Borcherds-Kac-Moody symmetry of $\mathrm{N}=4$ Dyons

Atish Dabholkar

TIFR, Mumbai CNRS/LPTHE, Paris

IPMU

- Miranda Cheng, A. D., arXiv:0809.nnnn
- A.D., Joao Gomez, Sameer Murthy arXiv:0802.0761
- A. D., Davide Gaiotto,Suresh Nampuri hep-th/0702150
- A. D., Davide Gaiotto, hep-th/0612011
- A. D., Suresh Nampuri, hep-th/0603066

References

- Dijkgraaf, Verlinde, Verlinde;
- Cardoso, de Wit, Kappelli , Mohaupt
- Kawai;
- Gaiotto, Strominger, Xi, Yin
- David, Jatkar, Sen; Banerjee,Srivastava
- Dabholkar, Gaiotto, Nampuri,
- Cheng and Verlinde

Plan

- Exact dyon degeneracies in $\mathrm{N}=4$
- Puzzles and their Resolutions
- Synopsis of Results
- Explanation

Quarter-BPS dyons

- In the past few years there has been considerable progress in understanding the exact spectrum of quarter-BPS dyons in four-dimensional compactifications with $\mathrm{N}=4$ supersymmetry starting with the work of Dijkgraaf, Verlinde, Verlinde.
- The spectrum has revealed a surprisingly rich structure.

Two Surprises

- The first surprise is of course that the exact spectrum is computable at all for complicated bound states of KK, NS5, D-branes, strings and momenta.
- Now known at all points in the moduli space for all duality orbits despite a complicated structure of wall crossing. Not only at weakly coupled corners but the middle of the moduli space.
- Such an exact nonperturbative information about all dyons at all points in the moduli is sure tp illuminate the structure of the theory in unexpcted ways.
- One can address a number of physical questions in far greater detail than is possible for $\mathrm{N}=2$ dyons.
- For example, from the microscopic analysis, one can compute very precisely the structure of the walls of marginal stability.
- One can compute the subleading corrections to Wald entropy of the corresponding dyonic black holes
- Both in beautiful agreement with the independent macroscopic supergravity analysis

Possible New Symmetries

- The symmetry of string theory is probably a vast generalization of coordinate and gauge invariance since by duality all membrane charges are on the same footing. Exact information about the dyons might give us some clues about such a symmetry.
- For example, the spectrum of dyons prompted Montonen-Olive conjecture. In string theory, half-BPS branes suggested the web of dualities. We will see some evidence for a hyperbolic Kac-Moody symmetry.

Quantum Black Holes

- We can now understand the sub-leading corrections to quantum Wald entropy in some cases exactly.
- We can hope to define a full quantum macroscopic partition function because we know quantum microscopic partition function (index) exactly. (OSV, Sen)
- This will help us to understand some of the subtle questions about this comparison.

Heterotic on $T^{4} £ T^{2}$

- Total rank of the four dimensional theory is $16\left(\mathrm{E}_{8} \times \mathrm{E}_{8}\right)+12\left(\mathrm{~g}_{\mu \mathrm{m}}, \mathrm{B}_{\mu \mathrm{m}}\right)=28$
- $\mathrm{N}=4$ supersymmetry in $\mathrm{D}=4$
- Duality group

$$
\mathrm{SO}(22,6 ; \mathrm{Z}) \times \mathrm{SL}(2 ; \mathrm{Z})
$$

Charges and T-duality Invariants

- A charge vector is $\$ p \mathrm{c}$ çffied as

$$
i=p
$$

- Transforms as a vector of the T-duality group and a doublet of S-duality group.
- Define the T-duality invariants

CHL Orbifolds

$$
T_{5} £ S_{1}=Z_{N}
$$

- Orbifolds of the type
- Orbifold symmetry generated by αT
$o \alpha$ is a twist acting on left-movers only.
o T is an order N shift along the circle,

$$
X!X+2 \pi R / N
$$

Same SUSY but Reduced Rank

o Supersymmetry is carried by right-moving fermions which are not affectepd by th leftmoving twist so we still have susy as for the unorbifolded theory.
o Some vectors from untwisted sector projected out by the left-moving twist. Twisted states are massive because of T, so no twisted vectors.

Allowed Models

- Possible left-moving symmetries exist for

$$
N=1 ; 2 ; 3 ; 5 ; 7 ; 11
$$

- For example, for $\mathrm{N}=2$, we can take the $\mathrm{E}_{8} £ \mathrm{E}_{8}$ string. The generator α just flips these two factors. So the rank of gauge group reduces by eight.

Why CHL Orbifolds?

- S-duality group is a subgroup of SL(2, Z) so counting of dyons is quite different.
- Wald entropy is modified in a nontrivial way and is calculable.
- Nontrivial but tractable generalization with interesting physical differences for the spectrum of black holes and dyons.

S-duality group $=\Gamma_{1}(\mathrm{~N})$

Because of the shift, there are $1 / \mathrm{N}$ quantized electric charges (winding modes). For example for $\mathrm{N}=2$

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{1 / 2}{n}=\binom{1 / 2}{n}
$$

This requires that $\mathrm{c}=0 \bmod 2$ which gives $\Gamma_{0}(2)$ subgroup of $\operatorname{SL}(2, Z)$.

Spectrum of Dyons

- For a $\mathbf{Z}_{\mathbf{N}}$ orbifold, the dyonic degeneracies are encapsulated by a Siegel modular form $\Phi_{k}(\Omega)$ of $\mathrm{Sp}(2, Z)$ of level N and index k as a function of period matrices Ω of a genus two Riemann surface..

$$
\mathrm{k}=\frac{24}{\mathrm{~N}+1}-2
$$

$$
N=1 ; 2 ; 3 ; 5 ; 7 ; 11
$$

Sp(2, Z)

- $4 £ 4$ matrices g of integers that leave the symplectic form invariant:

$$
\begin{gathered}
\mathbf{g}=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right), \quad \mathbf{J}=\left(\begin{array}{cc}
0 & \mathbf{I} \\
-\mathbf{I} & 0
\end{array}\right) \\
\mathbf{g}^{\mathbf{t}} \mathbf{J g}=\mathbf{J}
\end{gathered}
$$

where A, B, C, D are $2 £ 2$ matrices.

Genus Two Period Matrix

- Like the τ parameter at genus one

$$
\begin{gathered}
\Omega=\left(\begin{array}{ll}
\rho & v \\
v & \sigma
\end{array}\right) \\
\Omega \rightarrow(A \Omega+B)(C \Omega+D)^{-1} .
\end{gathered}
$$

Siegel Modular Forms

- $\Phi_{k}(\Omega)$ is a Siegel modular form of weight k and level N if

$$
\begin{gathered}
\mathbf{\Phi}_{\mathbf{k}}\left(\Omega^{\prime}\right)=\{\operatorname{det}(C \Omega+D)\}^{k} \mathbf{\Phi}_{\mathbf{k}}(\Omega) \\
\Omega^{\prime}=(A \Omega+B)(C \Omega+D)^{-1},
\end{gathered}
$$

under elements $\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$ of $\mathrm{G}_{0}(\mathrm{~N})$.

Spectrum of Half-BPS States

- Right-moving ground states of heterotic string.
- Partition function of left-moving oscillators.
- Degeneracy given by Fourier coefficients of this partition function, a genusxone modular form.

$$
\begin{gathered}
Z(q)=\tilde{A}_{k}(q)=c(N) q^{N} \\
d(Q)=c(Q 2=2) \\
\tilde{A}_{k}(q)={ }^{\prime} 24(q)
\end{gathered}
$$

- For example,

Spectrum of Quarter-BPS States

- Electric charge Q, magnetic charge P
- Degeneracy given in terms of Fourier coefficients of genus two Siegel Modular forms (almost!!)
$Z(q ; p ; y)=@_{k}(q ; p ; y)=c(n ; m ; I) q^{n} p^{m} y l$

$$
\mathrm{d}(\mathrm{Q} ; \mathrm{P})=\mathrm{C}\left(\mathrm{Q}_{2}=2 ; \mathrm{P}_{2}=2 ; \mathrm{Q}_{\mathrm{C}} \mathrm{P}\right)
$$

Comparison of $S=k \log (d)$ is impressive. Both macroscopic and microscopic entropy obtained by the minimum value of 3 /he same function F of two variables a and

$$
f^{(n)}(\tau) \equiv \eta(\tau)^{n+2} \eta(N \tau)^{n+2}
$$

Irreducibility Criteria

- For electric and magnetic charges Q \& P,

- This is an additional discrete duality invariant, there can be more.
A. D., Gaiotto, Nampuri

Counting All possible Dyons

- One can show that in this context, I is the only additional duality invariant to worry about. The exact degeneracy for all values of I and hence for all duality orbits Banerjee,Sen,Srivastava;
A.D,Gomez,Murthy)
- In this talk we will restrict to I=1

Puzzles

- Which contour to choose? Siegel forms have an intricate structure of zeros in the Siegel upper half plane. Poles of partition function signify "phase transitions". So different contours will give different answers.
- What about the moduli-dependence? QuarterBPS states are expected to decay on walls of marginal stability but in the formula before there is no apparent moduli dependence.
- Degeneracies (apparently) not S-duality invariant.

Answers

- For fixed charges, different choices of contours give the degeneracy in different regions of the moduli space. Partition function is unchanged.
- Moduli space is divided into regions separated by walls. Crossing a wall corresponds to crossing a pole.
- Jump in degeneracy equals the residue at the pole. Resulting answers are S-duality invariant.
Sen; A. D., Gaiotto, Nampuri; Cheng \& Verlinde

Lorentzian Lattice

- Duality symmetry SL(2) can be viewed as SO $(1,2)$ Lorentz symmetry.
- The charge matrix vector of this Lorentz symmetry and defines a point in Lorentzian lattice.
- Under duality, it transforms as
- Symmetriq, real matrices

$$
X=\begin{array}{cc}
x+ & x^{\prime} \\
x & x_{i}
\end{array} ; X=X t ; \quad x \S=t \S y
$$

with metric $(X ; X)=i 2 \operatorname{det} X=2\left(i t^{2}+x^{2}+y^{2}\right)$
invariant under $X \quad!{ }^{\circ}(X):={ }^{\circ} X^{\circ} t$ and a moduli dependent `central charge matrix'

- Define $j X j 2=$ det X an for later usage.

Moduli

- Axion-dilaton S-moduli are

$$
=a+i e_{i} 2 A
$$

1

- The T-moduli on Narain space are vierbeins

$$
\begin{aligned}
& Q_{\mathrm{L}}={ }^{1}|\mathrm{Q}| ; \quad \mathrm{i}=1 ;::: ; 22 \\
& \mathrm{Qm}_{\mathrm{R}}={ }^{1} \mathrm{~m} \mathrm{~m} \mathrm{Q} ; \quad \mathrm{m}=1 ;::: ; 6
\end{aligned}
$$

Central Charge Vector

- T-moduli vector
- Central charge vector

$$
Z=j a_{R}{ }_{2}^{1}\left(T_{R}+S\right)
$$

Attractor Equations

- BPS mass formula $M_{Q ; P}=j Z j$
- Moduli at the horizon align such that the charge vectors lie in the right-moving plane

$$
P=P_{R} ; \quad Q=Q_{R}
$$

- Similarly for axion-dilaton. In other words,

$$
S=T={ }_{j a j}^{a}
$$

Two-centered Solution

- Attractor flow is a gradient flow in the mass. The attractor value of the magnitude of the central charge vector determines the entropy of single centered black hole.
- The direction of this vector determines whether a two-centered solution exists in a given a region of moduli space.

Contour and Moduli dependence

The contour $C\left(Q ; P ; ;{ }^{1}\right)$
is specified by

Note that the entire moduli dependence comes from the choice of the contquir. =This would be far more complicated in context. Cheng and Verlinde

Quarter-BPS Dyon Degeneracies

- Let us write the degenerdacies as

- The contour depends in a precise way on the moduli. For fixed charges, all dependence on moduli is captured by this contour dependence.

Illustration in $\mathrm{N}=1$ model

- Consider a charge configuration

$$
\left(Q_{2} ; P_{2} ; Q \phi P\right)=(i 2 ; i 2 ; N)
$$

- Effective partition function for these states can be obtainegbfrop m_{1} the full partition fn that goes as

$$
\left(y^{1 / 2}-y^{-1 / 2}\right)^{-2}
$$

Contour = Moduli dependence

- Different expansion for different regions
- Our partition function has Z_{2} symmetry.

$$
\begin{aligned}
\frac{y^{-1}}{\left(1-y^{-1}\right)^{2}} & =\sum_{N=1}^{\infty} N y^{-N} \\
\frac{y}{(1-y)^{2}} & =\sum_{N=1}^{\infty} N y^{N}
\end{aligned}
$$

- Parity takes N to $-N$ and a to $-\mathbf{a}$
- Degeneracy $=/ N /$ if $\quad \mathbf{N a}>0$

Walls of marginal stability

- Wall of marginal stability at $a=0$.
- The \mathbf{Z}_{2} can be identified with the Weyl group of an $\operatorname{SU}(2)$. It can be used to map charges and moduli to then/ Weyl chamber.
- Simple root of SU(B) is ; ${ }^{\circledR}$ and Weyl symmetry takes
 simple roots which is here $\underline{2}$

Partition function as a denominator

- One can view this partition function as a square of the denominator of the character of $\operatorname{SU}(\underset{\sim}{\mathbb{R}})=\operatorname{Try} J_{3}=y i j+::: y j$

$$
=\frac{y i j_{i} \frac{1}{2} i y^{j+\frac{1}{2}}}{y y_{1}^{2} \underline{2} \left\lvert\, y \frac{1}{2}\right.}
$$

This formula has a powerful generalization.

Walls and Weyl

- Walls of marginal stability associated with

Some Group Theory

- For a finite, simple Lie algebra, we have Cartan subalgebra of mutually commuting matrices.
- In a given representation, states are defined by eigenvalues of the Cartan generators. In particular for the adjoint representation each generator a definite eigenvalue. The zero eigenvalue has multiplicity r which equals the rank of the Lie algebra. All nonzero eigenvalues have unit multiplicity.
- The trace allows us to defines a natural Euclidean (Cartan) metric on this space.
- Plotting these eigenvalues defines a Euclidean lattice Euclidean space of dimension r
- One can identify r simple roots. Their matrix of inner product defines the Cartan matrix.
- Cartan classification gives a complete list of allowed Cartan matrices.

Weyl-Kac Character Formula

- One of the most important tools in the theory of affine Lie algebras is the Weyl character formula. Consider a representation with highest wejght
- Weyl group and Weyl vector
- The character for this is given in terms of positive roots, their multiplicities, Weyl group, Weyl vector, and the weight.

- S is contribution from imaginary simple roots. For finite and affine algebras $S=1$.
- Denominator identity waw $\operatorname{det}(w) w e(\% S$

$$
=\mathrm{e}\left(\%_{\Phi}^{\mathrm{Q}}\left(1 \mathrm{i} \mathrm{e}\left(\mathrm{i}^{\circledR}\right)\right) \mathrm{mult}{ }^{\circledR}\right.
$$

Hyperbolic Superalgebras

- Most of these concepts generalize naturally to hyperbolic algebras even though in that case the classification and representation theory is much less understood. Root multiplicities not known.
- Cartan matrix is hyperbolic (has exactly one negative eigenvalue).
- Both fermionic and bosonic generators.

BKM Algebras for the CHL models

- The cases for $\mathrm{N}<4$ and $\mathrm{N}, 4$ are qualitatively very different.
- Only for the moduli space is divided into regions bounded by finite number of walls. In these cases, one can identify a Weyl group, Weyl vector, Cartan matrix, a hyperbolic BKM algebra and the partition function is a denominator of this algebra.
- The other cases remain mysterious.

1) Simple (Real) Roots

- we isentify a special set of lattice vectors

$$
r_{(N)}=\text { with, } ; 6
$$

where
are the number of
walls of Weyl chamber for $N=1,2,3$ respectively.

- These lattice vectors will eventually be identified as the real simple roots of the Borcherds-Kac-Moody algebra.

2) Cartan Matrices

- We can define Cartan matrices as usual as the inner product matrix of the simple $\left.\operatorname{roota}_{(\mathrm{j})}=\left(\mathbb{R}_{\mathrm{N}}\right) ; \mathbb{R}_{\mathrm{j}}\right)$) $\quad i ; j=1 ;::: r_{(N)}$
- In Lorentzian algebras one has real roots that have spacelike norm and imaginary roots that have timelike or lightlike norm. The imaginary roots are complicated.

$\mathrm{N}=1$

- Weyl chamber has three walls.

$$
\mathrm{A}_{\mathrm{ij}}^{(1)}=\begin{array}{lll}
2 & \mathrm{i} 2 & \mathrm{i} 2 \\
i & 2 & 2 \\
i 2 & i & \mathrm{i}^{2} \\
& 2
\end{array}
$$

- Compare with SU(2) finite and affine Cartan matrices.

$\mathrm{N}=2$

- Weyl chambe0 has four walls. ${ }^{1}$

$$
A_{i j}^{(2)}=\begin{array}{lllllll}
B & 2 & 2 & i & 2 & i & 6 \& \\
i & 6 & i & 2 & 2 & i & 2 \\
i & 2 & i & 6 & i & 2 & 2
\end{array}
$$

- It still has rank three and exactly one negative eigenvalue. It is a hyperbolic, rank three, generalized Cartan matrix.

$\mathrm{N}=3$

- Weyl Chamber has six walls.

Classification

- Gritsenko and Nikulin have classified hyperbolic, rank three Cartan matrices of elliptic type that admit Weyl vector.

A (1); A (2); A (3)

- Aur $_{11 ; 1}, A_{11 ; 2}, \mathrm{~A}_{11 ; 3}$ are in this classification.
- Moreover, they are the unique ones that have vertices of Weyl chamber at infinity.

3) Weyl Group

$$
\tilde{\Gamma}_{1}(N)=W_{(N)} \circ \operatorname{sym}\left(W_{(N)}\right)
$$

- LHS is physical duality group and RHS is the semi-direct product of Weyl group and the symmetry of the fundamental Weyl chamber.
- Physically, it maps any chamber of the moduli space to the `attractor region' where only immortal single-centered black holes exist.

Walls

4) Lattice Weyl Vector

- For all models, a lattice vector exists and is given by $\begin{array}{cc}\mu_{1=N} & 1=2 \\ 1=2 & 1\end{array}$
- Physically it is related to the " ground state energy" in level matching condition.

5) Denominator Identity

- The dyon partion function is a square of a Siegel form. In all cases they admit a product representation.
- With the identification of the lattice Weyl vector denominator identity is satisfied

Φ_{k} is a complicated beast

- Sum representation (Maass lift) Makes integrality of $d(Q)$ manifest
- Product representation (Borcherds lift) Relates to 5d elliptic genus of D1D5P Equality of the two can be interpreted as a denominator identity.

6) Root Multiplicities

- Hyperbolic algebras have made their appearance in other contexts in string theory. For practical applications, one stumbling block is that the root multiplicities are not known.
- In these examples, root multiplicities of real and imaginary roots can be computed explicitly.

Conclusions

- Certain hyperbolic Borcherds-Kac-Moody algebras seem to appear as a symmetry of the spectrum of $\mathrm{N}=4$ quarter dyons.
- Weyl vector exists only for $\mathrm{N}<4$. The Weyl group plays a physical role in determining the structure of wall-crossings.
- Product formula of the partition function can be interpreted as denominator identity.

Why genus-two and $\operatorname{Sp}(2, Z)$?

- Dyon partition function can be mapped by duality to genus-two partition function of the left-moving heterotic string on CHL orbifolds.
- Makes modular properties under subgroups of $\mathbf{S p}(2, \mathbf{Z})$ manifest.
- Suggests a new derivation of the formulae.

String Webs

- Quarter BPS states of heterotic on $\mathbf{T}^{4} £ \mathbf{T}^{2}$ is described as a string web of (p, q) strings wrapping the T^{2} in Type-IIB string on K3 $£ \mathbf{T}^{2}$ and left-moving oscillations.
- The strings arise from wrapping various D3, D5, NS5 branes on cycles of K3

String junction tension balance

M-lift of String Webs

- Genus-2 worldsheet is worldvolume of Euclidean M5 brane with various fluxes turned on wrapping $\mathrm{K} 3 £ \mathrm{~T}^{2}$. The T^{2} is holomorphically embedded in T^{4} by Abel map. It can carry left-moving oscillations.
- K3-wrapped M5-brane is the heterotic string. So genus-2 chiral partition fn of heterotic counts its left-moving BPS oscillations.

