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1. Introduction

Three dimensional gravity with negative cosmological constant has been
one of the interesting testing grounds to uncover quantum natures of gravity.

The action is given by
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The vacuum solution is given by global AdS3 geometry.
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This theory also contains a black hole solution (BTZ black hole) which
has mass and angular momentum.

Banados, Teitelboim, Zanelli
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BTZ black hole has inner and outer horizons :
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By using the area formula, the entropy of the BTZ black hole is
evaluated as
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This is a thermodynamic entropy. Then it is natural to ask whether we
can derive the above quantity from the statistical viewpoint.

The answer is yes. Brown and Henneaux showed that there exist

Virasoro algebras at the boundary r — o0 . From their prescription, the

central charges for left and right moving modes are evaluated as
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The statistical entropy can be calculated by Cardy formula, and the
result coincides with the thermodynamic one.



The main purpose of this talk is to generalize Brown-Henneaux’s
canonical approach to topologically massive gravity (TMG).
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This theory is important in the sense that three dimensional theories obtained
by compactifying string theory or M-theory always contain Chern-Simons term.

Global AdSz geometry and BTZ black hole still become the solutions,
even if the Chern-Simons term exists.

As we will see later, from the canonical approach it is possible to
construct Virasoro algebras for left and right moving modes with
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The plan of this talk :
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2. General Entropy Formula for BTZ Black Holes

In three dimensional theory, Riemann tensor can be expressed
by Ricci tensor and scalar curvature.

Then generalized TMG action is written in the form
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Equations of motion are expressed as

1 2 0
0

Contains covariant derivatives of Ricci tensor

Because the right hand side contains the covariant derivative of
Ricci tensor, geometries which satisfy
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become solutions by adjusting ¢ = (/o) Global AdSs, BTZ still exist



Let us evaluate the black hole entropy.

It is known that the area law is modified by Wald's entropy formula for

general covariant theories which include higher derivative terms. e

Since the Chern-Simons part is non-covariant, additional contribution <, quin.
appears in the entropy formula. Tachikawa
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The entropy becomes
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This is a thermodynamic entropy. we need some statistical explanation.



3. Hamiltonian Formalism and Virasoro Algebras

Our goal is to evaluate the central charges of Virasoro algebras on the
boundary in generalized TMG. To execute this calculation, we need
Hamiltonian formalism of the system.

In this part, we review the essence of Hamiltonian formalism in pure gravity
with negative cosmological constant.

Brown, Henneaux

First let us consider isometries of global AdSs or BTZ black hole at the
boundary. From their line elements, we find following asymptotic behavior.
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This behavior is preserved under the coordinate transformations of
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Then Killing vector fields ¢, = ¢'9: satisfy commutation relations of
&l =—im—n)&ry,,  [&h&] =007

This result shows that the asymptotically AdSs spacetime is endowed
with the 2D conformal symmetry on the boundary.

In order to evaluate the central extension of the Virasoro algebras,
we have to do following procedures.

A) Hamiltonian formalism.

B) Calculate the variation of the Hamiltonian, and add
surface term to obtain correct equations of motion.

C) From this surface term, we obtain global charge.
Possible to evaluate central charges.



A) Hamiltonian formalism.

We introduce the (1+2)-dimensional ADM decomposition of the metric.
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Then the Einstein-Hilbert Lagrangian with negative cosmological

constant becomes |
i N(r+2 s KK, - K? Rij = 5 (g = iy = DiNi)

Canonical variable conjugate to 9:; is defined as usual and given by
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Then Hamiltonian is constructed as
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B) Calculate the variation of the Hamiltonian. Add surface term to obtain
correct equations of motion.

Variations with respect to NV and N* give initial value constraints.
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Correct equations of motion can be derived, only when the surface term
Is added to the original Hamiltonian. The variation of the surface term
should cancel unwanted contributions. Regge, Teitelboim
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C) From this surface term, we obtain global charge. Possible to evaluate
central charges.

The generator of isometry (Hamiltonian) consists of the constraint part
together with appropriate surface term.

H[E] = /d% ("Ho + E'H;) + Q€]

Algebraic structure of symmetric transformation group is given by the
Poisson bracket of generators.

{H[E], Rl = H[[& n]] + KI[€, 7]
The last term gives the central extension of the algebra and becomes
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This can be evaluated by substituting asymptotic values of global AdSs.
Finally we obtain
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Before closing this section, let us consider Virasoro algebras of
diffeomorphism invariant action
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The important point is that the Lagrangian constructed out of the metric
and the Ricci tensor is equivalent to the Einstein-Hilbert Lagrangian
with matter fields after the frame transformation.

Magnano, Ferraris, Francaviglia

The metric in the Einstein frame is given by scaling the original metric
(after substituting AdS or BTZ solutions)
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Then canonical variables scale as
Gij = QQQ-@;’, N =QN, N'=N*' 7%= 1t

Finally mass, angular momentum and central charges are evaluated like
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4. Generalization to Topologically Massive Gravity

Let us apply the arguments so far to TMG. We will confirm that mass
and angular momentum of the BTZ black hole and central charges
of the boundary CFT are all modified in TMG.

The action of TMG is given by Einstein-Hilbert term with negative
cosmological constant and gravitational Chern-Simons term. ADM
decomposition of gravitational Chern-Simons term is given by
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This contains third derivative with respect to time. It is known that the
canonical formalism of such system is done by using Ostrogradsky
method in which Lagrange multiplier is introduced. Ostrogradsky
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It is convenient to choose £ij as an independent variable.  Buchbinder, Lyahovich, Krykhtin



Hamiltonian is constructed in an usual manner. Defining 7%/ and N as
momenta conjugate to 9:; and ;j respectively, we obtain

Hrme = 774 + NYK;j — L1vc + fij(ﬂij - 5\/§€ikKkj)
o \/§N{ e 52 — KMy 4 K2 = 28" DD Ko + (297378 4 BAM)KM}
+ \/gN“'{zﬁem”KJDnKm; + B Dy (K i Km™) — ;Beijafr - D;(2g73m + mﬁ)}
+ fij(nij - 5\/§€ikKkj)

Then in order to derive correct equations of motion, it is necessary to
add surface term Q[¢] to the Hamiltonian.
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Now it is possible to evaluate mass and angular momentum of BTZ black
holes, and central charges at the boundary.

Mass

0 ¢ £y — T b N z 4GNJ
(57615)_(N7N3N) (87 O’ T2 )
1
M = o0l
1 Tor r
T 167Gy Jr=co dqb{Q\/gS PrO(=E%9" 4g09r) +25Dkﬁogk£5K¢l}

Angular mom.

(€9, ¢, ¢?) = (0,0,1)

1

/= 167TGN5Q[§]

1 . 1.
— ; o 2AY réro o mn r
e f__dsledn’ + BgEAT) + G (=" Dy 5g80rr) |

=J+pm




ro.o.+ nr ..+ 1 .+
Central charges (€9,€7, %) ~ (—em‘” N L )

2 2 T2

1 + 1 1(1.0 0 3.0 o .
TorGy n=et 96 = Sl = 15ray T=md¢{f(rf + 0:€°)01900 + 5%0g0r + E40(2n7 + Bg2 A )}
B 1 (1.0 0 3.0 o
t T6nGy i:m d¢{e2(r5 + 0r¢°)ngos + & 0ngrr + 20,0 677K¢l}

= _i?’_g(l + E)m(mz — 1)0m,—n

122Gy /
b Qle= 6] = {30+ 060 5+ Eon(2n + 53 A7)
16m GN ?7 =én " 167Gy Jr=oc EAr rS ) 09ge T3S Ondrr T Se0n 9
p 1/1,0 0 r3 .0 0 rl
-l_ 167TGN f‘:oo dqb{ B £_2(F€ + a’rf )5ng¢¢ o 5_45 6779?"7‘ + 28’1’6 g 577Kq5£}
= _i3_€(1 — g)m(mz _ 1)5m Cn
122G\ ’

Thus we obtain left-right asymmetric central charges.
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5. Central Charges with All Higher Derivative Corrections

We have established the canonical formalism and have gotten the Virasoro
central charges for TMG. We generalize these results in order to
encompass general cases of higher derivative gravity.
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This theory contains global AdSz and BTZ black holes as solutions.
Mass and angular momentum for BTZ black hole become

M:Qm-l—éj, J=Qj+pm

CFT2 exists at the boundary and central charges take following left-
right asymmetric forms.
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Note that L correspond to the isometries & = 0+ = 5(£ £ 9;) |
Therefore we obtain
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From Cardy's formula for counting the states in CFT, we obtain the
statistical entropy for BTZ black holes.
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This agrees with the previous thermodynamic entropy formula. For BTZ
black holes capturing the contributions of all higher derivative corrections,
we have thus proven the agreement between the macroscopic entropy and
the Cardy's entropy of microstate counting.



6. Realization in M-theory: M5 System

The 3D theory is usually embedded in higher dimensional theories in the
string theory context. An interesting example is embodied in M-theory,
which is intriguing because the corresponding CFT is understood clearly.

M5-branes wrapping
2
BIZ 57 x CV3 ~ on 4-cycles in CYs.
l Hanaki, Ohashi, Tachikawa l
Gupta, Sen Maldacena, Strominger, Witten
Generalized TMG N = (0,4) CFT2

+ moduli scalars
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/. Summary and Discussion

We have analyzed generalized topologically massive gravity using the
conventional canonical formalism.

We defined the global charges so as to cancel the surface terms of the

variation of the Hamiltonian. Virasoro algebras are derived at the boundary,
and central charges are left-right asymmetry.

Mass and angular momentum of the BTZ black hole are also computed.

Thermodynamic entropy for BTZ black hole agrees with the statistical
entropy on the boundary CFT. AdS/CFT confirmed.

In TMG, we considered two parameters £ and [ which are
continuous. Recent arguments show that these should be related.

Li, Song, Strominger



8. Holographic RG Flow in TMG (Work in Progress)

As an interesting generalization, we add a scalar field to TMG.
It interpolates between two AdSs vacua.

The radial coordinate is identified with the RG flow parameter of
the boundary field theory.

De Boer, Verlinde, Verlinde
Fukuma, Matsuura, Sakai

Hamilton-Jacobi formulation

Is it possible to obtain c-functions in TMG?



Euclidean action of TMG with a scalar field is given by
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First constraint (Hamiltonian constraint) :
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This can be solved order by order with respect to weight, which is assigned as
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Second constraint (Momentum constraint) :
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Combining the results, we obtain c-functions in the gravity side
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