nu} \equiv \bar{L}_{-1} \psi^{\text {new }}+\mathcal{L}_{\tilde{\zeta}} g_{\mu \nu} \quad \text { preserves Brown-Henneaux }
$$

- Note: both $\bar{L}_{-1} \psi^{\text {new }}$ and $\tilde{\zeta}$ sit in log-relaxed BHbc.
- A new spin-1 field?

1. Naively it is a $(2,1)$ primiary.
2. Left Virasoro is trivial \rightarrow actually a $(0,1)$ primary.

- Is it chiral $(E-J=0)$?

Open problems

1. \exists other consistent $A d S_{3}$ boundary condition?

- Different AdS_{3} boundary conditions define inequivalent theories.

Open problems

1. \exists other consistent $A d S_{3}$ boundary condition?

- Different AdS_{3} boundary conditions define inequivalent theories.

2. ASG enhancement at chiral point?

Outline

Overview
3D pure Einstein gravity
ECFT dual

Topologically Massive Gravity (with negative Λ)
Instability at generic $\mu \ell$
Chiral gravity at $\mu \ell=1$
Symmetry enhancement?
New Vacua of TMG
Warped AdS $_{3}$ vacua
Warped black holes
Black hole thermodynamics and conjecture for CFT

Summary.

Motivation

- 3D TMG with $\Lambda<0$ admits $A d S_{3}$ vacuum for generic μ.

Motivation

- 3D TMG with $\Lambda<0$ admits $A d S_{3}$ vacuum for generic μ.
- All are perturbatively unstable - except at $\mu \ell=1$.

Motivation

- 3D TMG with $\Lambda<0$ admits $A d S_{3}$ vacuum for generic μ.
- All are perturbatively unstable - except at $\mu \ell=1$.
- Question: \exists stable vacua at generic μ ?

$A d S_{3}$ isometry

1. $A d S_{3}$ is a $S L(2, R)$ group manifold.

$A d S_{3}$ isometry

1. $A d S_{3}$ is a $S L(2, R)$ group manifold.
2. Isometry is $S L(2, \mathbb{R})_{L} \times S L(2, \mathbb{R})_{R}$

$A d S_{3}$ isometry

1. $A d S_{3}$ is a $S L(2, R)$ group manifold.
2. Isometry is $\operatorname{SL}(2, \mathbb{R})_{L} \times S L(2, \mathbb{R})_{R}$
3. $A d S_{3}$ is S^{1} fibered over $A d S_{2}$:

$$
d s_{A d S_{3}}^{2}=\frac{\ell^{2}}{4}\left(d s_{A d S_{2}}^{2}+d s_{S^{1}}^{2}\right)
$$

$A d S_{3}$ isometry

1. $A d S_{3}$ is a $S L(2, R)$ group manifold.
2. Isometry is $\operatorname{SL}(2, \mathbb{R})_{L} \times S L(2, \mathbb{R})_{R}$
3. $A d S_{3}$ is S^{1} fibered over $A d S_{2}$:

$$
d s_{A d S_{3}}^{2}=\frac{\ell^{2}}{4}\left(d s_{A d S_{2}}^{2}+d s_{S^{1}}^{2}\right)
$$

(1) S^{1} and $A d S_{2}$ have same radii.

$A d S_{3}$ isometry

1. $A d S_{3}$ is a $S L(2, R)$ group manifold.
2. Isometry is $\operatorname{SL}(2, \mathbb{R})_{L} \times S L(2, \mathbb{R})_{R}$
3. $A d S_{3}$ is S^{1} fibered over $A d S_{2}$:

$$
d s_{A d S_{3}}^{2}=\frac{\ell^{2}}{4}\left(d s_{A d S_{2}}^{2}+d s_{S^{1}}^{2}\right)
$$

S^{1} and $A d S_{2}$ have same radii.

- Spacelike fibration
- Timelike fibration

Constructing warped AdS_{3}, cont.

- Varying size of S^{1} fiber gives warped $A d S_{3}$.

$$
d s_{W A d S_{3}}^{2}=\frac{\mathrm{L}^{2}}{4}\left(d s_{A d S_{2}}^{2}+\alpha^{2} \cdot d s_{S^{1}}^{2}\right)
$$

Constructing warped AdS_{3}, cont.

- Varying size of S^{1} fiber gives warped $A d S_{3}$.

$$
d s_{W A d S_{3}}^{2}=\frac{\mathrm{L}^{2}}{4}\left(d s_{A d S_{2}}^{2}+\alpha^{2} \cdot d s_{S^{1}}^{2}\right)
$$

preserving $U(1) \times S L(2, \mathbb{R})$

- Spacelike warping
- Timelike warping

Constructing warped AdS_{3}, cont.

- Varying size of S^{1} fiber gives warped $A d S_{3}$.

$$
d s_{W A d S_{3}}^{2}=\frac{\mathrm{L}^{2}}{4}\left(d s_{A d S_{2}}^{2}+\alpha^{2} \cdot d s_{S^{1}}^{2}\right)
$$

preserving $U(1) \times S L(2, \mathbb{R})$

- Spacelike warping
- Timelike warping
- New scale and warping factor

1. TMG modified length $L=\ell \cdot \frac{6}{\sqrt{\mu^{2} \ell^{2}+27}}$
$\rightarrow \ell$ at $\mu \ell=3$.
2. Warping factor
$\alpha=\frac{\mu L}{3}$
$\rightarrow 1$ at $\mu \ell=3$.

Constructing warped AdS_{3}, cont.

- Varying size of S^{1} fiber gives warped $A d S_{3}$.

$$
d s_{W A d S_{3}}^{2}=\frac{\mathrm{L}^{2}}{4}\left(d s_{A d S_{2}}^{2}+\alpha^{2} \cdot d s_{S^{1}}^{2}\right)
$$

preserving $U(1) \times S L(2, \mathbb{R})$

- Spacelike warping
- Timelike warping
- New scale and warping factor

1. TMG modified length $L=\ell \cdot \frac{6}{\sqrt{\mu^{2} \ell^{2}+27}}$
$\rightarrow \ell$ at $\mu \ell=3$.
2. Warping factor
$\alpha=\frac{\mu L}{3}$
$\rightarrow 1$ at $\mu \ell=3$.

Reduce to $A d S_{3}$ at $\mu \ell=3!!!$

Constructing warped AdS_{3}, cont.

- Varying size of S^{1} fiber gives warped $A d S_{3}$.

$$
d s_{W A d S_{3}}^{2}=\frac{\mathrm{L}^{2}}{4}\left(d s_{A d S_{2}}^{2}+\alpha^{2} \cdot d s_{S_{1}^{1}}^{2}\right)
$$

preserving $U(1) \times S L(2, \mathbb{R})$

- Spacelike warping
- Timelike warping
- New scale and warping factor

1. TMG modified length $L=\ell \cdot \frac{6}{\sqrt{\mu^{2} \ell^{2}+27}}$
$\rightarrow \ell$ at $\mu \ell=3$.
2. Warping factor
$\alpha=\frac{\mu L}{3}$
$\rightarrow 1$ at $\mu \ell=3$.

Reduce to $A d S_{3}$ at $\mu \ell=3!!!$

- Any warped $A d S_{3}$ at $\mu \ell=3$?

Null warped $A d S_{3}$

- \exists null warped $A d S_{3}$ at $\mu \ell=3$.
- Null warping: $d s_{n u l l}^{2}=\ell^{2}[\frac{d u^{2}}{u^{2}}+\frac{d x^{+} d x^{-}}{u^{2}} \pm \underbrace{\left(\frac{d x^{-}}{u^{2}}\right)^{2}}_{S^{1}}]$
\Longrightarrow preserving $U(1)_{\text {Null }} \times S L(2, \mathbb{R})$.

Null warped $A d S_{3}$

- \exists null warped $A d S_{3}$ at $\mu \ell=3$.
- Null warping: $d s_{n u l l}^{2}=\ell^{2}[\frac{d u^{2}}{u^{2}}+\frac{d x^{+} d x^{-}}{u^{2}} \pm \underbrace{\left(\frac{d x^{-}}{u^{2}}\right)^{2}}_{S^{1}}]$
\Longrightarrow preserving $U(1)_{\text {Null }} \times S L(2, \mathbb{R})$.
- \pm : two different orientations of S^{1}.

Null warped $A d S_{3}$

- \exists null warped $A d S_{3}$ at $\mu \ell=3$.
- Null warping: $d s_{n u l l}^{2}=\ell^{2}[\frac{d u^{2}}{u^{2}}+\frac{d x^{+} d x^{-}}{u^{2}} \pm \underbrace{\left(\frac{d x^{-}}{u^{2}}\right)^{2}}_{S^{1}}]$
\Longrightarrow preserving $U(1)_{\text {Null }} \times S L(2, \mathbb{R})$.
- \pm : two different orientations of S^{1}.

Solution of TMG only at $\mu \ell=3$.

A summary of results

- \exists Six types of warped $A d S_{3}$ as TMG vacua (two for every value of μ):

	Timelike	Null	Spacelike
$\mu \ell>3$	Timelike Stretched	-	Spacelike Stretched
$\mu \ell=3$	$A d S_{3}$	Null warped	$A d S_{3}$
$\mu \ell<3$	Timelike squashed	-	Spacelike squashed

A summary of results

- \exists Six types of warped $A d S_{3}$ as TMG vacua (two for every value of μ):

	Timelike	Null	Spacelike
$\mu \ell>3$	Timelike Stretched	-	Spacelike Stretched
$\mu \ell=3$	$A d S_{3}$	Null warped	$A d S_{3}$
$\mu \ell<3$	Timelike squashed	-	Spacelike squashed

Critical point: $\mu \ell=3$

Stability of warped AdS_{3}

- To understand the stability of the warped $A d S_{3}$ vacua, need to

1. Determine appropriate boundary conditions for warped AdS_{3}
2. Solve for the linearized spectrum

Stability of warped AdS_{3}

- To understand the stability of the warped $A d S_{3}$ vacua, need to

1. Determine appropriate boundary conditions for warped AdS_{3}
2. Solve for the linearized spectrum

Reduced isometry group $(S L(2, \mathbb{R}) \times U(1)) \rightarrow$ difficult to solve the spectrum.

Stability of warped AdS_{3}

- To understand the stability of the warped $A d S_{3}$ vacua, need to

1. Determine appropriate boundary conditions for warped $A d S_{3}$
2. Solve for the linearized spectrum

Reduced isometry group $(S L(2, \mathbb{R}) \times U(1)) \rightarrow$ difficult to solve the spectrum.

- Do not know whether or when warped $A d S_{3}$ are perturbatively stable - yet.

Quotienting procedure

- BTZ black holes are quotients of AdS_{3} :
- Identifying points \mathcal{P} under action of $\xi=T_{L} J_{L}+T_{R} J_{R}$:

$$
\mathcal{P} \sim e^{2 \pi k \xi} \mathcal{P}, \quad k=0,1,2 \ldots
$$

Quotienting procedure

- BTZ black holes are quotients of AdS_{3} :
- Identifying points \mathcal{P} under action of $\xi=T_{L} J_{L}+T_{R} J_{R}$:

$$
\mathcal{P} \sim e^{2 \pi k \xi} \mathcal{P}, \quad k=0,1,2 \ldots
$$

- Self-dual solution for $\xi=T_{L / R} J_{L / R}$.

Quotienting procedure

- BTZ black holes are quotients of AdS_{3} :
- Identifying points \mathcal{P} under action of $\xi=T_{L} J_{L}+T_{R} J_{R}$:

$$
\mathcal{P} \sim e^{2 \pi k \xi} \mathcal{P}, \quad k=0,1,2 \ldots
$$

- Self-dual solution for $\xi=T_{L / R} J_{L / R}$.
- Quotienting warped $A d S_{3}$ gives warped black holes.

Summary of warped black holes

Anninos + WL + Padi + Song + Strominger 2008

- Quotienting warped AdS_{3} gives warped black holes

	Timelike	Null	Spacelike
$\mu \ell>3$	self-dual solutions	-	Spacelike stretched BHs self-dual solutions
$\mu \ell=3$	BTZ	Null warped BHs	BTZ
$\mu \ell<3$	self-dual solutions	-	self-dual solutions

Summary of warped black holes

Anninos + WL + Padi + Song + Strominger 2008

- Quotienting warped $A d S_{3}$ gives warped black holes

	Timelike	Null	Spacelike
$\mu \ell>3$	self-dual solutions	-	Spacelike stretched BHs self-dual solutions
$\mu \ell=3$	BTZ	Null warped BHs	BTZ
$\mu \ell<3$	self-dual solutions	-	self-dual solutions

1. Spacelike stretched black holes.

Reduces to BTZ at $\mu \ell=3$.
2. Null warped Black holes
3. Self-dual solutions

Thermodynamics of spacelike-stretched black holes

1. $T_{L / R}$ are given by coefficients of quotienting direction ξ

$$
2 \pi \xi=\partial_{\theta}=\pi \ell\left(T_{L} J_{L}^{2}-T_{R} J_{R}^{2}\right)
$$

Thermodynamics of spacelike-stretched black holes

1. $T_{L / R}$ are given by coefficients of quotienting direction ξ

$$
2 \pi \xi=\partial_{\theta}=\pi \ell\left(T_{L} J_{L}^{2}-T_{R} J_{R}^{2}\right)
$$

2. Rewrite entropy as

$$
S=\frac{\pi^{2} \ell}{3}\left(c_{L} T_{L}+c_{R} T_{R}\right)
$$

Thermodynamics of spacelike-stretched black holes

1. $T_{L / R}$ are given by coefficients of quotienting direction ξ

$$
2 \pi \xi=\partial_{\theta}=\pi \ell\left(T_{L} J_{L}^{2}-T_{R} J_{R}^{2}\right)
$$

2. Rewrite entropy as

$$
S=\frac{\pi^{2} \ell}{3}\left(c_{L} T_{L}+c_{R} T_{R}\right)
$$

3. $C_{L / R}$ are independent of $r_{ \pm}$

$$
\Longrightarrow\left\{\begin{array}{l}
c_{L}=\frac{L}{G} \cdot \alpha \\
c_{R}=\frac{L}{G} \cdot\left(\alpha+\frac{1}{\alpha}\right)
\end{array}\right.
$$

Conjecture for CFT

- Bulk isometry $U(1)_{L} \times S L(2, \mathbb{R})_{R}$ is enhanced at the boundary into Vir $\times \overline{\operatorname{Vir}}$ with $\left(c_{L}=\frac{L}{G} \cdot \alpha, c_{R}=\frac{L}{G} \cdot\left(\alpha+\frac{1}{\alpha}\right)\right)$

Conjecture for CFT

- Bulk isometry $U(1)_{L} \times S L(2, \mathbb{R})_{R}$ is enhanced at the boundary into Vir $\times \overline{\operatorname{Vir}}$ with $\left(c_{L}=\frac{L}{G} \cdot \alpha, c_{R}=\frac{L}{G} \cdot\left(\alpha+\frac{1}{\alpha}\right)\right)$
- Open problems

1. Derive ASG

Conjecture for CFT

- Bulk isometry $U(1)_{L} \times S L(2, \mathbb{R})_{R}$ is enhanced at the boundary into Vir $\times \overline{\operatorname{Vir}}$ with $\left(c_{L}=\frac{L}{G} \cdot \alpha, c_{R}=\frac{L}{G} \cdot\left(\alpha+\frac{1}{\alpha}\right)\right)$
- Open problems

1. Derive ASG
2. Compute conserved charges microscopically.

- Conserved charges (as related to $E_{L / R}=\frac{\pi^{2} \ell}{6} c_{L / R} T_{L / R}^{2}$):

$$
\mathcal{M}^{A D T}=\frac{1}{G} \sqrt{\frac{2 \ell E_{L}}{3 c_{L}}} \quad \mathcal{J}^{A D T}=\ell\left(E_{L}-E_{R}\right)
$$

Require knowing more than just $c_{L / R}$.

Connection to other systems

1. Self-dual quotient of spacelike-warped $A d S_{3}$ appears as constant- θ-slice of extremal Kerr.

Guica+Hartman + Song + Strominger, in progress
Left CFT counts Kerr entropy
2. Null-warped $A d S_{3}$ as dual to cold atom.

Open problems

- Embed warped black holes into string theory, find dual CFT.

Outline

Overview

3D pure Einstein gravity
ECFT dual
Topologically Massive Gravity (with negative Λ)
Instability at generic $\mu \ell$
Chiral gravity at $\mu \ell=1$
Symmetry enhancement?
New Vacua of TMG
Warped $A d S_{3}$ vacua
Warped black holes
Black hole thermodynamics and conjecture for CFT
Summary.

Summary

1. Quantizing even 3D pure gravity is non-trivial.
2. TMG with $\mu \ell=1$ is chiral
3. New vacua and black holes in TMG need microscopic description.

Open problems

- 3D pure Einstein gravity

Holomorphic factorization?

- If yes, how to explain non-geometric states?
- If not, what is the CFT dual?

Open problems

- 3D pure Einstein gravity

Holomorphic factorization?

- If yes, how to explain non-geometric states?
- If not, what is the CFT dual?
- Chiral gravity

Any other consistent $A d S_{3}$ boundary condition?
Symmetry enhancement at chiral point?

Open problems

- 3D pure Einstein gravity

Holomorphic factorization?

- If yes, how to explain non-geometric states?
- If not, what is the CFT dual?
- Chiral gravity

Any other consistent $A d S_{3}$ boundary condition?
Symmetry enhancement at chiral point?

- Warped $A d S_{3}$ and black holes.

Is warped $A d S_{3}$ stable?
Find dual CFT of various warped black holes.

THANK
 $\mathcal{Y O U !}$

