
Rare Dyon Decays

Sunil Mukhi
Tata Institute of Fundamental Research, Mumbai

IPMU, September 15 2008



I Based on:

“Dyon death eaters”,
Anindya Mukherjee, SM, Rahul Nigam, arxiv:0707.3035 [hep-th]

“Kinematical analogy for marginal dyon decay”,
Anindya Mukherjee, SM, Rahul Nigam, arXiv:0710.4533 [hep-th].

“Constraints on “rare” dyon decays”,
SM and Rahul Nigam, arXiv:0809.1157 [hep-th].



Outline

Motivation and background

N=4 compactifications and marginal stability

Analysis of marginal stability curves

1
2 -BPS two-body decays

General two-body decays

Solving the constraints

Multi-particle decays

Discussion



Motivation and background

I In 4d string compactifications having N = 4 supersymmetry,
the microscopic degeneracy is known very precisely through a
general formula.

I It turns out that this degeneracy jumps at certain loci in
parameter space, called curves of marginal stability.

I At these loci, a dyon decays into two or more other dyons.

I While certain decays cause the degeneracy to change, others
do not. The latter kind, which have not been much studied in
the literature, will be the main topic of this talk.

I Our goal will be a general picture of the dyon spectrum as a
function of the moduli.
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N=4 compactifications and marginal stability

I Compactifications of string theory to 4d having N = 4
supersymmetry admit both 1

4 -BPS and 1
2 -BPS states.

I The desired compactification can be thought of as the type
IIB string compactified on K3× T 2.

I It has other useful dual descriptions:

heterotic type IIA M-theory M-theory
on T 6 on K3× T 2 on K3× T 3 on T 5/Z2



I The resulting 4d theory has 28 U(1) vector fields, so a general
dyonic state has 28 electric and 28 magnetic charges ( ~Q, ~P ).

I Analysis of the supersymmetry algebra on these states reveals
that they are:

1
2 -BPS if ~Q ‖ ~P
1
4 -BPS if ~Q ‖/ ~P

I Notice that purely electric or purely magnetic states are
automatically 1

2 -BPS.



I Marginal stability arises from the fact that at some points in
the moduli space, a dyon can become degenerate in mass with
a two-particle state.

I At such points a continuum spectrum opens up and the
state-counting problem is effectively ill-defined.

I The moduli space for N = 4 compactifications is:

SO(6, 22, Z)\SO(6, 22, R)/SO(6, R)× SO(22, R)
× SL(2, Z)\SL(2, R)/U(1)

I In the type IIB description, the second factor is labelled by the
complex-structure modulus τ of the torus T 2.



I In N = 4 compactifications, inner products among the charge
vectors involve the 28× 28 matrices L and M , where:

L =

 0 II6 0
II6 0 0
0 0 −II16


and the symmetric matrix M satisfying MLM = L encodes
the SO(6, 22) moduli.

I It is convenient to write down the combination

L+M=

0BB@
G−1 1+G−1(B+C) G−1A

1+(−B+C)G−1 (G−B+C)G−1(G+B+C) (G−B+C)G−1A

AT G−1 AT G−1(G+B+C) AT G−1A

1CCA

I The moduli appearing here are most familiar in the heterotic
basis as the metric Gij , B-field Bij and gauge fields AI

i in a
T 6 compactification. We have defined Cij = AI

iA
I
j .



I The inner product between dyonic charge vectors that is
relevant for us depends on the moduli:

~P ◦ ~P = ~P T(L+M)~P , ~Q◦ ~Q = ~QT(L+M) ~Q, ~Q◦ ~P = ~QT(L+M)~P

I In the presence of a black hole, these moduli are understood
to be the moduli at infinity.

I Another way to write the above product is to define the
“right-projected” (hence moduli-dependent) charges:

~PR =
√
L+M ~P, ~QR =

√
L+M ~Q

where “right” refers to the right-moving part of the heterotic
string. Then ~P ◦ ~P = ~PR · ~PR = ~P 2

R etc.



I An explicit form of the square root is provided by:

√
L+M =

 E−1 E−1(G+B + C) E−1A
0 0 0
0 0 0


satisfying √

L+M
T√

L+M = L+M

I Note that the projected charges ~QR, ~PR are not quantised.

I Also note that they are 6-component vectors.



I The BPS mass formula depends only on the projected
charges:

M2
BPS( ~Q, ~P ) =

1
τ2

∣∣ ~QR − τ̄ ~PR)
∣∣2 + 2

√
∆( ~QR, ~PR)

where
∆( ~QR, ~PR) ≡ ~Q2

R
~P 2

R − (~PR · ~QR)2

I The dependence on the torus parameter τ is explicit, but
there is also an implicit dependence on the moduli M through
~QR, ~PR.



I The mass formula has an amusing analogy with particle
kinematics. It is analogous to:

E2 = ~p 2 +m2

where:

MBPS ∼ E,
~QR − τ ~PR√

τ2
∼ ~p,

√
2 ∆

1
4 ∼ m

I We can use this fact to find the conditions for marginal decay:

( ~Q, ~P ) = ( ~Q1, ~P1) + ( ~Q2, ~P2)

MBPS( ~Q, ~P ) = MBPS( ~Q1, ~P1) +MBPS( ~Q2, ~P2)

I In the kinematic analogy, conservation of charge is identified
with conservation of momentum and the marginality condition
is mapped to conservation of energy.



I Moreover 1
2 -BPS dyons, for which ~Q ‖ ~P , have

∆( ~QR, ~PR) ≡ ~Q2
R
~P 2

R − ( ~QR · ~PR)2 = 0

and therefore they behave like massless particles.

I The decay of a massless particle is not meaningful. Thus only
1
4 -BPS particles can decay.

I As in normal relativistic kinematics, marginal dyon decay will
be possible whenever the (analogue) energy-momentum
conditions are satisfied.



I Consider a decay of a particle of mass m with a momentum ~p
into two particles of masses m1,m2 and momenta ~p1, ~p2.

I Working in the rest frame, the invariant p · p1 is easily shown
to be:

p · p1 =
1
2

(m2 +m2
1 −m2

2)

The same invariant in the lab frame can be written:

p · p1 = m2
1 +

√
~p 2

1 +m2
1

√
~p 2

2 +m2
2 − ~p1 · ~p2



I Equating the two, we have:√
~p 2

1 +m2
1

√
~p 2

2 +m2
2 − ~p1 · ~p2 =

m2 −m2
1 −m2

2

2

I Making the substitutions for the analogous dyon quantities,
we find:√
| ~Q(1)

R − τ ~P
(1)
R |2 + 2τ2

√
∆1

√
| ~Q(2)

R − τ ~P
(2)
R |2 + 2τ2

√
∆2

−Re( ~Q(1)
R − τ ~P

(1)
R ) · ( ~Q(2)

R − τ̄ ~P
(2)
R ) = τ2(

√
∆−

√
∆1 −

√
∆2)

where ∆i = ∆( ~Q(i), ~P (i)).

I For fixed charge vectors ~Q(i), ~P (i) and fixed moduli M , this is
an equation for the torus parameter τ . This is called the curve
of marginal stability.
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Analysis of marginal stability curves

I To discuss marginal decays we first define the torsion I of the
dyon charges, which is a duality invariant, by:

I = g.c.d.(QiPj −QjPi)

I For a dyon of torsion mn for some co-prime m,n, one can use
SL(2, Z) transformations of the 2-torus to bring the charge
vectors into the form (m~Q, n~P ) where:

g.c.d.(QiPj −QjPi) = 1

I If m = n = 1, the dyon has unit torsion. We will restrict
ourselves to this case here.



I The general decay process involves a breakup of charges as:(
~Q
~P

)
=

(
~Q(1)

~P (1)

)
+

(
~Q(2)

~P (2)

)
+ · · ·

In the above formula all charges are quantised.

I The initial and final particles must all be mutually BPS, which

requires that the projected charges ~Q
(i)
R , ~P

(i)
R all lie in the

same plane as QR, PR.

I Thus we have: (
~Q

(i)
R
~P

(i)
R

)
=
(
mi ri
si ni

)(
~QR

~PR

)
where

∑
imi = 1,

∑
i ni = 1,

∑
i ri =

∑
i si = 0.

I As the projected charges are not quantised, mi, ni, ri, si do
not have to be integers. In fact, as we will soon see, they are
moduli-dependent.



I Let us now focus on two-body decays.

I From the curve obtained using the kinematic analogy, by
rearranging and squaring to remove the square roots, we find:(

τ1 −
m1 − n1

2s1

)2

+
(
τ2 +

E

2s1

)2

=
1

4s2
1

(
(m1−n1)2+4r1s1+E2

)
where

E = −QR ∧ PR√
∆

I In the above,

QR ∧ PR = Q1R · PR − P1R ·QR

is the Saha angular momentum stored in the dyonic field of
the first decay product relative to the original dyon, evaluated
in the norm at infinity.



I Dependence of the marginal stability curve on the moduli M
arises through E as well as m1, r1, s1, n1.

I Although it is not obvious, one can show that the RHS is
positive definite.

I Therefore the curve is a circle in the torus moduli space with
centre at:

(τ1, τ2) =
(
m1 − n1

2s1
,− E

2s1

)
and radius:

1
2s1

√
(m1 − n1)2 + 4r1s1 + E2



I The next step is to check whether this circle intersects the
upper half-plane.

I There are two cases. If E
s1
> 0 then the centre of the circle is

in the lower half plane.

I The circle will then intersect the upper half plane only if it
intersects the real axis, which happens if:

(m1 − n1)2 + 4r1s1 > 0

1
2ns1

√
(m1−n1)2+4r1s1+E2

(
m1−n1

2s1
,− E

2s1

)

τ plane



I If E
s1
< 0 then the circle has its centre in the upper half plane,

and therefore always has a finite region in the upper
half-plane:

τ plane



I One might conclude that all two-body decays satisfying the
above conditions lead to walls of marginal stability.

I This would be wrong. The equation we have derived is a
necessary but not sufficient condition for marginal decay.

I The reason is that rearranging and squaring to obtain the final
equation introduces spurious solutions.

I Indeed one can check that the same curve arises for the
reverse decays:

M1 = M +M2, M2 = M +M1

in addition to the desired decay M = M1 +M2.

I Therefore, given a curve of marginal stability, the decay mode
it describes can be one of the three modes above and and one
needs to check which one is the case.



I Conversely, given a decay mode, one needs to check whether
it is actually realised on the corresponding curve of marginal
stability.

I In most cases these considerations put constraints on the
moduli in M , which we will analyse in detail. Then the
domain of marginal stability is a codimension > 1 surface in
M ×UHP.

I Such decays are therefore called “rare decays”.

I In certain special decays there are no constraints on M .
These are the “non-rare decays”. In these cases there is a wall
of marginal stability.
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1
2-BPS two-body decays

I Let us now examine decays of a 1
4 -BPS dyon into two 1

2 -BPS
states. In this case the final-state charges are already in the
plane of the initial charges.

I Moreover, it is obvious from supersymmetry that an inverse
decay is impossible.

I In this case one can show that the matrices:(
mi ri
si ni

)
have integer entries and vanishing determinant.



I In fact it is possible to write these integers as:(
m1 r1

s1 n1

)
=
(
ad −ab
cd −bc

)
where: (

a b
c d

)
∈ PSL(2, Z)

I Under these conditions the curve of marginal stability
simplifies and can be written as:(

τ1 −
ad+ bc

2cd

)2

+
(
τ2 +

E

2cd

)2

=
1

4c2d2

(
1 + E2

)
where

E = −Q ∧ P√
∆



I This family of curves was originally derived by Sen. They are
non-intersecting and divide the torus moduli space into
“triangles” with circular boundaries.

I This is illustrated in the following figure:

τ plane

I We found that these circles have an interesting
number-theoretic significance, being related to Farey
sequences and Ford circles which were invented to illustrate
the structure of the group SL(2, Z).



I Since no other moduli need to be adjusted, this curve is a
domain wall in moduli space, dividing it into regions.

I Across a domain wall, physical quantities can jump
discontinuously. And that is exactly what happens in this case
– the dyon degeneracy jumps [Dabholkar-Gaiotto, Sen].

I Instead of discussing these special decays in detail, we turn
now to the more general decays.

I As indicated, these will turn out to be “rare” in the sense that
they occur on codimension ≥ 2 loci in moduli space.



Outline

Motivation and background

N=4 compactifications and marginal stability

Analysis of marginal stability curves

1
2 -BPS two-body decays

General two-body decays

Solving the constraints

Multi-particle decays

Discussion



General two-body decays

I Let us now consider the general case:

1
4 -BPS → 1

4 -BPS + 1
4 -BPS

I As we have seen, the curve of marginal stability is:(
τ1 −

m1 − n1

2s1

)2

+
(
τ2 +

E

2s1

)2

=
1

4s2
1

(
(m1−n1)2+4r1s1+E2

)
I In this general case, we do need to ensure that the

R-projected charge vectors of all three dyons lie in a plane.
We will now explore the implications of this.



I The quantity

√
∆ =

√
Q2

RP
2
R − (QR · PR)2

that appears in the BPS mass formula involves a square root,
and we have taken all square roots to be positive.

I This has the following consequence. Observe that:

∆(mi
~Q+ ri ~P , si

~Q+ ni
~P ) = det

(
mi ri
si ni

)
∆( ~Q, ~P )

I Positivity of ∆ on both sides of the equation imposes the
condition:

det
(
mi ri
si ni

)
> 0, i = 1, 2



I Since (
m2 r2

s2 n2

)
=
(

1−m1 −r1

−s1 1− n1

)
we find two equations which can be summarised as:

m1n1 − r1s1 > max (m1 + n1 − 1, 0)

I We now examine the quantities M1
M , M2

M at some convenient
point on the curve. To be on the correct branch, we need to
ensure that both are less than 1.



I First consider the case m1n1 − r1s1 > 1. In this case it is
possible to show that M1

M > 1, so we are on the wrong branch.

I Next suppose m1n1 − r1s1 = 1. Now we find that M1
M = 1.

This means M2 = 0 and therefore the charges associated to
the second state are identically zero – a trivial case.

I Similar results hold on sending 1→ 2.

I That only leaves the case:

0 < m1n1 − r1s1 < 1, 0 < m2n2 − r2s2 < 1

I Here we find M1
M < 1, M2

M < 1 and this indeed corresponds to
the decay process that we were looking for.

I Clearly the above condition can only be satisfied for fractional
coefficients.



I Fractional entries for the matrix:(
mi ri
si ni

)
means that the decay process was into states with charges
outside the ~Q, ~P plane.

I Hence the moduli in M must be adjusted so that after
R-projection, the final state charges do lie in the plane of the
original charges.

I That means marginal stability occurs on a locus of
co-dimension ≥ 2 in the full moduli space. This is why such
decays are called rare decays.

I In particular, degeneracies cannot jump at such loci.



I We will now see how to explicitly characterise the loci in
moduli space where such rare decays take place.

I We will also find explicit expressions for the numbers
m1, r1, s1, n1 in terms of the quantised charge vectors
~Q, ~P , ~Q1, ~P1 and the moduli M .

I For this, define a quartic scalar invariant of four different
vectors by:

∆( ~A, ~B; ~C, ~D) ≡ det

(
~A ◦ ~C ~A ◦ ~D
~B ◦ ~C ~B ◦ ~D

)

= ( ~A ◦ ~C)( ~B ◦ ~D)− ( ~A ◦ ~D)( ~B ◦ ~C)

I The quartic invariant of two variables defined earlier is a
special case of this new invariant:

∆( ~Q, ~P ) = ∆( ~Q, ~P ; ~Q, ~P )



I Now consider the equation:(
~Q

(i)
R
~P

(i)
R

)
=
(
mi ri
si ni

)(
~QR

~PR

)

I Taking the first line for i = 1:

~Q
(1)
R = m1

~QR + r1
~PR

and contracting successively with ~QR and ~PR we find:

~Q
(1)
R · ~QR = m1

~Q2
R + r1

~QR · ~PR

~Q
(1)
R · ~PR = m1

~QR · ~PR + r1
~P 2

R

I Multiplying the first equation by ~P 2
R and the second by

~QR · ~PR and subtracting, we find:

m1∆( ~QR, ~PR) = ∆( ~QR, ~PR; ~Q(1)
R , ~PR)

which enables us to solve for m1 in terms of charges and
moduli.



I Repeating this process we can solve for r1, s1, n1 leading to
the result:0@m1 r1

s1 n1

1A =
1

∆( ~QR, ~PR)

0@∆( ~QR, ~PR; ~Q
(1)
R , ~PR) ∆( ~QR, ~PR; ~QR, ~Q

(1)
R )

∆( ~QR, ~PR;~P
(1)
R , ~PR) ∆( ~QR, ~PR; ~QR, ~P

(1)
R )

1A

I Thus our original equation becomes:0@ ~Q
(1)
R

~P
(1)
R

1A =
1

∆( ~QR, ~PR)

0@∆( ~QR, ~PR; ~Q
(1)
R , ~PR) ∆( ~QR, ~PR; ~QR, ~Q

(1)
R )

∆( ~QR, ~PR;~P
(1)
R , ~PR) ∆( ~QR, ~PR; ~QR, ~P

(1)
R )

1A0@ ~QR

~PR

1A

I For fixed charge vectors ~Q, ~P of the initial dyon and
~Q(1), ~P (1) of the first decay product, the above equation
provides constraints on the moduli that must be satisfied for
the 1

4 →
1
4 + 1

4 decay to be possible.

I These constraints together with the curve of marginal stability
provide a necessary and sufficient set of kinematic conditions
for marginal decay.
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Solving the constraints

I In the above form, the constraints are rather implicit.

I Therefore we will consider some special cases.

I As a first check, the special case where the decay products are
1
2 -BPS should provide no constraints on the moduli.

I Inserting the 1
2 -BPS conditions:

~P (1) = k1
~Q(1), ~P (2) = k2

~Q(2)

we find that:(
m1 r1

s1 n1

)
= (k2 − k1)

∆( ~Q(1)
R , ~Q

(2)
R )

∆( ~QR, ~PR)

(
k2 −1
k1k2 −k1

)
I We also have:

∆( ~QR, ~PR) = (k2 − k1)2∆( ~Q(1)
R , ~Q

(2)
R )



I Substituting in the above equation, we find:(
m1 r1

s1 n1

)
=

1
k2 − k1

(
k2 −1
k1k2 −k1

)

I All moduli-dependence has disappeared from the matrix, and
the equation indeed reduces to an identity.

I It is also easy to see that k1 − k2 divides the torsion of the
original dyon, so in the unit-torsion case k1 − k2 = 1 and
m1, r1, s1, n1 are all manifestly integral as expected.



I The next special case we will study has a restricted set of
charges.

I Additionally, some of the background moduli are set to a
specific value, namely zero in the chosen coordinates.

I We then examine the constraints on the remaining moduli.

I Introduce the notation:

~Q =
(
~Q′(6-comp), ~Q′′(6-comp), ~Q′′′(16-comp)

)
and similarly for ~P .

I Now we restrict ourselves to special initial-state charges given
by:

~Q′ = (Q′1, 0, · · · , 0), ~Q′′ = (Q′′1, 0, · · · , 0), ~Q′′′ = 0

and

~P ′ = (0, P ′2, 0, · · · , 0), ~P ′′ = (0, P ′′2 , 0, · · · , 0), ~P ′′′ = 0



I Next we set Bij = 0 = AI
i as well as Gij = 0, i 6= j.

I The above restrictions allow us to choose the orthonormal
frames Eai to be diagonal:

Eii = Ri, i = 1, 2, · · · , 6

with Ri the radii of the six compactified directions in the
heterotic basis.



I In the restricted subspace of moduli space that we are
considering here, the matrix

√
L+M reduces to:

√
L+M =

 E−1 E 0
0 0 0
0 0 0


I Therefore the projected initial-state charge vectors are:

~QR =


Q′1
R1

+Q′′1R1

0
...
0

 , ~PR =


0

P ′2
R2

+ P ′′2 R2

0
...
0


I For this configuration we clearly have ~QR · ~PR = 0 and

therefore the quartic invariant ∆ is:

∆(QR, PR) =
(
Q′1
R1

+Q′′1R1

)2(P ′2
R2

+ P ′′2 R2

)2



I Then one can show that the constraint equation becomes:

„
Q′1
R1

+Q′′1R1

«„
P ′2
R2

+P ′′2 R2

«
~Q

(1)
R =

 
Q

(1)′
1
R1

+Q
(1)′′
1 R1

!„
P ′2
R2

+P ′′2 R2

«
~QR+

„
Q′1
R1

+Q′′1R1

« 
Q

(1)′
2
R2

+Q
(1)′′
2 R2

!
~PR

„
Q′1
R1

+Q′′1R1

«„
P ′2
R2

+P ′′2 R2

«
~P

(1)
R =

 
P

(1)′
1
R1

+P
(1)′′
1 R1

!„
P ′2
R2

+P ′′2 R2

«
~QR+

„
Q′1
R1

+Q′′1R1

« 
P

(1)′
2
R2

+P
(1)′′
2 R2

!
~PR

I These are 6 + 6 equations.

I However, the first two components of each set are identically
satisfied. These are the ones from which the numbers
m1, r1, s1, n1 were determined.

I The remaining four components of each equation give the
desired constraints on the moduli.



I Because of the way we have chosen ~Q, ~P , the RHS already
vanishes on components 3 to 6, so the constraint is simply
that the LHS vanishes.

I Thus we find the constraints:

Q
(1)′

i

Ri
+Q

(1)′′

i Ri = 0, i = 3, 4, 5, 6

P
(1)′

i

Ri
+ P

(1)′′

i Ri = 0, i = 3, 4, 5, 6

I If the components of ~Q(1), ~P (1) are all nonvanishing, this
implies that:

Ri =

√√√√−Q(1)′

i

Q
(1)′′

i

=

√√√√− P (1)′

i

P
(1)′′

i

, i = 3, 4, 5, 6



I In this special case the constraint equations have some
particular features.

I For generic charge vectors ~Q(1) and ~P (1), there are no
solutions. This simply means that our restricted moduli space
fails to intersect the marginal stability locus in that case.

I To have any solutions at all, one must choose the charges of
the decay products in such a way that the second equality in
the above equation can be satisfied.

I Once this is done we find four constraints on the moduli,
which fix the compactification radii R3, R4, R5, R6.

I For this special case, the numbers m1, r1, s1, n1 are given by:

m1 =
Q

(1)′
1
R1

+Q
(1)′′
1 R1

Q′1
R1

+Q′′1R1

, r1 =
Q

(1)′
2
R2

+Q
(1)′′
2 R2

P ′2
R2

+P ′′2 R2

s1 =
P

(1)′
1
R1

+P
(1)′′
1 R1

Q′1
R1

+Q′′1R1

, n1 =
P

(1)′
2
R2

+P
(1)′′
2 R2

P ′2
R2

+P ′′2 R2



I So far the decay products were taken to have generic charges.

I The situation changes if we choose less generic decay
products.

I If we take Q
(1)′

i = Q
(1)′′

i = P
(1)′

i = P
(1)′′

i = 0 for any
i ∈ 3, 4, 5, 6 then the corresponding constraint is trivially
satisfied.

I As an example, if the above holds for i = 4, 5, 6 and if
Q

(1)′
3

Q
(1)′′
3

= P
(1)′
3

P
(1)′′
3

then there is only a single constraint coming

from the above equations.

I The curve of marginal stability always provides one more
constraint, so the decay will take place on a codimension-2
subspace of the restricted moduli space.



I If the charges Q
(1)′

i , Q
(1)′′

i , P
(1)′

i , P
(1)′′

i vanish for all
i ∈ 3, 4, 5, 6 then there are no constraints (beyond the curve
of marginal stability).

I It is easily seen that this is the case where the final states are
both 1

2 -BPS.



I Let us now consider initial dyons with the most general
charges.

I Considerable simplification can be brought about in the
formulae by using some known results on T-duality orbits
[Wall (1962), Banerjee-Sen (2007)].

I These results state that any pair of primitive charge vectors
~Q, ~P can be brought via T-duality to the form:

~Q′ = (Q′1, 0, · · · , 0), ~Q′′ = (Q′′1, 0, · · · , 0), ~Q′′′ = 0
~P ′ = (P ′1, P

′
2, · · · , 0), ~P ′′ = (P ′′1 , P

′′
2 , · · · , 0), ~P ′′′ = 0

I This is close to our previous special case, but with P ′1, P
′′
1

turned on. It is no longer a special case but represents the
general case in a special basis.

I Next we restrict the moduli in the most minimal way
consistent with finding a simple form of the constraint
equation.



I The restriction will be a kind of “triangularity” condition:

(G+B + C)i1 = (G+B + C)i2 = 0, i = 3, 4, 5, 6

I Using this condition we find the constraint equations still in a
relatively simple form:

Q
(1)′

i + (G+B + C)ijQ
(1)′′

j = 0, i = 3, 4, 5, 6

P
(1)′

i + (G+B + C)ijP
(1)′′

j = 0, i = 3, 4, 5, 6

I These are the 4 + 4 constraints on rare dyon decays into a
pair of dyons.



I They must be supplemented by the curve of marginal stability,
for which we need to know the numbers m1, r1, s1, n1.

I One finds that m1 is given by:

m1=

(
P ′2+(G+B+C)2iP

′′
i

)−1(
Q′1+(G+B+C)1iQ

′′
i

)−1

×[(
Q

(1)′
1 +(G+B+C)1iQ

(1)′′
i

)(
P ′2+(G+B+C)2iP

′′
i

)
−
(

Q
(1)′
2 +(G+B+C)2iQ

(1)′′
i

)(
P ′1+(G+B+C)1iP

′′
i

)]
The other coefficients follow similarly.



I It remains to find the constraints in the completely general
case (remove the “triangularity” condition).

I In this case we were no longer able to disentangle the
constraints explicitly as we did above.

I It may be that a better choice of T-duality basis will allow us
to handle the most general case. We leave such an
investigation for the future.
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Multi-particle decays

I So far we have written down conditions for decay of a dyon
into two 1

4 -BPS final states.

I Let us now allow the final state to have n decay products of
charges ( ~Q(1), ~P (1)), ( ~Q(2), ~P (2)), · · · ( ~Q(n), ~P (n)).

I To find the conditions for this marginal decay, consider the
collection of all marginal stability loci for the following decays:(

~QR

~PR

)
→

(
~Q

(i)
R
~P

(i)
R

)
+

(
~QR − ~Q

(i)
R

~PR − ~P
(i)
R

)
, i = 1, 2, · · · , n



I For each of these, the curve of marginal stability is Ci = 0
where:

Ci ≡
(
τ1 −

mi − ni

2si

)2

+
(
τ2 +

Ei

2si

)2

− 1
4s2

i

(
(mi−ni)2+4risi+E2

i

)
where

Ei ≡
1√
∆

(
~Q(i) ◦ ~P − ~P (i) ◦ ~Q

)
I In addition we have the constraints on the remaining moduli

as above.

I Those too can be expressed in terms of the single decay
product labelled “i”.

I Now to find the condition for a multi-dyon decay, we simply
take the intersection of all these loci of marginal stability.
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Discussion

I An enormous wealth of detail remains to be uncovered.

I The curves of marginal stability are an infinite set of
subspaces, of varying codimension ≥ 1, of the N = 4 moduli
space.

I A number-theoretic interpretation has been found for only a
small subset of these (decays to a pair of 1

2 -BPS states) in
terms of Ford circles. What about the others?

I Curves of codimension = 2 can admit monodromies. What is
the relevant physical observable (some sort of
continuous-valued index) exhibiting this behaviour? And what
about codimension > 2?

I What is the relation to multi-centred black holes?

I Marginal stability for black rings in d = 5?
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