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I. MOTIVATION

• An interesting issue of black hole physics is the clas-
sical time-irreversibility associated with the black
hole horizon. Waves (or particles) can only enter
the horizon but cannot come out. Also, the area of
the horizon does not decrease.

• This is famously similar to another familiar arrow
of time: the second law of thermodynamics.

• Both of these arrows exist even though basic laws
of physics are T-symmetric (at least at the relevant
scales).

• We will revisit the question of (i) relation between
the two arrows of time and (ii) compatibility with
the T-symmetry with the basic laws,
in two contexts:

(a) gravity/fluid dynamics correspondence in asymp-
totically AdS5

(b) absorption of waves by a D1-D5 black hole
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II. T-irreversibility of black brane horizon and of hydrodynamics

Consider a static black brane solution in AdS5:

ds2 = −dt2f(r)r2 +
dr2

f(r)r2
+ r2d~x2

where

f(r) = 1 −
r4
0

r4

The extended Penrose diagram consists of the four re-
gions I,II,III,IV.

The above coordinates cover only region I. An ingoing
wave from r = ∞ is expected to enter region II with-
out encountering any singularity at the horizon r = r0.
To describe them we can use the “ingoing Eddington-
Finkelstein” coordinates (v, r, ~x) where v is defined by

v = t + r∗, r∗ =

∫

dr

f(r)r2
≈

ln(r − r0)

(r2f)′(r0)
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In these coordinates, the metric looks like

ds2 = 2dvdr − r2f(r)dv2 + r2d~x2

which is non-singular in I+II.

Horowitz and Hubeny1 considered a scalar wave satis-
fying the covariant Laplace equation in the above back-
ground. They showed that the wave must be purely
ingoing at the horizon r = r0 if it is regular in regions
I+ II:

Ingoing : φ ∼ e−iw(t+r∗) = e−iwv = analytic for finite v

Outgoing : φ ∼ e−iw(t−r∗) = e−iwve2iwr∗ ≈ e−iwv(r − r0)
2iw/(r2f)′(r0)

(a) Im w turns out to be negative, so that the power of
r − r0 is positive; hence the outgoing mode vanishes at
the horizon. However,
(b) this power also turns out to be non-integer, hence
the outgoing mode is actually singular at r = r0.

The same conclusion holds if the scalar field is replaced
by a graviton.

Now, BHMR2 constructed fluctuating black brane solu-

tions which permit a perturbative derivative expansion
around the above background geometry. The solutions
are regular in regions I+II and are found to be dual to
solutions of fluid dynamics.

The solutions, consistently with the above reasoning,
are ingoing at the horizon.

1Horowitz, Hubeny, hep-th/9909056
2Bhattacharyya, Hubeny, Minwalla, Rangamani hep-th 0801.1435
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Some details of the Horowitz-Hubeny argument:

Write
φ = e−iwv r−3/2 ψ(r) X(~x).

Define F (r) = r2f(r).

Fψ′′ + (f ′ − 2iw)ψ′ − V ψ = 0
∫ ∞

r0

dr (F |ψ′|2 + 2iwψ̄ψ′ + V |ψ|2) = 0

∫ ∞

r0

dr ψ̄ψ′ =
w

w̄ − w
|ψ(r0)|

2

∫ ∞

r0

dr (F |ψ′|2V |ψ|2) = −
|w|2

(w − w̄)/(2i)
|ψ(r0)|

2

Hence Im w = (w − w̄)/(2i) must be negative. (Im w = 0
can be ruled out).
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The BHMR metric:

ds2 = −2uµ(x)dxµdr − r2f(r/r0(x))uµuνdxµdxν + r2Pµνdxµdxν

+
2

r0
r2F (r/r0(x))σµνdxµdxν +

2

3
ruµuν∂λu

λ − ruλ∂λ(uµuν)dxµdxν + ...

The first line represents the black brane in a boosted
frame where the boost parameters and r0 are made into
functions of xµ (collective coordinates). The second line
represents the leading correction in a derivative expan-
sion.

P µν = uµuν + ηµν

σµν = P µαP βν∂(αuβ) −
1

3
P µν∂λu

λ

Stress tensor:

T µ
ν = −2 limr→∞ r4(Kµ

ν − δµ
ν )

= ρ(ηµν + 4uµuν) − 2ησµν + ...

where
ρ = (πT )4, η = (πT )3, T = r0/π

Note that the energy density ρ and the viscosity η are
determined by gravity.

Validity of the perturbative expansion in powers of deriva-
tive requires L ≫ 1/T where L= length scale of variation
of uµ(x), T (x).
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In the region of validity of the solutions, the segment of
the horizon is the future horizon H+.

B83 observed the following: There is a standard argu-
ment in black hole physics which shows that the expan-
sion parameter

θ =
1

aH

daH

dλ
is nonnegative on a future horizon. Here aH is the
(three-dimensional) cross-sectional area of a geodesic
congruence on the future horizon.

By using a “tubewise” map

f : boundary(τ, ~y) → horizon(v, ~x), τ = v, ~y = ~x

and defining an entropy current s = ∗f∗(aH), it follows
that

∂µs
µ = ∗d ∗ s ≡ ∗df∗(aH) = ∗f∗(daH) ≥ 0

which shows nonnegative entropy production.
3Bhattacharyya, Hubeny, Loganayagam, GM, Minwalla, Morita, Rangamani, Reall,

hep-th 0803.2526
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Summary so far:

Regular in regions Ingoing at H

H θ > 0:+       I and  II

   2nd law 

Positive viscosity,
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These solutions were regular in I+II, are ingoing at the
horizon and correspond to a fluid configuration which
satisfies the second law.

We now ask the reverse question4:
If we remove the regularity condition in I+II, do they
correspond to some fluid configuration which violates
the second law of thermodynamics?

To address this, let us consider wave solutions are reg-
ular in the outgoing E-F coordinates (u, r,x) where u =
t − r∗, which cover I+IV.

The static black brane in these coordinates looks like

ds2 = −2dudr − r2f(r)du2 + r2d~x2

where the sign of the first term is flipped.

4GM, Minwalla, Morita 2008
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Ingoing : φ ∼ e−iw(t+r∗) = e−iwue−2iwr∗ ≈ e−iwv(r − r0)
−2iw/(r2f)′(r0)

Outgoing : φ ∼ e−iw(t−r∗) = e−iwu = analytic for finite u

Because of the flipped sign of dudr, now Im w turns out
to be positive. Since the power of (r−r0) has also flipped
sign, the function of r is, again, non-analytic at r = r0.

The behaviour of the outgoing mode as u → ∞ will be
discussed in detail later.

Details of the Im w > 0 argument:

Write
φ = e−iwv r−3/2 ψ(r) X(~x).

Define F (r) = r2f(r).

Fψ′′ + (f ′ + 2iw)ψ′ − V ψ = 0
∫ ∞

r0

dr (F |ψ′|2 − 2iwψ̄ψ′ + V |ψ|2) = 0

∫ ∞

r0

dr ψ̄ψ′ =
w

w̄ − w
|ψ(r0)|

2

∫ ∞

r0

dr (F |ψ′|2V |ψ|2) = −
|w|2

(w − w̄)/(−2i)
|ψ(r0)|

2

Hence −Im w = (w − w̄)/(−2i) must be negative. (Im
w = 0 can be ruled out).
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Fluctuating gravity solutions in derivative expansion:

In terms of an arbitrary boosted frame, the flipped sign
of dudr corresponds to a sign flip uµ → −uµ in the solu-
tion.

By following a procedure similar to the earlier one we
now get

ds2 = +2uµ(x)dxµdr − r2f(r/r0(x))uµuνdxµdxν + r2Pµνdxµdxν

−
2

r0
r2F (r/r0(x))σµνdxµdxν −

2

3
ruµuν∂λu

λ + ruλ∂λ(uµuν)dxµdxν + ...

The essential change is that terms containing an odd
number of uµ’s has flipped sign (we have explicitly checked
that the above metric is a solution of Einstein equation
up to first order in derivative expansion).

Stress tensor:

T µ
ν = −2 limr→∞ r4 (Kµ

ν − δµ
ν )

= (πT )4(ηµν + 4uµuν) + 2(πT )3σµν + ...

which shows that

ρ = (πT )4, η = −(πT )3, T = r0/π

We get negative viscosity!

Again, by using the result that for a conformal fluid the
divergence of the entropy current is viscosity times a
sum of squares, we deduce that

∂µs
µ ≤ 0!
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This is consistent with the following reasoning from
gravity, similar to B8. Since we are considering here
solutions regular in I + IV, the solutions are outgoing
at r = r0 which happens at the past horizon H−.

The expansion parameter θ is non-positive on the past
horizon. Therefore by using a similar argument as be-
fore, we get non-increasing entropy of the boundary
fluid:

∂µs
µ ≤ 0!

Here we use the new “tubewise” map

f : boundary(τ, ~y) → horizon(u, ~x), τ = u, ~y = ~x

where u becomes the boundary time τ .
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To summarise,

Regular in regions

H :       I and  IV

Outgoing at H

θ < 0
_

   2nd law

Negative viscosity,
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Possible interpretation of decreasing entropy in the boundary theory

Now consider the outgoing modes e−iwu again which we
found to be regular.

Since w = r+iq, q > 0, the outgoing mode e−iwu ∝ equ = eqτ

grows infinitely large in the boundary time τ .
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This is the time-reversed situation of the previously
discussed solution which behaved as e−iwv ∝ e−qτ , q =
−Imw > 0. This solution decayed in time, however it
blew up in the past. In order to correctly specify the
behaviour in the past, we must specify in that case
an initial condition at τ = τ0 such that the graviton
mode vanishes for all τ < τ0. (This can only be achieved
by some external “stirring” device, e.g. an additional
field).

At the horizon, a general combination of outgoing modes
is

φ(v, ~x) =

∫

dw A(w, ~x) e−iwv

Equivalently, at the boundary, by the “tubewise” map

φ(τ, ~x) =

∫

dw A(w, ~x) e−iwτ

In order that we have φ(τ, ~x) = 0, τ < τ0, we must have a
special set of Fourier components A(w, ~x) such as those
of a step function.

The initial condition is specified by these special Fourier
components; eventually, because of non-linearities, the
Fourier components become generic.



In the present case, in order that the solution, eqτ , does
not blow up in the future we must specify a final con-

dition at some finite time τ = τ0 such that it vanishes
for all τ > τ0.

In this case, the final condition is specified by these spe-
cific Fourier modes similar to the ones discussed above.

Now, in order for a non-linear evolution, which allows
for mixing of Fourier modes, to lead to these specific
Fourier modes at a final time, we need a fine-tuned ini-
tial condition at an earlier time. (Similar to that of
reversing the velocity of each gas molecule in a room).

Such a situation can decrease the available phase space,
and hence decrease entropy.
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Can we take a combination of these two cases, e.g.
waves that are outgoing at H− and ingoing at H+?5

We show here that if a field satisfies the derivative ex-
pansion and is regular in I+II+IV, it is static.

Consider a scalar field φ which satisfies the above regu-
larity condition.
Then, in Kruskal coordinates

U = −e−κu, V = eκv

the field has a Taylor series expansion

φ(U, V ) =
∑

m,n≥0

φmnU
mV n

In (v, r) coordinates

UmV n = exp[κ(n − m)v] exp[2nκr∗]

The derivative with respect to v is (n − m)κ ∼ (m − n)T
which is large unless m = n in which case the field is a
function only of r. Such fields give rise to a static solu-
tion. [Derivative expansion requires ∂v/T ∼ 1/(LT ) ≪ 1.]

The result can be easily generalized to gravitons, by
correcting taking into account the Jacobian of the co-
ordinate transformation (u, v) → (U, V ).

5Bak, Gutperle, Karch, hep-th 0708.3691



A question:

It appears that in gauge/gravity correspondence, the
second law of thermodynamics in the boundary can be
explained by the presence of a black hole/black brane.

How about situations in which there is no black hole?
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III. Absorption by the D1-D5 black hole

Consider a supersymmetric D1-D5 black hole obtained
by wrapping Q5 D5-branes on T 4 ×S1 and Q1 D1 branes
on the S1. The system can carry a right- (or left-) mov-
ing momentum P along the S1. The near-horizon limit
is an extremal BTZ black hole with M = L = P .

In terms of the conformal group, L0 = P, L̄0 = 0. The
P = 0 black hole corresponds to the M = L = 0 BTZ
black hole (L0 = L̄0 = 0).

It was shown in 19966, in the context of this black hole,
that the time irreversibility associated with the BH
horizon is equivalent to the time-irreversibility of the
second law of thermodynamics, provided we represent

the black hole as a microcanonical ensemble.

The dual CFT2 is based on (a marginal deformation
of) a symmetric product orbifold with Ramond bound-
ary condition in the S1 direction. A ground state with
L0 = L̄0 = 0 is characterized by a set of integers N i

n, n =
1, ..., N, i = 1, 2, ...8 satisfying

∑

n,i

nN i
n = N ≡ Q1Q5

The number of ground states is given by the number Ωi

of solutions of this equation.

Roughly, the N i
n represents the number of CFT modes

(“long strings”) with effective winding length n (and
“type” i which we will ignore henceforth).

6Dhar, GM, Wadia 1996
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Setup for an absorption process

A wave of energy E (some mode of the closed string,
say a minimally coupled scalar) is incident on the CFT
system, exciting it from one of the ground states to an
excited state.

Suppose that the number of ground states (initial states)
= Ωi, and the number of available final (excited) states
= Ωf .

Provided we identify the BTZ BH (both the initial BH

and the final BH) with microcanonical ensembles in

the CFT , we get

(prob. of absorption)/(prob. of decay) = Ωf/Ωi

Since for a large mass black hole Ω increases very fast
with energy, Ωf ≫ Ωi. Hence, classically “absorption” is
overwhelmingly the more dominant process.

However this depends crucially on representing the

BH as a microcanonical ensemble.

If we take individual CFT states to represent the ini-
tial and final states of the BTZ black hole, we get (not
surprisingly)

(prob. of absorption)/(prob. of decay) = 1
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Absorption by a pure CFT state

P (t) =
∑

f

|

∫ t

0

dt′〈f |eiwt′∂X∂̄X|i〉|2

= κ2
5

∑

n

Nn

∞
∑

m=1

m2

w

sin2(w − 2m/n)t

(w − 2m/n)2

We find that P (t) oscillates and does not grow linearly
in t. In other words, the system does not “absorb”.

This situation is familiar from the context of Fermi
Golden Rule. We find that in stead of a monochro-
matic wave exp[−iwt], we must use a wave-packet ρ(w),
of width ∆w. For t ≪ 1/∆w7,

σ ≡
P (t)

t
= κ2

5

∑

n

Nn

∞
∑

m=1

mρ(2m)

For ∆w ≫ 1/(Rntyp) where ntyp is the typical length of a
long string, we get, after a long calculation

σ = σclassical + corrections

where σclassical = π3R4w is the absorption cross-section by
the classical black hole (without α′ corrections).

The correction terms are damped by exp(−R ∆w ntyp);
further, they are also microstate dependent.

7Das, GM 2008
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Interpretation

Thus, we found classical absorption if

t ≪
1

∆w
≪ Rntyp

For t ≫ 1/∆w we found oscillatory behaviour.

A bulk calculation similar to this was performed by
Lunin and Mathur8 in a “microstate” geometry (fuzzball).
These geometries have throats that are finite and re-
flects waves back and out, eventually all of it!

However, there is a certain trapping time τ = Rntyp such
that the incident wave-packet stays inside the throat
for t < τ . Thus, for t ≪ τ , the wave travels in and does
not feel the presence of the “cap”. (The Lunin-Mathur
calculations took all long strings of equal length ntyp).
We arrive at this result from a CFT calculation which
is exact.

8Lunin, Mathur hep-th/0107113
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Absorption by a two-state system

A related issue is the following. A 2-state system can-
not absorb a photon. Its interaction with radiation of
energy E is oscillatory in time:

Consider a hamiltonian

H =

(

E1 ge−iwt

geiwt E2

)

The Schrodinger equation is given by

iψ̇ = Hψ

ψ =

(

a(t)
b(t)

)

Suppose ψ = (1 0) at t = 0. The solution is:

|a(t)|2 = A2 + (1 − A)2 + 2A(1 − A) cos(κt)

A =
1

2
−

Ω

2κ
, Ω = w + E2 − E1, κ =

√

Ω2 + 4g2
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An absorption would have to mean that the lower en-
ergy state must steadily lose probability. Instead, we
find that the probability oscillates.

There is a certain “trapping time” τ such that at t = τ
such that the probability |b(t)|2 of occupying the higher
state reaches a maximum (before falling again).
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IV. CONCLUSION

• We discussed two instances of T-irreversibility in
gravity.

• In the context of gauge-gravity correspondence T-
irreversibility of a black brane horizon and the asso-
ciated positive entropy production owes to the “in-
going” boundary condition at the horizon (equiv-
alently the imposition of regularity in the ingoing
E-F coordinates).

• We showed that the choice of the other bound-
ary condition (outgoing) leads to entropy decrease
for the boundary fluid. We argued, after analyz-
ing the appropriate regularity condition, that the
fluid should start from a fine-tuned initial condition.
This is a possible interpretation of the reduction in
entropy.

• We addressed the issue of absorption of waves by
a black hole from the viewpoint of T-irreversibility.
We showed that a pure state does not absorb, much
as a two-state system keeps oscillating when ex-
posed to radiation. However if one takes the “time
of measurement” to be less than a certain “trap-
ping time” one effectively has an absorption, which
agrees with the BH absorption cross-section in a
suitable limit.

26


