Three-dimensional Black Holes, Einstein and Non-Einstein

Wei Li

IPMU, Tokyo University, Japan

Quantum Black Hole, IPMU, Sep 13 2008

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

1. Chiral Gravity in Three Dimensions

with W. Song and A. Strominger arXiv:0801.4566

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

 Warped AdS₃ Black Holes with D. Anninos, M. Padi, W. Song and A. Strominger arXiv:0807.3040

Overview

3D pure Einstein gravity ECFT dual

Topologically Massive Gravity (with negative Λ)

Instability at generic $\mu\ell$ Chiral gravity at $\mu\ell = 1$ Symmetry enhancement?

New Vacua of TMG

Warped *AdS*₃ vacua Warped black holes Black hole thermodynamics and conjecture for CFT

Summary.

Outline

Overview 3D pure Einstein gravity ECFT dual

Topologically Massive Gravity (with negative Λ)

Instability at generic $\mu \ell$ Chiral gravity at $\mu \ell = 1$ Symmetry enhancement?

New Vacua of TMG

Warped *AdS*₃ vacua Warped black holes Black hole thermodynamics and conjecture for CFT

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Summary.

► 3D pure Einstein gravity is **trivial classically**.

1. DOF counting:

 ${\rm Spatial\ metric} + {\rm Momenta} - {\rm Diffeo} - {\rm Bianchi}$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

$$= 3 + 3 - 3 - 3$$

► No propagating DOF.

► 3D pure Einstein gravity is **trivial classically**.

1. DOF counting:

Spatial metric + Momenta - Diffeo - Bianchi

$$= 3 + 3 - 3 - 3$$

- ► No propagating DOF.
- 2. Riemann and Ricci have same number of DOF (= 6)
 - all solutions have same constant curvature.

► 3D pure Einstein gravity is **trivial classically**.

1. DOF counting:

 ${\rm Spatial\ metric} + {\rm Momenta} - {\rm Diffeo} - {\rm Bianchi}$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

$$= 3+3-3-3$$

- No propagating DOF.
- 2. Riemann and Ricci have same number of DOF (= 6)
 - all solutions have same constant curvature.

► \exists BTZ black holes (*when* $\Lambda < 0$)

► 3D pure Einstein gravity is **trivial classically**.

1. DOF counting:

 ${\rm Spatial\ metric} + {\rm Momenta} - {\rm Diffeo} - {\rm Bianchi}$

$$= 3+3-3-3$$

- No propagating DOF.
- 2. Riemann and Ricci have same number of DOF (= 6)
 - all solutions have same constant curvature.
- ► \exists BTZ black holes (*when* $\Lambda < 0$)
 - \implies Non-trivial quantum mechanically.
 - Microscopic origin of BTZ black hole entropy?

Negative cosmological constant

• In this talk, focus on $\Lambda < 0$.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …のへで

Negative cosmological constant

• In this talk, focus on $\Lambda < 0$.

► \exists black holes (unlike $\Lambda \ge 0$)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Negative cosmological constant

• In this talk, focus on $\Lambda < 0$.

► \exists black holes (unlike $\Lambda \ge 0$)

▶ Use AdS₃/CFT₂

$$\Lambda = -\frac{1}{\ell^2}$$
 ℓ : AdS_3 radius.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

Witten 2008

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Assuming holomorphic factorization, 3D pure gravity

$$I_{Ein}=rac{1}{16\pi G}\int d^3x\sqrt{g}(R+rac{2}{\ell^2})$$

is conjectured to be dual to Extremal-CFT

$$(c_L, c_R) = (24k, 24k)$$
 with $k = \frac{\ell}{16G} \in \mathbb{Z}$

Witten 2008

Assuming holomorphic factorization, 3D pure gravity

$$I_{Ein}=rac{1}{16\pi G}\int d^3x\sqrt{g}(R+rac{2}{\ell^2})$$

is conjectured to be dual to Extremal-CFT

$$(c_L, c_R) = (24k, 24k)$$
 with $k = \frac{\ell}{16G} \in \mathbb{Z}$

1. Pure gravity \Rightarrow no state between vacuum and lightest BTZ

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

Witten 2008

Assuming holomorphic factorization, 3D pure gravity

$$I_{Ein}=rac{1}{16\pi G}\int d^3x\sqrt{g}(R+rac{2}{\ell^2})$$

is conjectured to be dual to Extremal-CFT

$$(c_L, c_R) = (24k, 24k)$$
 with $k = \frac{\ell}{16G} \in \mathbb{Z}$

1. Pure gravity \Rightarrow no state between vacuum and lightest BTZ \Rightarrow no primary between identity and k + 1

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ クタマ

Witten 2008

Assuming holomorphic factorization, 3D pure gravity

$$I_{Ein}=rac{1}{16\pi G}\int d^3x\sqrt{g}(R+rac{2}{\ell^2})$$

is conjectured to be dual to Extremal-CFT

$$(c_L, c_R) = (24k, 24k)$$
 with $k = \frac{\ell}{16G} \in \mathbb{Z}$

1. Pure gravity \Rightarrow no state between vacuum and lightest BTZ \Rightarrow no primary between identity and $k + 1 \Rightarrow \text{ECFT}$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ クタマ

Witten 2008

Assuming holomorphic factorization, 3D pure gravity

$$I_{Ein}=rac{1}{16\pi G}\int d^3x\sqrt{g}(R+rac{2}{\ell^2})$$

is conjectured to be dual to Extremal-CFT

$$(c_L, c_R) = (24k, 24k)$$
 with $k = \frac{\ell}{16G} \in \mathbb{Z}$

- 1. Pure gravity \Rightarrow no state between vacuum and lightest BTZ \Rightarrow no primary between identity and $k + 1 \Rightarrow \text{ECFT}$
- 2. c = 24k with $k \in \mathbb{Z} \implies$ Left and right CFT are separately modular-invariant.

Witten 2008

Assuming holomorphic factorization, 3D pure gravity

$$I_{Ein}=rac{1}{16\pi G}\int d^3x\sqrt{g}(R+rac{2}{\ell^2})$$

is conjectured to be dual to Extremal-CFT

$$(c_L, c_R) = (24k, 24k)$$
 with $k = \frac{\ell}{16G} \in \mathbb{Z}$

- 1. Pure gravity \Rightarrow no state between vacuum and lightest BTZ \Rightarrow no primary between identity and $k + 1 \Rightarrow \text{ECFT}$
- 2. c = 24k with $k \in \mathbb{Z} \implies$ Left and right CFT are separately modular-invariant. \Rightarrow Holomorphic factorized!

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Witten 2008

Assuming holomorphic factorization, 3D pure gravity

$$I_{Ein}=rac{1}{16\pi G}\int d^3x\sqrt{g}(R+rac{2}{\ell^2})$$

is conjectured to be dual to Extremal-CFT

$$(c_L, c_R) = (24k, 24k)$$
 with $k = \frac{\ell}{16G} \in \mathbb{Z}$

- 1. Pure gravity \Rightarrow no state between vacuum and lightest BTZ \Rightarrow no primary between identity and $k + 1 \Rightarrow \text{ECFT}$
- 2. c = 24k with $k \in \mathbb{Z} \implies$ Left and right CFT are separately modular-invariant. \Rightarrow Holomorphic factorized!

• Only c = 24 ECFT is explicitly known — it has monster symmetry.

Witten 2008

Assuming holomorphic factorization, 3D pure gravity

$$I_{Ein}=rac{1}{16\pi G}\int d^3x\sqrt{g}(R+rac{2}{\ell^2})$$

is conjectured to be dual to Extremal-CFT

$$(c_L, c_R) = (24k, 24k)$$
 with $k = \frac{\ell}{16G} \in \mathbb{Z}$

- 1. Pure gravity \Rightarrow no state between vacuum and lightest BTZ \Rightarrow no primary between identity and $k + 1 \Rightarrow \text{ECFT}$
- 2. c = 24k with $k \in \mathbb{Z} \implies$ Left and right CFT are separately modular-invariant. \Rightarrow Holomorphic factorized!

- Only c = 24 ECFT is explicitly known it has monster symmetry.
- Partition function from ECFT counts BTZ entropy.

If assume holomorphic factorization:

 $Z(q,\bar{q})=Z(q)Z(\bar{q})$

If assume holomorphic factorization:

 $Z(q,\bar{q})=Z(q)Z(\bar{q})$

► However, when directly compute Z(q, q̄) by summing over classical geometries + 1-loop correction:

 $Z(q,\bar{q})\neq Z(q)Z(\bar{q})$

Yin, Maloney+Witten 2007, Giombi+Maloney+Yin 2008

If assume holomorphic factorization:

 $Z(q,\bar{q})=Z(q)Z(\bar{q})$

► However, when directly compute Z(q, q̄) by summing over classical geometries + 1-loop correction:

 $Z(q,\bar{q})\neq Z(q)Z(\bar{q})$

Yin, Maloney+Witten 2007, Giombi+Maloney+Yin 2008

- Possible answers:
 - 1. Quantum pure gravity need to include non-geometric configurations (complex saddlepoints...)

If assume holomorphic factorization:

 $Z(q,\bar{q})=Z(q)Z(\bar{q})$

► However, when directly compute Z(q, q̄) by summing over classical geometries + 1-loop correction:

 $Z(q,\bar{q})\neq Z(q)Z(\bar{q})$

Yin, Maloney+Witten 2007, Giombi+Maloney+Yin 2008

- Possible answers:
 - 1. Quantum pure gravity need to include non-geometric configurations (complex saddlepoints...)
 - 2. Cannot be holomorphic factorized.

If assume holomorphic factorization:

 $Z(q,\bar{q})=Z(q)Z(\bar{q})$

► However, when directly compute Z(q, q̄) by summing over classical geometries + 1-loop correction:

 $Z(q,\bar{q})\neq Z(q)Z(\bar{q})$

Yin, Maloney+Witten 2007, Giombi+Maloney+Yin 2008

- Possible answers:
 - 1. Quantum pure gravity need to include non-geometric configurations (complex saddlepoints...)
 - 2. Cannot be holomorphic factorized.
 - 3. Alternative?

If assume holomorphic factorization:

 $Z(q,\bar{q})=Z(q)Z(\bar{q})$

► However, when directly compute Z(q, q̄) by summing over classical geometries + 1-loop correction:

 $Z(q,\bar{q})\neq Z(q)Z(\bar{q})$

Yin, Maloney+Witten 2007, Giombi+Maloney+Yin 2008

- Possible answers:
 - 1. Quantum pure gravity need to include non-geometric configurations (complex saddlepoints...)
 - 2. Cannot be holomorphic factorized.
 - 3. Alternative?

Deform pure gravity...

Outline

Overview

3D pure Einstein gravity ECFT dual

Topologically Massive Gravity (with negative Λ)

Instability at generic $\mu \ell$ Chiral gravity at $\mu \ell = 1$ Symmetry enhancement?

New Vacua of TMG

Warped *AdS*₃ vacua Warped black holes Black hole thermodynamics and conjecture for CFT

イロト 不得 トイヨト イヨト ヨー ろくで

Summary.

Add a gravitational Chern-Simons term

$$I = \frac{1}{16\pi G} \left[\int d^3x \sqrt{|g|} (R - 2\Lambda) + \frac{1}{\mu} I_{CS} \right]$$
$$I_{cs} = -\frac{1}{2} \int \text{Tr}(\Gamma \wedge d\Gamma + \frac{2}{3}\Gamma \wedge \Gamma \wedge \Gamma)$$

Deser+Jackiw+Templeton 1982

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

Add a gravitational Chern-Simons term

$$I = \frac{1}{16\pi G} \left[\int d^3x \sqrt{|g|} (R - 2\Lambda) + \frac{1}{\mu} I_{CS} \right]$$
$$I_{cs} = -\frac{1}{2} \int \operatorname{Tr}(\Gamma \wedge d\Gamma + \frac{2}{3}\Gamma \wedge \Gamma \wedge \Gamma)$$

Deser+Jackiw+Templeton 1982

(日) (日) (日) (日) (日) (日) (日) (日) (日)

▶ \exists one single massive, propagating graviton DOF at generic μ .

Add a gravitational Chern-Simons term

$$I = \frac{1}{16\pi G} \left[\int d^3x \sqrt{|g|} (R - 2\Lambda) + \frac{1}{\mu} I_{CS} \right]$$
$$I_{cs} = -\frac{1}{2} \int \operatorname{Tr}(\Gamma \wedge d\Gamma + \frac{2}{3}\Gamma \wedge \Gamma \wedge \Gamma)$$

Deser+Jackiw+Templeton 1982

(日) (日) (日) (日) (日) (日) (日) (日) (日)

▶ \exists one single massive, propagating graviton DOF at generic μ .

1. Naive DOF counting stops working.

$$(\implies \text{DOF} = 6 + 6 - 3 - 3 - 4 = 2 \neq 0)$$

Add a gravitational Chern-Simons term

$$I = \frac{1}{16\pi G} \left[\int d^3x \sqrt{|g|} (R - 2\Lambda) + \frac{1}{\mu} I_{CS} \right]$$
$$I_{cs} = -\frac{1}{2} \int \operatorname{Tr}(\Gamma \wedge d\Gamma + \frac{2}{3}\Gamma \wedge \Gamma \wedge \Gamma)$$

Deser+Jackiw+Templeton 1982

▶ \exists one single massive, propagating graviton DOF at generic μ .

Add a gravitational Chern-Simons term

$$I = \frac{1}{16\pi G} \left[\int d^3x \sqrt{|g|} (R - 2\Lambda) + \frac{1}{\mu} I_{CS} \right]$$
$$I_{cs} = -\frac{1}{2} \int \operatorname{Tr}(\Gamma \wedge d\Gamma + \frac{2}{3}\Gamma \wedge \Gamma \wedge \Gamma)$$

Deser+Jackiw+Templeton 1982

▶ \exists one single massive, propagating graviton DOF at generic μ .

1. Naive DOF counting stops working.

$$(\Longrightarrow \text{DOF} = 6 + 6 - 3 - 3 - 4 = 2 \neq 0)$$

- 2. μ is mass of the massive graviton in flat space.
- One DOF allows more structures
 - When Λ = 0, TMG allows black holes

Ait Moussa+Clement+Leygnac 2003

When Λ < 0, TMG allows warped AdS₃ and black holes (maybe even more).

Anninos+WL+Padi+Song+Strominger 2008

The action:

$$I = \frac{1}{16\pi G} \left[\int d^3 x \sqrt{|g|} (R - 2\Lambda) + \frac{1}{\mu} I_{CS} \right]$$

► EOM:

$$\mathcal{G}_{\mu
u}+rac{1}{\mu}\mathcal{C}_{\mu
u}=0$$

• $\mathcal{G}_{\mu\nu}$: c.c.-modified Einstein tensor

$${\cal G}_{\mu
u}\equiv {\it R}_{\mu
u}-rac{1}{2}g_{\mu
u}{\it R}+\Lambda g_{\mu
u}$$

• $C_{\mu\nu}$: Cotton tensor (Weyl tensor vanishes identically in 3D.)

$$C_{\mu
u}\equiv rac{1}{\sqrt{|g|}}\epsilon_{\mu}^{\ lphaeta}
abla_{lpha}(R_{eta
u}-rac{1}{4}g_{eta
u}R_{eta})$$

◆□ → ◆□ → ◆ 三 → ◆ 三 → のへぐ

The action:

$$I = \frac{1}{16\pi G} \left[\int d^3x \sqrt{|g|} (R - 2\Lambda) + \frac{1}{\mu} I_{CS} \right]$$

► EOM:

$$\mathcal{G}_{\mu
u}+rac{1}{\mu}\mathcal{C}_{\mu
u}=0$$

• $\mathcal{G}_{\mu\nu}$: c.c.-modified Einstein tensor

$${\cal G}_{\mu
u}\equiv {\it R}_{\mu
u}-rac{1}{2}g_{\mu
u}{\it R}+\Lambda g_{\mu
u}$$

• $C_{\mu\nu}$: Cotton tensor (Weyl tensor vanishes identically in 3D.)

$$\mathcal{C}_{\mu
u}\equiv rac{1}{\sqrt{|g|}}\epsilon_{\mu}\,^{lphaeta}
abla_{lpha}(\mathcal{R}_{eta
u}-rac{1}{4}g_{eta
u}\mathcal{R})$$

All solutions of Einstein gravity are also solutions of TMG.

AdS₃ vacuum

▶ TMG has an AdS₃ vacuum

$$ds^{2} = \ell^{2}(-\cosh^{2}\rho d\tau^{2} + \sinh^{2}\rho d\phi^{2} + d\rho^{2})$$

(ロト (個) (E) (E) (E) (0)()

with $\Lambda = -\frac{1}{\ell^2}$.

AdS₃ vacuum

• TMG has an AdS_3 vacuum $ds^2 = \ell^2(-\cosh^2\rho d\tau^2 + \sinh^2\rho d\phi^2 + d\rho^2)$ with $\Lambda = -\frac{1}{\ell^2}$.

• Isometry : $SL(2,\mathbb{R})_L \times SL(2,\mathbb{R})_R$.

AdS₃ vacuum

▶ TMG has an AdS₃ vacuum

$$ds^{2} = \ell^{2}(-\cosh^{2}\rho d\tau^{2} + \sinh^{2}\rho d\phi^{2} + d\rho^{2})$$

with $\Lambda = -\frac{1}{\ell^2}$.

- Isometry : $SL(2,\mathbb{R})_L \times SL(2,\mathbb{R})_R$.
- Quantum gravity in AdS_3 can be defined by holographic dual living on its boundary $(\rho \rightarrow \infty)$.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ クタマ

AdS₃ vacuum

▶ TMG has an AdS₃ vacuum

$$ds^{2} = \ell^{2}(-\cosh^{2}\rho d\tau^{2} + \sinh^{2}\rho d\phi^{2} + d\rho^{2})$$

with $\Lambda = -\frac{1}{\ell^2}$.

- Isometry : $SL(2,\mathbb{R})_L \times SL(2,\mathbb{R})_R$.
- Quantum gravity in AdS_3 can be defined by holographic dual living on its boundary $(\rho \rightarrow \infty)$.

* Need to specify boundary condition.

Choosing boundary conditions

1. Criteria : As weak as possible while keeping charges finite

- Not too restrictive (to allow non-trivial configuration).
- Not too loose (s.t. charges are finite).

Choosing boundary conditions

- 1. Criteria : As weak as possible while keeping charges finite
 - Not too restrictive (to allow non-trivial configuration).
 - Not too loose (s.t. charges are finite).
- 2. To each set of b.c. corresponds to an Asymptotic Symmetry Group (ASG):

 $ASG \equiv \frac{Allowed Symmetry Transformations}{Trivial Symmetry Transformations}$

- "Allowed" : preserving the given boundary condition
- "Trivial" : associated charges vanish (after implementing constraints).

Choosing boundary conditions

- 1. Criteria : As weak as possible while keeping charges finite
 - Not too restrictive (to allow non-trivial configuration).
 - Not too loose (s.t. charges are finite).
- 2. To each set of b.c. corresponds to an Asymptotic Symmetry Group (ASG):

 $ASG \equiv \frac{Allowed Symmetry Transformations}{Trivial Symmetry Transformations}$

- "Allowed" : preserving the given boundary condition
- "Trivial" : associated charges vanish (after implementing constraints).
- 3. Physical states are in representation of ASG (annihilated by trivial symmetries.)

Brown-Henneaux boundary condition: Brown-Henneaux

Brown+Henneaux 1986

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

$$egin{array}{lll} h_{
ho
ho}, \, h_{
hot}, \, h_{
ho\phi} &\sim \mathcal{O}(e^{-2
ho}) \ h_{tt}, \, h_{t\phi}, \, h_{\phi\phi} &\sim \mathcal{O}(1) \end{array}$$

Brown+Henneaux 1986

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

$$h_{
ho
ho}, h_{
ho t}, h_{
ho\phi} \sim \mathcal{O}(e^{-2
ho})$$

 $h_{tt}, h_{t\phi}, h_{\phi\phi} \sim \mathcal{O}(1)$

Allows BTZ and massive graviton

Brown-Henneaux boundary condition:

Valid for both Einstein gravity and TMG

Hotta+Hyakutake+Kubota+Tanida 2008

Brown+Henneaux 1986

 $egin{array}{lll} h_{
ho
ho}, \ h_{
hot}, \ h_{
ho\phi} & \sim & \mathcal{O}(e^{-2
ho}) \ h_{tt}, \ h_{t\phi}, \ h_{\phi\phi} & \sim & \mathcal{O}(1) \end{array}$

Allows BTZ and massive graviton

Brown-Henneaux boundary condition:

Valid for both Einstein gravity and TMG

Hotta+Hyakutake+Kubota+Tanida 2008

- ► ASG : two copies of Virasoro algebra.
 - Still true for TMG at generic μ (with central charges shifted)

Brown-Henneaux boundary condition:

Brown+Henneaux 1986

 $egin{array}{lll} h_{
ho
ho}, \, h_{
hot}, \, h_{
ho\phi} &\sim \mathcal{O}(e^{-2
ho}) \ h_{tt}, \, h_{t\phi}, \, h_{\phi\phi} &\sim \mathcal{O}(1) \end{array}$

- Allows BTZ and massive graviton
- Valid for both Einstein gravity and TMG

Hotta+Hyakutake+Kubota+Tanida 2008

- ► ASG : two copies of Virasoro algebra.
 - Still true for TMG at generic μ (with central charges shifted)

 \Longrightarrow Critical point at $\mu \ell = 1$

Computing central charges by anomaly matching:

Computing central charges by anomaly matching:

• Weyl Anomaly: $c_L + c_R = \frac{3\ell}{G}$ Brown+Henneaux 1986

- Computing central charges by anomaly matching:
 - ► Weyl Anomaly: $c_L + c_R = \frac{3\ell}{G}$ Brown+Henneaux 1986 ► Gravitational Anomaly: $c_L c_R = -\frac{3}{\mu G}$ Kraus+Larsen 2005

- Computing central charges by anomaly matching:
 - ► Weyl Anomaly: $c_L + c_R = \frac{3\ell}{G}$ Brown+Henneaux 1986 ► Gravitational Anomaly: $c_L c_R = -\frac{3}{\mu G}$ Kraus+Larsen 2005

Central charge of 2D CFT in TMG

$$c_L = \frac{3\ell}{2G} \left(1 - \frac{1}{\mu\ell}\right)$$
$$c_R = \frac{3\ell}{2G} \left(1 + \frac{1}{\mu\ell}\right)$$

- Computing central charges by anomaly matching:
 - ► Weyl Anomaly: $c_L + c_R = \frac{3\ell}{G}$ Brown+Henneaux 1986 ► Gravitational Anomaly: $c_L c_R = -\frac{3}{\mu G}$ Kraus+Larsen 2005

Central charge of 2D CFT in TMG

$$c_L = \frac{3\ell}{2G} \left(1 - \frac{1}{\mu\ell}\right)$$
$$c_R = \frac{3\ell}{2G} \left(1 + \frac{1}{\mu\ell}\right)$$

1. Unitarity $\implies c > 0$

- Computing central charges by anomaly matching:
 - ► Weyl Anomaly: $c_L + c_R = \frac{3\ell}{G}$ Brown+Henneaux 1986 ► Gravitational Anomaly: $c_L c_R = -\frac{3}{\mu G}$ Kraus+Larsen 2005

Central charge of 2D CFT in TMG

$$c_L = \frac{3\ell}{2G} \left(1 - \frac{1}{\mu\ell}\right)$$
$$c_R = \frac{3\ell}{2G} \left(1 + \frac{1}{\mu\ell}\right)$$

1. Unitarity $\implies c > 0 \implies \mu \ell > 1$

- Computing central charges by anomaly matching:
 - ► Weyl Anomaly: $c_L + c_R = \frac{3\ell}{G}$ Brown+Henneaux 1986 ► Gravitational Anomaly: $c_L c_R = -\frac{3}{\mu G}$ Kraus+Larsen 2005

Central charge of 2D CFT in TMG

$$c_L = \frac{3\ell}{2G} \left(1 - \frac{1}{\mu\ell}\right)$$
$$c_R = \frac{3\ell}{2G} \left(1 + \frac{1}{\mu\ell}\right)$$

- 1. Unitarity $\implies c > 0 \implies \mu \ell > 1$
- 2. $c_1 = 0$ at $\mu \ell = 1$.

BTZ black holes in Einstein gravity

The only black holes in 3D pure Einstein gravity

$$ds^{2} = -N(r)^{2}dt^{2} + \frac{dr^{2}}{N(r)^{2}} + r^{2}(d\phi + N^{\phi}(r)dt)^{2}$$

where

$$N(r)^{2} = \frac{(r^{2} - r_{+}^{2})(r^{2} - r_{-}^{2})}{\ell^{2}r^{2}}, \qquad N^{\phi}(r) = \pm \frac{r_{+}r_{-}}{\ell r^{2}}$$

 r_{\pm} : outer and inner horizon.

BTZ black holes in Einstein gravity

The only black holes in 3D pure Einstein gravity

$$ds^{2} = -N(r)^{2}dt^{2} + \frac{dr^{2}}{N(r)^{2}} + r^{2}(d\phi + N^{\phi}(r)dt)^{2}$$

where

$$N(r)^{2} = \frac{(r^{2} - r_{+}^{2})(r^{2} - r_{-}^{2})}{\ell^{2}r^{2}}, \qquad N^{\phi}(r) = \pm \frac{r_{+}r_{-}}{\ell r^{2}}$$

 r_{\pm} : outer and inner horizon.

Conserved ADM charges:

$$m = \frac{1}{8G} \cdot \frac{r_+^2 + r_-^2}{\ell^2} , \qquad j = \pm \frac{1}{8G} \cdot \frac{2r_+r_-}{\ell}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

BTZ black holes in Einstein gravity

The only black holes in 3D pure Einstein gravity

$$ds^{2} = -N(r)^{2}dt^{2} + \frac{dr^{2}}{N(r)^{2}} + r^{2}(d\phi + N^{\phi}(r)dt)^{2}$$

where

$$N(r)^{2} = \frac{(r^{2} - r_{+}^{2})(r^{2} - r_{-}^{2})}{\ell^{2}r^{2}}, \qquad N^{\phi}(r) = \pm \frac{r_{+}r_{-}}{\ell r^{2}}$$

 r_{\pm} : outer and inner horizon.

Conserved ADM charges:

$$m = \frac{1}{8G} \cdot \frac{r_+^2 + r_-^2}{\ell^2} , \qquad j = \pm \frac{1}{8G} \cdot \frac{2r_+r_-}{\ell}$$

 \implies Upper bound on *j*: $|j| \leq \ell m$

- Also solutions of TMG
- Different conserved charges when measured in TMG (CS term gives additional surface term)
 Kraus+Larsen 2005

$$M = m + \frac{1}{(\mu\ell)}\frac{j}{\ell}$$
$$J = j + \frac{1}{(\mu\ell)}(\ell m)$$

- Also solutions of TMG
- Different conserved charges when measured in TMG (CS term gives additional surface term)
 Kraus+Larsen 2005

$$M = m + \frac{1}{(\mu\ell)} \frac{j}{\ell}$$
$$J = j + \frac{1}{(\mu\ell)} (\ell m)$$

1. $M \ge 0$ (with $|j| \le \ell m$)

- Also solutions of TMG
- Different conserved charges when measured in TMG (CS term gives additional surface term)
 Kraus+Larsen 2005

$$M = m + \frac{1}{(\mu\ell)}\frac{j}{\ell}$$
$$J = j + \frac{1}{(\mu\ell)}(\ell m)$$

1. $M \ge 0$ (with $|j| \le \ell m$) $\Longrightarrow \mu \ell \ge 1$

- Also solutions of TMG
- Different conserved charges when measured in TMG (CS term gives additional surface term)
 Kraus+Larsen 2005

$$M = m + \frac{1}{(\mu\ell)}\frac{j}{\ell}$$
$$J = j + \frac{1}{(\mu\ell)}(\ell m)$$

- 1. $M \ge 0$ (with $|j| \le \ell m$) $\implies \mu \ell \ge 1$
- 2. M = J (BTZ becomes right moving!) at $\mu \ell = 1$.

WL+Song+Strominger 2008

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

• Linearized excitations around AdS_3 : $g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$

WL+Song+Strominger 2008

- Linearized excitations around AdS_3 : $g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$
- Primaries of (L_0, \overline{L}_0)

Left-moving massless : Right-moving massless :

Massive :

$$(h = 2, \quad \bar{h} = 0)$$

 $(h = 0, \quad \bar{h} = 2)$
 $(h = \frac{3 + \mu \ell}{2}, \quad \bar{h} = \frac{-1 + \mu \ell}{2})$

1. Unitarity $\implies h \ge 0$

WL+Song+Strominger 2008

- Linearized excitations around AdS_3 : $g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$
- Primaries of (L_0, \overline{L}_0)

Left-moving massless : Right-moving massless :

Massive :

$$(h = 2, \quad \bar{h} = 0)$$

 $(h = 0, \quad \bar{h} = 2)$
 $(h = \frac{3 + \mu \ell}{2}, \quad \bar{h} = \frac{-1 + \mu \ell}{2})$

1. Unitarity $\implies h \ge 0 \qquad \implies \mu \ell \ge 1$

WL+Song+Strominger 2008

- Linearized excitations around AdS_3 : $g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$
- Primaries of (L_0, \overline{L}_0)

Left-moving massless : Right-moving massless :

$$(h = 2, \quad \bar{h} = 0)$$

 $(h = 0, \quad \bar{h} = 2)$
 $(h = \frac{3 + \mu \ell}{2}, \quad \bar{h} = \frac{-1 + \mu \ell}{2})$

1. Unitarity $\implies h \ge 0 \qquad \implies \mu \ell \ge 1$

Massive :

2. Massive graviton degenerates with left-moving massless one at $\mu \ell = 1$.

くして 「「」 (山下)(山下)(山下)(山下)

WL+Song+Strominger 2008

- Linearized excitations around AdS_3 : $g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$
- Primaries of (L_0, \overline{L}_0)

Left-moving massless : Right-moving massless :

$$(h = 2, \quad \bar{h} = 0)$$

 $(h = 0, \quad \bar{h} = 2)$
 $(h = \frac{3 + \mu \ell}{2}, \quad \bar{h} = \frac{-1 + \mu \ell}{2})$

1. Unitarity $\implies h \ge 0 \qquad \implies \mu \ell \ge 1$

Massive :

2. Massive graviton degenerates with left-moving massless one at $\mu \ell = 1$.

 \implies Massive graviton becomes pure gauge in the bulk.

Energy of massive graviton

Energy of massive graviton:

$$E_M \sim -rac{1}{\mu}(\mu^2-rac{1}{\ell^2})$$

Branch	$\mu\ell < 1$	$\mu\ell=1$	$\mu \ell > 1$
Massive	+	0	—

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …のへで

$$\bullet \ E_M \geq 0 \quad \Longrightarrow \quad \mu \ell \leq 1$$

TMG summary

Summary of TMG so far

	$\mu \ell < 1$	$\mu\ell=1$	$\mu \ell > 1$
(c_L, c_R) of CFT	(-,+)	$(0,\frac{3\ell}{G})$	(+,+)
$(h,ar{h})$ of massive graviton	(+,-)	(2,0)	(+,+)
Energy of BTZ BH	– or +	0 or +	+
Energy of massive graviton	+	0	_

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …のへで

TMG summary

Summary of TMG so far

	$\mu \ell < 1$	$\mu\ell=1$	$\mu \ell > 1$
(c_L, c_R) of CFT	(-,+)	$(0,\frac{3\ell}{G})$	(+,+)
$(h,ar{h})$ of massive graviton	(+,-)	(2,0)	(+,+)
Energy of BTZ BH	– or +	0 or +	+
Energy of massive graviton	+	0	_

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

• TMG with $\Lambda = -1/\ell^2$ is **unstable** for generic μ .

TMG summary

Summary of TMG so far

	$\mu \ell < 1$	$\mu\ell=1$	$\mu \ell > 1$
(c_L, c_R) of CFT	(-,+)	$(0,\frac{3\ell}{G})$	(+,+)
$(h,ar{h})$ of massive graviton	(+,-)	(2,0)	(+,+)
Energy of BTZ BH	– or +	0 or +	+
Energy of massive graviton	+	0	_

・ロト・日本・モト・モー・ ヨー・ つへぐ

- TMG with $\Lambda = -1/\ell^2$ is **unstable** for generic μ .
- Exception : $\mu \ell = 1$.

Proof of chiral gravity at $\mu \ell = 1$

Strominger 2008

・ロト・日本・モト・モー・ ヨー・ つへぐ

► ASG for **Brown-Henneaux** b.c.

$$\begin{aligned} \zeta &= [\epsilon^+ + \frac{e^{-2\rho}}{2}\partial_-^2\epsilon^- + \mathcal{O}(e^{-4\rho})]\partial_+ \\ &+ [\epsilon^- + \frac{e^{-2\rho}}{2}\partial_+^2\epsilon^+ + \mathcal{O}(e^{-4\rho})]\partial_- \\ &+ [\partial_+\epsilon^+ + \partial_-\epsilon^- + \mathcal{O}(e^{-2\rho})]\partial_\rho \end{aligned}$$

 ϵ⁻(x⁻) and ϵ⁺(x⁺) parameterize the left and right diffeomorphism.

Proof of chiral gravity at $\mu \ell = 1$

Strominger 2008

・ロト・日本・モート モー うへの

ASG for Brown-Henneaux b.c.

$$\begin{split} \zeta &= [\epsilon^+ + \frac{e^{-2\rho}}{2}\partial_-^2 \epsilon^- + \mathcal{O}(e^{-4\rho})]\partial_+ \\ &+ [\epsilon^- + \frac{e^{-2\rho}}{2}\partial_+^2 \epsilon^+ + \mathcal{O}(e^{-4\rho})]\partial_- \\ &+ [\partial_+ \epsilon^+ + \partial_- \epsilon^- + \mathcal{O}(e^{-2\rho})]\partial_\rho \end{split}$$

- ϵ⁻(x⁻) and ϵ⁺(x⁺) parameterize the left and right diffeomorphism.
- Diffeomorphism generator:

$$Q[\zeta] = \int_{\partial \Sigma} \sqrt{\sigma} u^i T_{ij} \zeta^j$$

 T_{ij} : boundary stress tensor.

Proof of chiral gravity at $\mu \ell = 1$, cont.

Boundary stress tensor:

$$T = \frac{1}{8\pi G\ell} \begin{pmatrix} (1 + \frac{1}{\mu\ell})h_{++} & -h_{+-} \\ -h_{+-} & (1 - \frac{1}{\mu\ell})h_{--} \end{pmatrix}$$

Proof of chiral gravity at $\mu \ell = 1$, cont.

Boundary stress tensor:

$$T = \frac{1}{8\pi G \ell} \begin{pmatrix} (1 + \frac{1}{\mu \ell})h_{++} & -h_{+-} \\ -h_{+-} & (1 - \frac{1}{\mu \ell})h_{--} \end{pmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

1. Remove h_{+-} using constraint eqs.

Proof of chiral gravity at $\mu \ell = 1$, cont.

Boundary stress tensor:

$$T = \frac{1}{8\pi G \ell} \begin{pmatrix} (1 + \frac{1}{\mu \ell})h_{++} & -h_{+-} \\ -h_{+-} & (1 - \frac{1}{\mu \ell})h_{--} \end{pmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

1. Remove h_{+-} using constraint eqs. 2. Take $\mu \ell = 1$

Proof of chiral gravity at $\mu \ell = 1$, cont.

Boundary stress tensor:

$$T = \frac{1}{8\pi G\ell} \begin{pmatrix} (1 + \frac{1}{\mu\ell})h_{++} & -h_{+-} \\ -h_{+-} & (1 - \frac{1}{\mu\ell})h_{--} \end{pmatrix}$$

1. Remove h_{+-} using constraint eqs. 2. Take $\mu \ell = 1$

$$\implies \qquad T = \frac{1}{4\pi G\ell} \left(\begin{array}{cc} h_{++} & 0\\ 0 & 0 \end{array} \right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Proof of chiral gravity at $\mu \ell = 1$, cont.

Boundary stress tensor:

$$T = \frac{1}{8\pi G\ell} \begin{pmatrix} (1 + \frac{1}{\mu\ell})h_{++} & -h_{+-} \\ -h_{+-} & (1 - \frac{1}{\mu\ell})h_{--} \end{pmatrix}$$

1. Remove h_{+-} using constraint eqs. 2. Take $\mu \ell = 1$

$$\implies \qquad T = \frac{1}{4\pi G\ell} \left(\begin{array}{cc} h_{++} & 0\\ 0 & 0 \end{array} \right)$$

• At $\mu \ell = 1$, only **right diffeo** remains:

$$Q[\zeta] = \frac{1}{4\pi G\ell} \int_{\partial \Sigma} d\mathsf{x}^+ \mathcal{T}_{ij} \epsilon^+$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

Proof of chiral gravity at $\mu \ell = 1$, cont.

Boundary stress tensor:

$$T = \frac{1}{8\pi G\ell} \begin{pmatrix} (1 + \frac{1}{\mu\ell})h_{++} & -h_{+-} \\ -h_{+-} & (1 - \frac{1}{\mu\ell})h_{--} \end{pmatrix}$$

1. Remove h_{+-} using constraint eqs. 2. Take $\mu \ell = 1$

$$\implies \qquad T = \frac{1}{4\pi G\ell} \left(\begin{array}{cc} h_{++} & 0\\ 0 & 0 \end{array} \right)$$

• At $\mu \ell = 1$, only **right diffeo** remains:

$$Q[\zeta] = \frac{1}{4\pi G\ell} \int_{\partial \Sigma} d\mathbf{x}^+ \mathbf{T}_{ij} \epsilon^+$$

- All left-moving diffeo become trivial.
- Left-moving DOF become pure gauge.

• At $\mu \ell = 1$, massive graviton degenerates into left-moving massless graviton and becomes a pure gauge.

At µℓ = 1, massive graviton degenerates into left-moving massless graviton and becomes a pure gauge.

But, a new mode emerges at $\mu \ell = 1$:

$$\psi^{\mathrm{new}} \equiv \lim_{\mu\ell \to 1} \frac{h^M - h^L}{\mu\ell - 1} = \log(\frac{e^{-i\tau}}{\cosh
ho})h^L$$

At µℓ = 1, massive graviton degenerates into left-moving massless graviton and becomes a pure gauge.

But, a new mode emerges at $\mu \ell = 1$:

$$\psi^{\mathrm{new}} \equiv \lim_{\mu\ell \to 1} \frac{h^M - h^L}{\mu\ell - 1} = \log(\frac{e^{-i\tau}}{\cosh
ho})h^L$$

1. Cannot be gauged away.

At µℓ = 1, massive graviton degenerates into left-moving massless graviton and becomes a pure gauge.

But, a new mode emerges at $\mu \ell = 1$:

$$\psi^{\mathrm{new}} \equiv \lim_{\mu\ell \to 1} \frac{h^M - h^L}{\mu\ell - 1} = \log(\frac{e^{-i\tau}}{\cosh
ho})h^L$$

- 1. Cannot be gauged away.
- 2. Violates the Brown-Henneaux boundary conditions logarithmically.

New boundary condition?

Strominger, Grumiller+Johansson 2008

▶ Brown-Henneaux b.c. of *AdS*₃:

$$egin{array}{lll} h_{
ho
ho}, h_{
ho+}, h_{
ho-} & \sim & \mathcal{O}(e^{-2
ho}) \ h_{++}, h_{+-}, h_{--} & \sim & \mathcal{O}(1) \end{array}$$

New boundary condition?

▶ Brown-Henneaux b.c. of *AdS*₃:

$$egin{array}{lll} h_{
ho
ho}, h_{
ho+}, h_{
ho-} &\sim & \mathcal{O}(e^{-2
ho}) \ h_{++}, h_{+-}, h_{--} &\sim & \mathcal{O}(1) \end{array}$$

► To accommodate ψ^{new}, relaxed b.c. logarithmically (*but only for left components*):

$$egin{array}{rcl} h_{
ho-} &\sim & \mathcal{O}(
ho e^{-2
ho}) \ h_{--} &\sim & \mathcal{O}(
ho) \end{array}$$

New boundary condition?

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Brown-Henneaux b.c. of AdS₃:

$$egin{array}{lll} h_{
ho
ho}, h_{
ho+}, h_{
ho-} &\sim & \mathcal{O}(e^{-2
ho}) \ h_{++}, h_{+-}, h_{--} &\sim & \mathcal{O}(1) \end{array}$$

► To accommodate \u03c6^{new}, relaxed b.c. logarithmically (but only for left components):

$$h_{
ho-} \sim \mathcal{O}(
ho e^{-2
ho})$$

 $h_{--} \sim \mathcal{O}(
ho)$

Important: cannot relax entire b.c. logarithmically, stress tensor would diverge for generic solutions.

TMG with $\mu \ell = 1$ <u>remains chiral</u> with new boundary condition

Stress tensor remains finite and chiral

 New relaxed boundary condition causes a log divergence in T₋₋ only (get projected out at µl = 1)

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ クタマ

TMG with $\mu \ell = 1$ <u>remains chiral</u> with new boundary condition

Stress tensor remains finite and chiral

New relaxed boundary condition causes a log divergence in *T*_{−−} only (get projected out at µℓ = 1)

- Any additional symmetry with relaxed boundary condition?
 - Needs to check whether it is finite and chiral.

TMG with $\mu \ell = 1$ <u>remains chiral</u> with new boundary condition

Stress tensor remains finite and chiral

New relaxed boundary condition causes a log divergence in *T*_{−−} only (get projected out at µℓ = 1)

(日) (日) (日) (日) (日) (日) (日) (日) (日)

- Any additional symmetry with relaxed boundary condition?
 - Needs to check whether it is finite and chiral.
- ▶ Possible to relax b.c. even more? (with ϵ^- trivial)

 \blacktriangleright \exists a new mode that *preserves Brown-Henneaux b.c.*

Giribet+Kleban+Porrati 2008

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

 \blacktriangleright \exists a new mode that *preserves Brown-Henneaux b.c.*

Giribet+Kleban+Porrati 2008

1. Descendant of Log mode $(\overline{L}_{-1}\psi^{new})$ breaks Brown-Henneaux less severely:

 $h_{
ho-} \sim \mathcal{O}(
ho e^{-2
ho})$

 \blacktriangleright \exists a new mode that *preserves Brown-Henneaux b.c.*

Giribet+Kleban+Porrati 2008

1. Descendant of Log mode $(\overline{L}_{-1}\psi^{new})$ breaks Brown-Henneaux less severely:

 $h_{
ho-} \sim \mathcal{O}(
ho e^{-2
ho})$

2. Remove remaining log-divergence by a "trivial" gauge transformation $\tilde{\zeta}$:

 $X_{\mu\nu} \equiv \bar{L}_{-1}\psi^{new} + \mathcal{L}_{\tilde{\zeta}}g_{\mu\nu}$ preserves Brown-Henneaux

• Note: both $\overline{L}_{-1}\psi^{new}$ and $\tilde{\zeta}$ sit in log-relaxed BHbc.

 \blacktriangleright \exists a new mode that *preserves Brown-Henneaux b.c.*

Giribet+Kleban+Porrati 2008

1. Descendant of Log mode $(\bar{L}_{-1}\psi^{new})$ breaks Brown-Henneaux less severely:

 $h_{
ho-} \sim \mathcal{O}(
ho e^{-2
ho})$

2. Remove remaining log-divergence by a "trivial" gauge transformation $\tilde{\zeta}$:

 $X_{\mu\nu} \equiv \overline{L}_{-1}\psi^{new} + \mathcal{L}_{\tilde{\zeta}}g_{\mu\nu}$ preserves Brown-Henneaux

• Note: both $\overline{L}_{-1}\psi^{new}$ and $\tilde{\zeta}$ sit in log-relaxed BHbc.

► A new spin-1 field?

- 1. Naively it is a (2,1) primiary.
- 2. Left Virasoro is trivial \rightarrow actually a (0,1) primary.

 \blacktriangleright \exists a new mode that *preserves Brown-Henneaux b.c.*

Giribet+Kleban+Porrati 2008

1. Descendant of Log mode $(\bar{L}_{-1}\psi^{new})$ breaks Brown-Henneaux less severely:

 $h_{
ho-} \sim \mathcal{O}(
ho e^{-2
ho})$

2. Remove remaining log-divergence by a "trivial" gauge transformation $\tilde{\zeta}$:

 $X_{\mu\nu} \equiv \bar{L}_{-1}\psi^{new} + \mathcal{L}_{\tilde{\zeta}}g_{\mu\nu}$ preserves Brown-Henneaux

• Note: both $\overline{L}_{-1}\psi^{new}$ and $\tilde{\zeta}$ sit in log-relaxed BHbc.

► A new spin-1 field?

- 1. Naively it is a (2,1) primiary.
- 2. Left Virasoro is trivial \rightarrow actually a (0,1) primary.

ls it chiral
$$(E - J = 0)$$
?

Open problems

- 1. \exists other consistent AdS_3 boundary condition?
 - ► Different *AdS*₃ boundary conditions define inequivalent theories.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Open problems

- 1. \exists other consistent AdS_3 boundary condition?
 - ► Different *AdS*₃ boundary conditions define inequivalent theories.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

2. ASG enhancement at chiral point?

Outline

Overview

3D pure Einstein gravity ECFT dual

Topologically Massive Gravity (with negative Λ)

Instability at generic $\mu \ell$ Chiral gravity at $\mu \ell = 1$ Symmetry enhancement?

New Vacua of TMG

Warped AdS₃ vacua Warped black holes Black hole thermodynamics and conjecture for CFT

Summary.

Motivation

▶ 3D TMG with $\Lambda < 0$ admits AdS_3 vacuum for generic μ .

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …のへで

Motivation

- ▶ 3D TMG with $\Lambda < 0$ admits AdS_3 vacuum for generic μ .
 - All are perturbatively unstable except at $\mu \ell = 1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Motivation

- ▶ 3D TMG with $\Lambda < 0$ admits AdS_3 vacuum for generic μ .
 - All are perturbatively unstable except at $\mu \ell = 1$.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ クタマ

• Question: \exists stable vacua at generic μ ?

1. AdS_3 is a SL(2, R) group manifold.

- 1. AdS_3 is a SL(2, R) group manifold.
- 2. Isometry is $SL(2,\mathbb{R})_L \times SL(2,\mathbb{R})_R$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

1. AdS_3 is a SL(2, R) group manifold.

- 2. Isometry is $SL(2,\mathbb{R})_L \times SL(2,\mathbb{R})_R$
- 3. AdS_3 is S^1 fibered over AdS_2 :

$$ds_{AdS_3}^2 = \frac{\ell^2}{4} (ds_{AdS_2}^2 + ds_{S^1}^2)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1. AdS_3 is a SL(2, R) group manifold.

- 2. Isometry is $SL(2,\mathbb{R})_L \times SL(2,\mathbb{R})_R$
- 3. AdS_3 is S^1 fibered over AdS_2 :

$$ds_{AdS_3}^2 = \frac{\ell^2}{4} (ds_{AdS_2}^2 + ds_{S^1}^2)$$

 \mathbb{S}^1 and AdS_2 have same radii.

1. AdS_3 is a SL(2, R) group manifold.

- 2. Isometry is $SL(2,\mathbb{R})_L \times SL(2,\mathbb{R})_R$
- 3. AdS_3 is S^1 fibered over AdS_2 :

$$ds^2_{AdS_3} = \frac{\ell^2}{4} (ds^2_{AdS_2} + ds^2_{S^1})$$

 \mathbb{S}^1 and AdS_2 have same radii.

- Spacelike fibration
- Timelike fibration

• Varying size of S^1 fiber gives warped AdS_3 .

$$ds_{WAdS_3}^2 = \frac{\mathsf{L}^2}{4} (ds_{AdS_2}^2 + \boldsymbol{\alpha}^2 \cdot ds_{S^1}^2)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

• Varying size of S^1 fiber gives warped AdS_3 .

$$ds_{WAdS_3}^2 = \frac{\mathsf{L}^2}{4} (ds_{AdS_2}^2 + \boldsymbol{\alpha}^2 \cdot ds_{S^1}^2)$$

- \square preserving $U(1) \times SL(2,\mathbb{R})$
 - Spacelike warping
 - Timelike warping

• Varying size of S^1 fiber gives warped AdS_3 .

$$ds_{WAdS_3}^2 = \frac{\mathsf{L}^2}{4} (ds_{AdS_2}^2 + \boldsymbol{\alpha}^2 \cdot ds_{S^1}^2)$$

 \blacksquare preserving $U(1) \times SL(2,\mathbb{R})$

- Spacelike warping
- Timelike warping

New scale and warping factor

1. TMG modified length
$$L = \ell \cdot \frac{6}{\sqrt{\mu^2 \ell^2 + 27}}$$
 $\rightarrow \ell$ at $\mu \ell = 3$.2. Warping factor $\alpha = \frac{\mu L}{3}$ $\rightarrow 1$ at $\mu \ell = 3$.

▲ロト ▲帰下 ▲ヨト ▲ヨト - ヨー の々ぐ

• Varying size of S^1 fiber gives warped AdS_3 .

$$ds_{WAdS_3}^2 = \frac{\mathsf{L}^2}{4} (ds_{AdS_2}^2 + \boldsymbol{\alpha}^2 \cdot ds_{S^1}^2)$$

 \square preserving $U(1) \times SL(2,\mathbb{R})$

- Spacelike warping
- Timelike warping

New scale and warping factor

1. TMG modified length
$$L = \ell \cdot \frac{6}{\sqrt{\mu^2 \ell^2 + 27}}$$
 $\rightarrow \ell$ at $\mu \ell = 3$.2. Warping factor $\alpha = \frac{\mu L}{3}$ $\rightarrow 1$ at $\mu \ell = 3$.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Reduce to AdS_3 at $\mu \ell = 3!!!$

• Varying size of S^1 fiber gives warped AdS_3 .

$$ds_{WAdS_3}^2 = \frac{\mathsf{L}^2}{4} (ds_{AdS_2}^2 + \boldsymbol{\alpha}^2 \cdot ds_{S^1}^2)$$

 \blacksquare preserving $U(1) \times SL(2,\mathbb{R})$

- Spacelike warping
- Timelike warping

New scale and warping factor

1. TMG modified length
$$L = \ell \cdot \frac{6}{\sqrt{\mu^2 \ell^2 + 27}}$$
 $\rightarrow \ell$ at $\mu \ell = 3$.2. Warping factor $\alpha = \frac{\mu L}{3}$ $\rightarrow 1$ at $\mu \ell = 3$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Reduce to AdS_3 at $\mu \ell = 3!!!$

• Any warped
$$AdS_3$$
 at $\mu\ell = 3$?

Null warped AdS₃

▶ \exists null warped AdS_3 at $\mu \ell = 3$.

► Null warping:
$$ds_{null}^2 = \ell^2 \left[\frac{du^2}{u^2} + \frac{dx^+ dx^-}{u^2} \pm \left(\frac{dx^-}{u^2} \right)^2 \right]$$

$$\implies preserving U(1)_{Null} \times SL(2, \mathbb{R}).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Null warped AdS₃

▶ \exists null warped AdS_3 at $\mu \ell = 3$.

► Null warping:
$$ds_{null}^2 = \ell^2 \left[\frac{du^2}{u^2} + \frac{dx^+ dx^-}{u^2} \pm \left(\underbrace{\frac{dx^-}{u^2}}_{S^1} \right)^2 \right]$$

 \implies preserving $U(1)_{Null} \times SL(2, \mathbb{R}).$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …のへで

• \pm : two different orientations of S^1 .

Null warped AdS₃

▶ ∃ null warped AdS_3 at $\mu \ell = 3$.

► Null warping:
$$ds_{null}^2 = \ell^2 \left[\frac{du^2}{u^2} + \frac{dx^+ dx^-}{u^2} \pm \left(\underbrace{\frac{dx^-}{u^2}}_{S^1} \right)^2 \right]$$

 \implies preserving $U(1)_{Null} \times SL(2, \mathbb{R}).$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

- \pm : two different orientations of S^1 .
- Solution of TMG only at $\mu \ell = 3$.

A summary of results

イロト 不得 トイヨト イヨト ヨー ろくで

► \exists Six types of warped AdS_3 as TMG vacua (two for every value of μ):

	Timelike	Null	Spacelike
$\mu\ell > 3$	Timelike Stretched	-	Spacelike Stretched
$\mu\ell=3$	AdS ₃	Null warped	AdS ₃
$\mu\ell < 3$	Timelike squashed	_	Spacelike squashed

A summary of results

► \exists Six types of warped AdS_3 as TMG vacua (two for every value of μ):

	Timelike	Null	Spacelike
$\mu \ell > 3$	Timelike Stretched	-	Spacelike Stretched
$\mu\ell=3$	AdS ₃	Null warped	AdS ₃
$\mu\ell < 3$	Timelike squashed	_	Spacelike squashed

Solution Critical point: $\mu \ell = 3$

Stability of warped AdS_3

- ► To understand the stability of the warped AdS₃ vacua, need to
 - 1. Determine appropriate boundary conditions for warped AdS_3

・ロト ・ 日 ・ モー・ ト ・ 日 ・ うへぐ

2. Solve for the linearized spectrum

Stability of warped AdS_3

- ► To understand the stability of the warped AdS₃ vacua, need to
 - 1. Determine appropriate boundary conditions for warped AdS_3
 - 2. Solve for the linearized spectrum
 - Reduced isometry group $(SL(2,\mathbb{R}) \times U(1)) \rightarrow \text{difficult to}$ solve the spectrum.

Stability of warped AdS_3

- To understand the stability of the warped AdS₃ vacua, need to
 - 1. Determine appropriate boundary conditions for warped AdS_3
 - 2. Solve for the linearized spectrum
 - Reduced isometry group $(SL(2,\mathbb{R}) \times U(1)) \rightarrow \text{difficult to}$ solve the spectrum.

Do not know whether or when warped AdS₃ are perturbatively stable — yet.

Quotienting procedure

▶ BTZ black holes are quotients of *AdS*₃:

• Identifying points \mathcal{P} under action of $\xi = T_L J_L + T_R J_R$:

$$\mathcal{P} \sim e^{2\pi k\xi} \mathcal{P}, \qquad k = 0, 1, 2 \dots$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うらぐ

Quotienting procedure

▶ BTZ black holes are quotients of *AdS*₃:

• Identifying points \mathcal{P} under action of $\xi = T_L J_L + T_R J_R$:

$$\mathcal{P} \sim e^{2\pi k\xi} \mathcal{P}, \qquad k = 0, 1, 2 \dots$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うらぐ

• Self-dual solution for
$$\xi = T_{L/R}J_{L/R}$$
.

Quotienting procedure

- ▶ BTZ black holes are quotients of *AdS*₃:
 - Identifying points \mathcal{P} under action of $\xi = T_L J_L + T_R J_R$:

$$\mathcal{P} \sim e^{2\pi k\xi} \mathcal{P}, \qquad k = 0, 1, 2 \dots$$

• Self-dual solution for
$$\xi = T_{L/R}J_{L/R}$$
.

Quotienting warped AdS₃ gives warped black holes.

Summary of warped black holes

Anninos+WL+Padi+Song+Strominger 2008

▶ Quotienting warped AdS₃ gives warped black holes

	Timelike	Null	Spacelike
$\mu\ell > 3$		_	Spacelike stretched BHs
	self-dual solutions		self-dual solutions
$\mu\ell = 3$	BTZ	Null warped BHs	BTZ
$\mu\ell < 3$		_	
	self-dual solutions		self-dual solutions

Summary of warped black holes

Anninos+WL+Padi+Song+Strominger 2008

▶ Quotienting warped AdS₃ gives warped black holes

	Timelike	Null	Spacelike
$\mu\ell > 3$		_	Spacelike stretched BHs
	self-dual solutions		self-dual solutions
$\mu\ell=3$	BTZ	Null warped BHs	BTZ
$\mu\ell < 3$			
	self-dual solutions		self-dual solutions

1. Spacelike stretched black holes.

Reduces to BTZ at $\mu \ell = 3$.

- 2. Null warped Black holes
- 3. Self-dual solutions

Bouchareb+Clement 2007

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Thermodynamics of spacelike-stretched black holes

1. $T_{L/R}$ are given by coefficients of quotienting direction ξ

$$2\pi\xi = \partial_{\theta} = \pi\ell(T_L J_L^2 - T_R J_R^2)$$

Thermodynamics of spacelike-stretched black holes

1. $T_{L/R}$ are given by coefficients of quotienting direction ξ

$$2\pi\xi = \partial_{\theta} = \pi\ell(T_L J_L^2 - T_R J_R^2)$$

2. Rewrite entropy as

$$S=\frac{\pi^2\ell}{3}(c_LT_L+c_RT_R)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Thermodynamics of spacelike-stretched black holes

1. $T_{L/R}$ are given by coefficients of quotienting direction ξ

$$2\pi\xi = \partial_{\theta} = \pi\ell(T_L J_L^2 - T_R J_R^2)$$

2. Rewrite entropy as

$$S=\frac{\pi^2\ell}{3}(c_LT_L+c_RT_R)$$

3. $c_{L/R}$ are independent of r_{\pm}

$$\implies \begin{cases} c_L = \frac{L}{G} \cdot \alpha \\ c_R = \frac{L}{G} \cdot (\alpha + \frac{1}{\alpha}) \end{cases}$$

Conjecture for CFT

▶ Bulk isometry $U(1)_L \times SL(2, \mathbb{R})_R$ is enhanced at the boundary into Vir× $\overline{\text{Vir}}$ with $(c_L = \frac{L}{G} \cdot \alpha, c_R = \frac{L}{G} \cdot (\alpha + \frac{1}{\alpha}))$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うらぐ

Conjecture for CFT

▶ Bulk isometry $U(1)_L \times SL(2, \mathbb{R})_R$ is enhanced at the boundary into Vir× $\overline{\text{Vir}}$ with $(c_L = \frac{L}{G} \cdot \alpha, c_R = \frac{L}{G} \cdot (\alpha + \frac{1}{\alpha}))$

- Open problems
 - 1. Derive ASG

Conjecture for CFT

- ▶ Bulk isometry $U(1)_L \times SL(2, \mathbb{R})_R$ is enhanced at the boundary into Vir× $\overline{\text{Vir}}$ with $(c_L = \frac{L}{G} \cdot \alpha, c_R = \frac{L}{G} \cdot (\alpha + \frac{1}{\alpha}))$
- Open problems
 - 1. Derive ASG
 - 2. Compute conserved charges microscopically.
 - Conserved charges (as related to $E_{L/R} = \frac{\pi^2 \ell}{6} c_{L/R} T_{L/R}^2$):

$$\mathcal{M}^{ADT} = \frac{1}{G} \sqrt{\frac{2\ell E_L}{3c_L}} \qquad \mathcal{J}^{ADT} = \ell (E_L - E_R)$$

Require knowing more than just $c_{L/R}$.

Connection to other systems

1. Self-dual quotient of spacelike-warped AdS_3 appears as constant- θ -slice of extremal Kerr.

Guica+Hartman+Song+Strominger, in progress

Left CFT counts Kerr entropy

2. Null-warped AdS₃ as dual to cold atom. Son 2008 Maldacena+Martelli+Tachikawa, Adams+Balasubramanian+McGreevy 2008

• Embed warped black holes into string theory, find dual CFT.

▲□▶▲圖▶▲圖▶▲圖▶ ■ のへで

Outline

Overview

3D pure Einstein gravity ECFT dual

Topologically Massive Gravity (with negative Λ)

Instability at generic $\mu \ell$ Chiral gravity at $\mu \ell = 1$ Symmetry enhancement?

New Vacua of TMG

Warped AdS_3 vacua Warped black holes Black hole thermodynamics and conjecture for CFT

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Summary.

Summary

- 1. Quantizing even **3D pure** gravity is non-trivial.
- 2. TMG with $\mu \ell = 1$ is chiral
- 3. New vacua and black holes in TMG need microscopic description.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

▶ 3D pure Einstein gravity

- Holomorphic factorization?
 - If yes, how to explain non-geometric states?

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

If not, what is the CFT dual?

3D pure Einstein gravity

- Holomorphic factorization?
 - If yes, how to explain non-geometric states?
 - If not, what is the CFT dual?
- Chiral gravity
 - Any other consistent AdS₃ boundary condition?

Symmetry enhancement at chiral point?

3D pure Einstein gravity

- Holomorphic factorization?
 - If yes, how to explain non-geometric states?
 - If not, what is the CFT dual?
- Chiral gravity
 - \square Any other consistent AdS_3 boundary condition?
 - Symmetry enhancement at chiral point?
- Warped AdS₃ and black holes.
 - Is warped AdS_3 stable?
 - Find dual CFT of various warped black holes.

イロト 不得 トイヨト イヨト ヨー ろくで

THANK YOU !