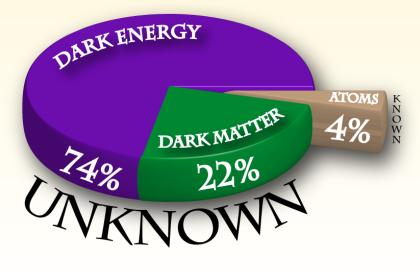
A SINGULARITY PROBLEM WITH F(R) DARK ENERGY arXiv:0803.2500

Andrei Frolov

Department of Physics Simon Fraser University

Institute for the Physics and Mathematics of the Universe University of Tokyo, Kashiwa, Japan 28 August 2008

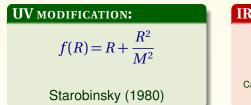
WHAT'S THE MATTER WITH COSMOLOGY?



MAYBE IT'S GRAVITY WE DON'T UNDERSTAND...

What if instead of curvature in Einstein-Hilbert action we had

$$S = \int \left\{ \frac{f(R)}{16\pi G} + \mathcal{L}_{\rm m} \right\} \sqrt{-g} \, d^4 x$$

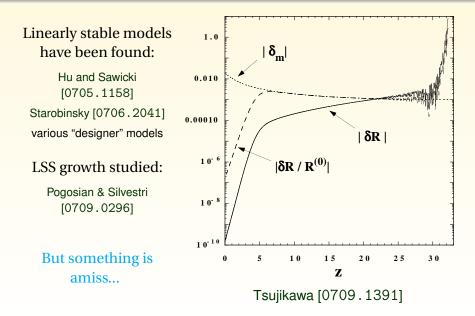


IR MODIFICATION: $f(R) = R - \frac{\mu^4}{R}$ Capozziello et. al. [astro-ph/0303041] Carroll et. al. [astro-ph/0306438]

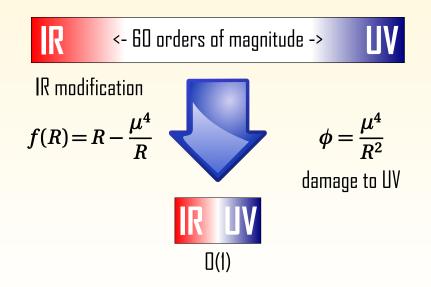
FOR F(R) THEORY TO MAKE SENSE WE NEED:

- *f*[′] > 0 − otherwise gravity is a ghost
- f'' > 0 otherwise gravity is a tachyon

AFTER A ROCKY START... A NEW TROUBLE?



WHY DOESN'T F(R) DARK ENERGY WORK?



FIELD EQUATIONS IN F(R) GRAVITY

• Vary the action with respect to the metric:

$$S = \int \left\{ \frac{f(R)}{16\pi G} + \mathcal{L}_{\rm m} \right\} \sqrt{-g} \, d^4 x$$

• Einstein equations turn into a fourth-order equation:

$$f' R_{\mu\nu} - f'_{;\mu\nu} + \left(\Box f' - \frac{1}{2}f\right) g_{\mu\nu} = 8\pi G T_{\mu\nu}$$

• A new scalar degree of freedom $\phi \equiv f' - 1$ appears:

$$\Box f' = \frac{1}{3}(2f - f'R) + \frac{8\pi G}{3}T$$

• Can rewrite fourth-order field equation as two second order ones!

A New Scalar Degree of Freedom

• Equation for $\phi \equiv f' - 1$ is just a scalar wave equation:

 $\Box \phi = V'(\phi) - \mathscr{F}$

• Matter directly drives the field ϕ by a force term:

$$\mathscr{F} = \frac{8\pi G}{3}(\rho - 3p)$$

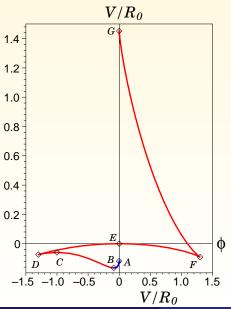
Effective potential can be found by integrating

$$V'(\phi) \equiv \frac{dV}{d\phi} = \frac{1}{3}(2f - f'R)$$

In practice, easier to obtain in parametric form:

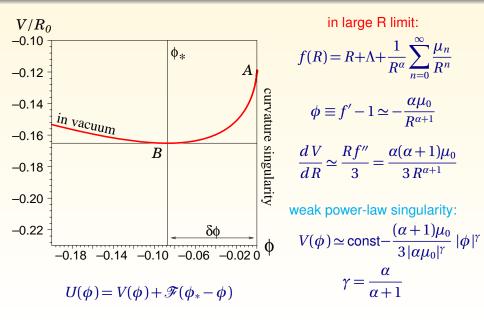
$$\frac{dV}{dR} \equiv \frac{dV}{d\phi} \frac{d\phi}{dR} = \frac{1}{3} (2f - f'R)f''$$

DISAPPEARING COSMOLOGICAL CONSTANT MODEL



Starobinsky [0706.2041] $f(R) = R + \lambda \left[\left(1 + R^2 \right)^{-1} - 1 \right]$ $\phi = -\frac{2\lambda R}{(1+R^2)^2}$ A singularity $(R = +\infty)$ **B** stable dS min (f'=0)**C** unstable dS max (f'=0) (f''=0)**D** critical point E flat spacetime (f'=0)(f''=0)F critical point $(R = -\infty)$ **G** singularity

SINGULARITY IS FINITE DISTANCE AWAY!



COSMOLOGY IN F(R) GRAVITY

Homogeneous flat cosmology is described by FRW metric:

 $ds^2 = -dt^2 + a^2(t)d\vec{x}^2$

Scalar degree of freedom looks as usual (albeit with a force term):

 $\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = \mathscr{F}$

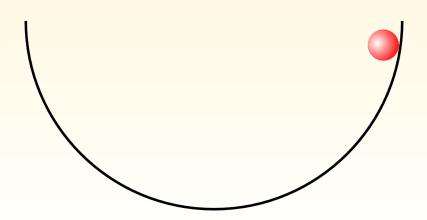
• What about Friedman equation? It looks strange...

$$3H(f')' - 3\frac{\ddot{a}}{a}f' + \frac{1}{2}f = 8\pi G\rho$$

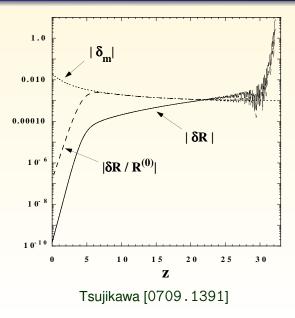
• ... but it isn't! Eliminating \ddot{a} in favor of $R = 6\left(\frac{\ddot{a}}{a} + \frac{\dot{a}^2}{a^2}\right)$ does the trick:

$$H^{2} + (\ln f') \cdot H + \frac{1}{6} \frac{f - f'R}{f'} = \frac{8\pi G}{3f'} \rho$$

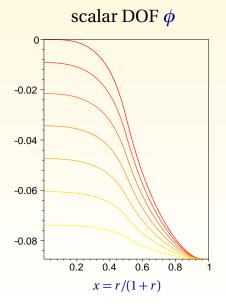
MECHANICAL ANALOGY: A BALL IN A BOWL



Now we Understand What's Going On Here!



BIGGER PROBLEM: SINGULAR COMPACT OBJECTS!



Potential well of a compact object:

$$\Delta \phi = -\frac{8\pi}{3}G\rho + \underbrace{V'(\phi)}_{\text{negligible}}$$

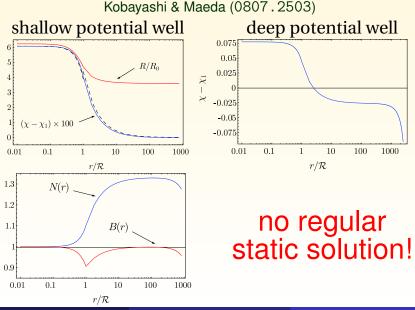
 $\Delta \Phi = 4\pi G \rho$

Excitations of f(R) degree of freedom ϕ and Newtonian potential Φ are related:

$$\phi \approx \phi_* - \frac{2}{3}\Phi$$

Reach singularity if $\delta \phi \lesssim \frac{1}{3}!$

No NEUTRON STAR SOLUTIONS IN F(R) GRAVITY!

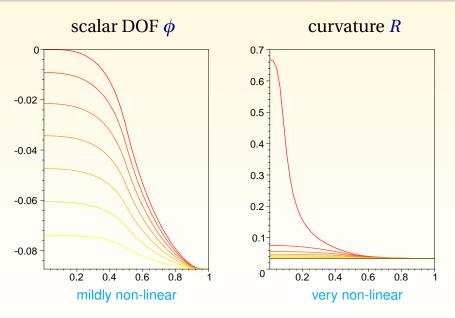


Andrei Frolov (SFU)

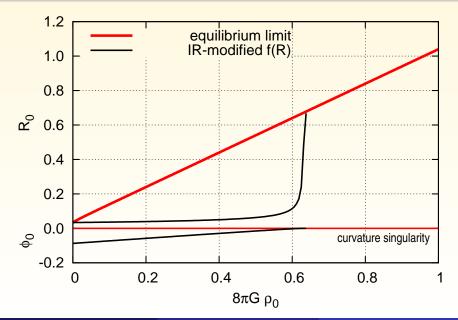
IPMU 08

14/18

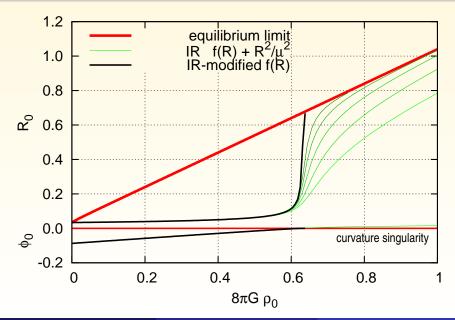
How do I Lose the Regular Solution Branch?



How do I Lose the Regular Solution Branch?



CAN UV COMPLETION SAVE THE DAY?



Not quite yet!

But we are forced to confront UV-completion, and even if we fix it we might not get Einstein gravity...

Need to understand how bad it really is!