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Black hole physics remind us of the history of (quantum) statistical physics

in the beginning of 20th century

Planck solved the problem of black body radiation.   

---> energy quanta

Einstein studied the Brownian motion to establish

the existence of atoms.

---> fluctuation-dissipation theorem

Now we may be facing at a similar situation:

Hint:    Blackhole thermodynamics

Hawking temperature: 

Entropy of BH: 

quantum effect

Can we probe quantum space-time with blackholes ?



equilibrium nonequilibrium

(dynamical)

macro Thermodynamics

Wald formula

Hawking radiation

information loss?

thermalization ?

fluid/gravity 

micro Strominger-Vafa

Fuzzball ?

matrix ??

Our understanding is yet restricted

within  linear response.



Macroscopic     vs    Microscopic

various

different modelsrobustness

universality 

No hair theorem

The most important property of the thermodynamics is

Robustness.

Microscopic details are not relevant to the thermodynamics.

Universality



Hawking radiation is characterized by the thermal distribution 

with very few parameters.  (no hair theorem)

・Can there be other parameters in the radiation spectrum 

besides T, Q, J ? ~ representation of W-infinity alg.

・Is the thermal distribution distorted if we consider radiation

from dynamical black holes ?

(radiation from evaporating black holes ? )

Ordinarily these problems are discussed using the Bogoliubov

transformation method for a particular wave packet.

We will  discuss these issues (robustness and universality)

using a field theory method; gravitational anomaly.



Plan of the talk

1. Hawking radiation and gravitational anomalies     

charge flux  gauge anomaly at horizon

energy flux  gravitational anomaly

Fluxes are universally deterimined.

2.  Demystification of the anomaly method

near horizon conformality 

Fundamental Underlying Relation (FUR)

3. Generalizations to  Higher spin currents 

All higher-spin fluxes can be determined.

Is the radiation from dynamical black holes distorted ? 

4.   Discussions



1.  Anomaly method

BH
(a) Near horizon    d=2  conformal field theory

Outgoing modes = right moving 

Ingoing modes = left moving

(b) Classically ingoing modes are decoupled once they fall in the horizon.

So we first neglect ingoing modes near the horizon.

The effective theory becomes chiral

in the two-dimensional sense.

Quantum mechanically, gauge and gravitational anomalies  

= breakdown of gauge and general coordinate invariance

(c) But the underlying theory is NOT anomalous.

Anomalies must be cancelled by quantum effects of the 

classically irrelevant ingoing modes. 
flux of Hawking radiation

[Robinson Wilczek (05)] ,[S.I. Umetsu Wilczek(06)]



surface gravity

tortoise coordinate

Set up:   Reissner-Nordstrom black hole



Kruskal coordinates  U,V    : regular coordinates around horizon

where

r=const

t
r=0

r=0

II: BH

IV: WH

I: exterior region

U V

III

U=0, V=0 at horizon

U=0 future horizon

V=0 past horizon

Hawking rad.



Note;  higher derivative terms are more enhanced near horizon!

(1/M suppression)

cf.  Carlip has emphasized the near conformal symmetry.



Hawking radiation from RN BH.

Planck distribution with a chemical potential

for fermions

Fluxes of current and EM tensor are given by

e: charge of emanated particles

Q: charge of BH

We first study charge and energy fluxes:



Gauge current and gauge anomaly

If we neglect ingoing modes in region H

the theory becomes chiral there. 

Gauge current has anomaly in region H.

consistent current

We can define a covariant current  by

which satisfies

+: left moving

- : right moving



In region O,

In near horizon region H, 

are integration constants.

Current is written as a sum of two regions.

where

= current at infinity

= value of consistent

current at horizon

consistent current



Variation of the effective action under gauge tr.

Using anomaly eq.

cancelled by WZ term

Impose δW ＋ δW’＝０
W’ = contribution from ingoing modes (WZ term) 



・Determination of 

Covariant current  should vanish at horizon.

Reproduces the correct Hawking flux

Otherwise physical quantities diverge at (future) horizon.

regurality



EM tensor and Gravitational anomaly

Under diffeo. they transform

Effective d=2 theory contains background of 

graviton, gauge potential and dilaton.

Ward id. for the partition function 

=anomaly



Gravitational anomaly  (w/o gauge and dilaton backgrounds)

consistent current

covariant current

In the presence of gauge and gravitational anomaly, Ward id. becomes

non-universal

gauge anomaly
gravitational anomaly



Solve           component of Ward.id. 

(1) In region O

(2) In region H

Using 

(near horizon)

Anomaly is

total divertgent! 



Variation of effective action under diffeo.

(1) classical effect of background electric field

(1) (2) (3)

(2) cancelled by induced WZ term of ingoing modes

(3) Coefficient must vanish.



Determination of 

Regurality:  covariant current must vanish at horizon.

since

we can determine 

and therefore flux at infinity is given by 

Reproduces the flux of Hawking radiation



This method can be easily applied to any black holes

rotating (Kerr, Kerr-Newman, Myers-Perry, …)

black rings

acoustic black holes

dynamical black holes (Vaidya) 

etc.



2. Demystification :  Conformality

U(1) current

We can define

In d=2,  current and EM tensor can be solved explicitly

(generalization of Christensen and Fulling method) 

Regularity at horizon

Hence flux can be obtained as 

(Birrell Davis)



EM tensor

Similarly 

can be solved as 

and the regularity condition at horizon determines the 

holomorphic part t(u) as

Then the EM flux at infinity is given by 



If left and right central charges are different, 

=
=

=
=



In deriving the Hawking flux, only the right-handed modes

(outgoing modes) are relevant.

This is why the gauge and gravitational anomalies can 

determine the flux of the Hawking radiation.

The fundamental underlying relation (FUR) in the anomaly method is 

Can we generalize it to higher spins to obtain the full thermal flux?

but let’s first consider a simpler but restricted method.

YES



Simplification

Near the horizon, 

Kruskal coordinate

Is the regular coordinate.

u= t-r

At infinity, u gives the 

asymptotic coordinate.

Two coodinates are connected by conformal tr.

In stationary blackholes, we know the conformal tr

from Kruskal to Schwarzschild coordinates.

It is restricted to cases where the tr. is conformal.

For Vaidya (dynamical), it is not conformal



With a further boundary condition of no ingoing flux from infinity



This analysis can be easily generalized to radiation of

charged particles from RN black holes

by incorporating gauge transformations. 



[3.]     Higher-spin currents of Hawking radiation

Energy flux

We have used two methods

(response to conformal transf. &  anomaly method)

to calculate the fluxes of U(1) current and enegy.

We can generalize them to higher-spins and reproduce 

thermal distribution.



(1) Schwarzian derivative method

・ In conformally flat space, there are conserved traceless

symmetric tensors.

e.g   massless real scalar field 

In general, we can construct even-rank currents.

Holomorphic part of the current is

S.I. Morita Umetsu (07)



Schwarzian derivative of 4-th rank current can be calculated by

using the point-splitting regularization.





General higher-spin currents 

Instead of considering each higher-spins, it is more convenient

to study the generating function





This is the temperature dependent part of thermal Green function

Similar analysis can be applied to radiation of fermions or charged particles.



(2)  Anomaly method (FUR) for higher-spin currents 

Gravitational anomaly can be generalized to higher-spin currents.

spin 3

anomalous part

mixing with lower rank currents

rhs is a total derivative.

SI, Morita, Umetsu (07)

Examples of gauge anomalies



spin 4

anomaly



Brief sketch of the derivations of these anomaly equations

(step 1) Regularize the higher-spin currents covariantly   

on the light-cone (v=fixed) using “geodesic distance”.

(step 2) Define conformal fields and regularize the associated

holomorphic currents.

(step 3) Compare these two currents and obtain the relations

between (u…u) component of the covariant higher-spin 

currents and holomorphic higher-spin currents.

background dependent terms (u,v) 

Fundamental Underlying Relations



Spin 2

Spin 3

Spin 4



(step 4) Fully covariantize the anomaly equations. 

 gauge anomaly equations 

&

trace anomaly equations 

examples of trace anomalies:



Hawking fluxes for higher-spin currents

Anomalies are again total derivatives and the fluxes

are written only in terms of the information at the horizon.

(This is equivalent to the existence of holomorphic currents

constructed from the original currents and backgrounds. )



[4]  Summary and Discussions

Two methods to calculate Hawking radiation are shown.

(1)To see the response to a conformal transformations

from Kruskal U to Schwarzschild u.

This can be generalized to arbitrary higher-spins.

 generalization of the Schwarzian derivative

(2) Anomaly method  - - wider applicability than method (1)  

We have obtained higher-spin generalizations.

Universality of Hawking radiation is assured by the fact

that these anomalies are total derivatives.

Boundary effects ! 

instanton  index             Hawking radiation  horizon



Discussions:

(1) Classification of radiation

Are there fields with the same central charge but

different higher spin anomalies ?

Recently Bonora et.al. (0808.2360) have shown 

that spin 4 anomaly is cohomologically trivial, 

and  can be absorbed by a redefinition of the currents.

 W-infinity algebra does not seem to give any new hair.

If so,  violation of no hair theorem.

Are higher spin anomalies cohomologically trivial?



Classification of Hawking radiation

boson               Planck distribution

fermion             Fermi Dirac distribution

(2) Nontrivial CFT ?

Other nontrivial CFT near horizon ?

Nonderivative interactions are suppressed near the horizon.

Higher derivatives terms are more enhanced.

(string theory ?) 



(3) How much robust ?

Quite generally (including some dynamical black holes),  

and the only nonvanishing quantity in the fundamental 

underlying relation is the sufrace gravity 

Thermal spectrum is very robust. (only 1-parameter and the

coefficients are fixed by the FURs)

Is the thermal spectrum modified for evaporating blackholes?

The answer seems NO.

~



Future problems

・back reaction ?  

higher derivative terms  nonlocality ?  

・Evaluate fluxes for evaporating black hole ?

At the final stage of the evaporation, do fluxes diverge?

・ black hole entropy

asymptotic Virasoro and near horizon Virasoro ?

(Carlip) 





Rotating black holes (Kerr, Kerr-Newman)

Kerr=axial symmetric

isometry

U(1) gauge symmetry

in d=2

diffeo in 

axial direction

KK

partial wave

with m
charge m

a part of metric background electric field

Umetsu, Wilczek SI (07)



Near horizon,  each partial wave is decoupled and can be treated

as free massless d=2 field.

dilaton

metric

gauge potential

U(1) charge of             is m.



Results 

Flux of angular momentum

Flux of energy 

where
(angular velocity at horizon)


