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3D pure Einstein gravity

I 3D pure Einstein gravity is trivial classically.
1. DOF counting:

Spatial metric + Momenta−Diffeo− Bianchi

= 3 + 3− 3− 3

= 0

I No propagating DOF.

2. Riemann and Ricci have same number of DOF (= 6)
I all solutions have same constant curvature.

I ∃ BTZ black holes (when Λ < 0)

=⇒ Non-trivial quantum mechanically.
I Microscopic origin of BTZ black hole entropy?
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Negative cosmological constant

I In this talk, focus on Λ < 0.

I ∃ black holes (unlike Λ ≥ 0)

I Use AdS3/CFT2

Λ = − 1

`2
` : AdS3 radius.
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ECFT dual Witten 2008

I Assuming holomorphic factorization, 3D pure gravity

IEin =
1

16πG

∫
d3x

√
g(R +

2

`2
)

is conjectured to be dual to Extremal-CFT

(cL, cR) = (24k, 24k) with k =
`

16G
∈ Z

1. Pure gravity ⇒ no state between vacuum and lightest BTZ
=⇒ no primary between identity and k + 1 ⇒ ECFT

2. c = 24k with k ∈ Z =⇒ Left and right CFT are separately
modular-invariant. ⇒ Holomorphic factorized!

I Only c = 24 ECFT is explicitly known — it has monster symmetry.

I Partition function from ECFT counts BTZ entropy.
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Problem with holomorphic factorization

I If assume holomorphic factorization:

Z(q, q̄) = Z(q)Z(q̄)

I However, when directly compute Z (q, q̄) by summing over
classical geometries + 1-loop correction:

Z(q, q̄) 6= Z(q)Z(q̄)

Yin, Maloney+Witten 2007, Giombi+Maloney+Yin 2008

I Possible answers:

1. Quantum pure gravity need to include non-geometric
configurations (complex saddlepoints...)

2. Cannot be holomorphic factorized.

3. Alternative?

Deform pure gravity...
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Topologically Massive Gravity (TMG)

I Add a gravitational Chern-Simons term

I =
1

16πG
[

∫
d3x

√
|g |(R − 2Λ) +

1

µ
ICS ]

Ics = −1

2

∫
Tr(Γ ∧ dΓ +

2

3
Γ ∧ Γ ∧ Γ)

Deser+Jackiw+Templeton 1982

I ∃ one single massive, propagating graviton DOF at generic µ.

1. Naive DOF counting stops working.
(=⇒ DOF = 6 + 6− 3− 3− 4= 26= 0)

2. µ is mass of the massive graviton in flat space.
+ One DOF allows more structures

I When Λ = 0, TMG allows black holes
Ait Moussa+Clement+Leygnac 2003

I When Λ < 0, TMG allows warped AdS3 and black holes
(maybe even more).

Anninos+WL+Padi+Song+Strominger 2008
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Topologically Massive Gravity

I The action:

I =
1

16πG
[

∫
d3x

√
|g |(R − 2Λ) +

1

µ
ICS ]

I EOM:
Gµν +

1

µ
Cµν = 0

I Gµν : c.c.-modified Einstein tensor

Gµν ≡ Rµν −
1

2
gµνR + Λgµν

I Cµν : Cotton tensor (Weyl tensor vanishes identically in 3D.)

Cµν ≡
1√
|g |
εµ

αβ∇α(Rβν −
1

4
gβνR)

I All solutions of Einstein gravity are also solutions of TMG.
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AdS3 vacuum

I TMG has an AdS3 vacuum

ds2 = `2(− cosh2 ρdτ 2 + sinh2 ρdφ2 + dρ2)

with Λ = − 1
`2 .

I Isometry : SL(2,R)L × SL(2,R)R .

I Quantum gravity in AdS3 can be defined by holographic dual
living on its boundary (ρ→∞).

∗ Need to specify boundary condition.
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Choosing boundary conditions

1. Criteria : As weak as possible while keeping charges finite
I Not too restrictive (to allow non-trivial configuration).
I Not too loose (s.t. charges are finite).

2. To each set of b.c. corresponds to an Asymptotic Symmetry
Group (ASG):

ASG ≡ Allowed Symmetry Transformations
Trivial Symmtry Transformations

I “Allowed” : preserving the given boundary condition
I “Trivial” : associated charges vanish (after implementing

constraints).

3. Physical states are in representation of ASG (annihilated by
trivial symmetries.)
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Brown-Henneaux boundary condition

I Brown-Henneaux boundary condition: Brown+Henneaux 1986

hρρ, hρt , hρφ ∼ O(e−2ρ)

htt , htφ, hφφ ∼ O(1)

I Allows BTZ and massive graviton
I Valid for both Einstein gravity and TMG

Hotta+Hyakutake+Kubota+Tanida 2008

I ASG : two copies of Virasoro algebra.
I Still true for TMG at generic µ (with central charges shifted)

=⇒ Critical point at µ` = 1
.
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Central charges of 2D CFT in TMG

I Computing central charges by anomaly matching:

I Weyl Anomaly: cL + cR = 3`
G Brown+Henneaux 1986

I Gravitational Anomaly: cL − cR = − 3
µG Kraus+Larsen 2005

I Central charge of 2D CFT in TMG

cL =
3`

2G
( 1− 1

µ`
)

cR =
3`

2G
( 1+

1

µ`
)

1. Unitarity =⇒ c ≥ 0 =⇒ µ` ≥ 1

2. cL = 0 at µ` = 1.
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3`

2G
( 1− 1

µ`
)

cR =
3`

2G
( 1+

1

µ`
)

1. Unitarity =⇒ c ≥ 0 =⇒ µ` ≥ 1

2. cL = 0 at µ` = 1.



BTZ black holes in Einstein gravity

I The only black holes in 3D pure Einstein gravity

ds2 = −N(r)2dt2 +
dr 2

N(r)2
+ r 2(dφ+ Nφ(r)dt)2

where

N(r)2 =
(r 2 − r 2

+)(r 2 − r 2
−)

`2r 2
, Nφ(r) = ± r+r−

`r 2

r± : outer and inner horizon.

I Conserved ADM charges:

m =
1

8G
·
r2
+ + r2

−
`2

, j = ± 1

8G
· 2r+r−

`

=⇒ Upper bound on j : |j | ≤ `m



BTZ black holes in Einstein gravity

I The only black holes in 3D pure Einstein gravity

ds2 = −N(r)2dt2 +
dr 2

N(r)2
+ r 2(dφ+ Nφ(r)dt)2

where

N(r)2 =
(r 2 − r 2

+)(r 2 − r 2
−)

`2r 2
, Nφ(r) = ± r+r−

`r 2

r± : outer and inner horizon.

I Conserved ADM charges:

m =
1

8G
·
r2
+ + r2

−
`2

, j = ± 1

8G
· 2r+r−

`

=⇒ Upper bound on j : |j | ≤ `m



BTZ black holes in Einstein gravity

I The only black holes in 3D pure Einstein gravity

ds2 = −N(r)2dt2 +
dr 2

N(r)2
+ r 2(dφ+ Nφ(r)dt)2

where

N(r)2 =
(r 2 − r 2

+)(r 2 − r 2
−)

`2r 2
, Nφ(r) = ± r+r−

`r 2

r± : outer and inner horizon.

I Conserved ADM charges:

m =
1

8G
·
r2
+ + r2

−
`2

, j = ± 1

8G
· 2r+r−

`

=⇒ Upper bound on j : |j | ≤ `m



BTZ black hole in TMG

I Also solutions of TMG

I Different conserved charges when measured in TMG (CS term

gives additional surface term) Kraus+Larsen 2005

M = m +
1

(µ`)

j

`

J = j +
1

(µ`)
(`m)

1. M ≥ 0 (with |j | ≤ `m ) =⇒ µ` ≥ 1

2. M = J (BTZ becomes right moving!) at µ` = 1.
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Massive graviton WL+Song+Strominger 2008

I Linearized excitations around AdS3 : gµν = ḡµν+hµν

I Primaries of (L0, L̄0)

Left-moving massless : (h = 2, h̄ = 0)

Right-moving massless : (h = 0, h̄ = 2)

Massive : (h =
3 + µ`

2
, h̄ =

−1 + µ`

2
)

1. Unitarity =⇒ h ≥ 0 =⇒ µ` ≥ 1

2. Massive graviton degenerates with left-moving massless one
at µ` = 1.

=⇒ Massive graviton becomes pure gauge in the bulk.
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Energy of massive graviton

I Energy of massive graviton:

EM ∼ − 1

µ
(µ2 − 1

`2
)

Branch µ` < 1 µ` = 1 µ` > 1

Massive + 0 −

I EM ≥ 0 =⇒ µ` ≤ 1



TMG summary

I Summary of TMG so far

µ` < 1 µ` = 1 µ` > 1

(cL, cR) of CFT (–,+) (0, 3`
G

) (+,+)

(h, h̄) of massive graviton (+,–) (2,0) (+,+)

Energy of BTZ BH – or + 0 or + +

Energy of massive graviton + 0 –

I TMG with Λ = −1/`2 is unstable for generic µ.

I Exception : µ` = 1.
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Proof of chiral gravity at µ` = 1 Strominger 2008

I ASG for Brown-Henneaux b.c.

ζ = [ε+ +
e−2ρ

2
∂2
−ε
− +O(e−4ρ)]∂+

+ [ε− +
e−2ρ

2
∂2

+ε
+ +O(e−4ρ)]∂−

+ [∂+ε
+ + ∂−ε

− +O(e−2ρ)]∂ρ

I ε−(x−) and ε+(x+) parameterize the left and right
diffeomorphism.

I Diffeomorphism generator:

Q[ζ] =

∫
∂Σ

√
σuiTijζ

j

Tij : boundary stress tensor.
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Proof of chiral gravity at µ` = 1, cont.

I Boundary stress tensor:

T =
1

8πG`

(
(1 + 1

µ`
)h++ −h+−

−h+− (1− 1
µ`

)h−−

)

1. Remove h+− using constraint eqs.
2. Take µ` = 1

=⇒ T =
1

4πG`

(
h++ 0
0 0

)

I At µ` = 1, only right diffeo remains:

Q[ζ] =
1

4πG`

∫
∂Σ

dx+Tijε
+

I All left-moving diffeo become trivial.
I Left-moving DOF become pure gauge.
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Logarithmic mode at chiral point Grumiller+Johansson 2008

I At µ` = 1, massive graviton degenerates into left-moving
massless graviton and becomes a pure gauge.

But, a new mode emerges at µ` = 1:

ψnew ≡ lim
µ`→1

hM − hL

µ`− 1
= log(

e−iτ

cosh ρ
)hL

1. Cannot be gauged away.

2. Violates the Brown-Henneaux boundary conditions
logarithmically.
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New boundary condition? Strominger, Grumiller+Johansson 2008

I Brown-Henneaux b.c. of AdS3:

hρρ, hρ+, hρ− ∼ O(e−2ρ)

h++, h+−, h−− ∼ O(1)

I To accommodate ψnew , relaxed b.c. logarithmically (but only
for left components):

hρ− ∼ O(ρe−2ρ)

h−− ∼ O(ρ)

I Important: cannot relax entire b.c. logarithmically, stress
tensor would diverge for generic solutions.
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TMG with µ` = 1 remains chiral with new boundary
condition

I Stress tensor remains finite and chiral
I New relaxed boundary condition causes a log divergence in T−−

only (get projected out at µ` = 1)

I Any additional symmetry with relaxed boundary condition?
I Needs to check whether it is finite and chiral.

I Possible to relax b.c. even more? (with ε− trivial)
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New mode within Brown-Henneaux boundary condition

I ∃ a new mode that preserves Brown-Henneaux b.c.

Giribet+Kleban+Porrati 2008

1. Descendant of Log mode (L̄−1ψ
new ) breaks Brown-Henneaux

less severely:
hρ− ∼ O(ρe−2ρ)

2. Remove remaining log-divergence by a “trivial” gauge
transformation ζ̃:

Xµν ≡ L̄−1ψ
new + Lζ̃gµν preserves Brown-Henneaux

I Note: both L̄−1ψ
new and ζ̃ sit in log-relaxed BHbc.

I A new spin-1 field?
1. Naively it is a (2, 1) primiary.
2. Left Virasoro is trivial → actually a (0, 1) primary.

I Is it chiral (E − J = 0) ?
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Open problems

1. ∃ other consistent AdS3 boundary condition?
I Different AdS3 boundary conditions define inequivalent

theories.

2. ASG enhancement at chiral point?
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Overview
3D pure Einstein gravity
ECFT dual

Topologically Massive Gravity (with negative Λ)
Instability at generic µ`
Chiral gravity at µ` = 1
Symmetry enhancement?

New Vacua of TMG
Warped AdS3 vacua
Warped black holes
Black hole thermodynamics and conjecture for CFT
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Motivation

I 3D TMG with Λ < 0 admits AdS3 vacuum for generic µ.

I All are perturbatively unstable — except at µ` = 1.

I Question: ∃ stable vacua at generic µ?
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AdS3 isometry

1. AdS3 is a SL(2,R) group manifold.

2. Isometry is SL(2,R)L × SL(2,R)R

3. AdS3 is S1 fibered over AdS2:

ds2
AdS3

=
`2

4
(ds2

AdS2
+ ds2

S1)

+ S1 and AdS2 have same radii.

I Spacelike fibration
I Timelike fibration
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Constructing warped AdS3, cont.

I Varying size of S1 fiber gives warped AdS3.

ds2
WAdS3

=
L2

4
(ds2

AdS2
+ α2 · ds2

S1)

+ preserving U(1)× SL(2,R)
I Spacelike warping
I Timelike warping

I New scale and warping factor
1. TMG modified length L = ` · 6√

µ2`2+27
→ ` at µ` = 3.

2. Warping factor α = µL
3

→ 1 at µ` = 3.

+ Reduce to AdS3 at µ` = 3!!!

I Any warped AdS3 at µ` = 3?
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Null warped AdS3

I ∃ null warped AdS3 at µ` = 3.

I Null warping: ds2
null = `2[ du2

u2 + dx+dx−

u2 ± (
dx−

u2
)2︸ ︷︷ ︸

S1

]

=⇒ preserving U(1)Null × SL(2,R).

I ±: two different orientations of S1.

+ Solution of TMG only at µ` = 3.
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A summary of results Anninos+WL+Padi+Song+Strominger 2008

I ∃ Six types of warped AdS3 as TMG vacua (two for every
value of µ):

Timelike Null Spacelike

µ` > 3 Timelike Stretched – Spacelike Stretched

µ` = 3 AdS3 Null warped AdS3

µ` < 3 Timelike squashed – Spacelike squashed

+ Critical point: µ` = 3
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Stability of warped AdS3

I To understand the stability of the warped AdS3 vacua, need
to

1. Determine appropriate boundary conditions for warped AdS3

2. Solve for the linearized spectrum

+ Reduced isometry group (SL(2,R)× U(1)) → difficult to
solve the spectrum.

I Do not know whether or when warped AdS3 are perturbatively
stable — yet.
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Quotienting procedure

I BTZ black holes are quotients of AdS3:
I Identifying points P under action of ξ = TLJL + TRJR :

P ∼ e2πkξP, k = 0, 1, 2 . . .

I Self-dual solution for ξ = TL/RJL/R .

I Quotienting warped AdS3 gives warped black holes.
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µ` > 3 – Spacelike stretched BHs
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1. Spacelike stretched black holes. Bouchareb+Clement 2007

+ Reduces to BTZ at µ` = 3.

2. Null warped Black holes
3. Self-dual solutions
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Thermodynamics of spacelike-stretched black holes

1. TL/R are given by coefficients of quotienting direction ξ

2πξ = ∂θ = π`(TLJ
2
L − TRJ2

R)

2. Rewrite entropy as

S =
π2`

3
(cLTL + cRTR)

3. cL/R are independent of r±

=⇒


cL =

L

G
· α

cR =
L

G
· (α+

1

α
)
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Conjecture for CFT

I Bulk isometry U(1)L × SL(2,R)R is enhanced at the boundary
into Vir×Vir with (cL = L

G
· α, cR = L

G
· (α+ 1

α
))

I Open problems

1. Derive ASG

2. Compute conserved charges microscopically.

I Conserved charges (as related to EL/R = π2`
6

cL/RT 2
L/R ):

MADT =
1

G

√
2`EL

3cL
J ADT = `(EL − ER)

+ Require knowing more than just cL/R .
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Connection to other systems

1. Self-dual quotient of spacelike-warped AdS3 appears as
constant-θ-slice of extremal Kerr.

Guica+Hartman+Song+Strominger, in progress

+ Left CFT counts Kerr entropy

2. Null-warped AdS3 as dual to cold atom. Son 2008

Maldacena+Martelli+Tachikawa, Adams+Balasubramanian+McGreevy 2008



Open problems

I Embed warped black holes into string theory, find dual CFT.
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Summary

1. Quantizing even 3D pure gravity is non-trivial.

2. TMG with µ` = 1 is chiral

3. New vacua and black holes in TMG need microscopic
description.



Open problems

I 3D pure Einstein gravity
+ Holomorphic factorization?

I If yes, how to explain non-geometric states?
I If not, what is the CFT dual?

I Chiral gravity

+ Any other consistent AdS3 boundary condition?
+ Symmetry enhancement at chiral point?

I Warped AdS3 and black holes.

+ Is warped AdS3 stable?
+ Find dual CFT of various warped black holes.



Open problems

I 3D pure Einstein gravity
+ Holomorphic factorization?

I If yes, how to explain non-geometric states?
I If not, what is the CFT dual?

I Chiral gravity

+ Any other consistent AdS3 boundary condition?
+ Symmetry enhancement at chiral point?

I Warped AdS3 and black holes.

+ Is warped AdS3 stable?
+ Find dual CFT of various warped black holes.



Open problems

I 3D pure Einstein gravity
+ Holomorphic factorization?

I If yes, how to explain non-geometric states?
I If not, what is the CFT dual?

I Chiral gravity

+ Any other consistent AdS3 boundary condition?
+ Symmetry enhancement at chiral point?

I Warped AdS3 and black holes.

+ Is warped AdS3 stable?
+ Find dual CFT of various warped black holes.



T HANK YOU !
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