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Z’ 

Topological interactions are interactions which are 
independent of the space-time metric. 

They are coming from anomalies of the UV physics 
which involves several gauge bosons or Goldstones. 

Topological physics BSM typically involves at least one 
extra gauge boson (Z’). 

So, let’s start our topic with topological 
interactions that involves a Z’ particle. ....



What is Z’ ?

Z’ is a massive, neutral (no electromagnetic 
charge, anti-Z’ = Z’) , spin-one particle with 

its mass ranging from TeV to GUT scale.

Many extensions of SM predicts a Z’ particle.

As a massive gauge boson, its mass are generated by:

symmetry breaking of the extended gauge group.

compactification of extra spatial dimensions. 



Z’@LHC

deconstruction

Z’ in the 
“moose” (with 
extended gauge 
group) models     

Z’ in extra 
dimensions 
models.    

GUT, Little 
Higgs, TC, ETC, 
Topcolor, etc.

ADD, RS, UED, 
Higgsless, etc. 

Finding a Z’ and 
measuring its 

properties is very 
important at the LHC!



Anomalies
Anomalies are powerful tools to probe the UV physics

Its presence is irrelevent to the detailed dynamics 
of the theory (topological properties). 

Topological interactions may present in TeV.

In strongly coupled theory:  Techicolor model, composite Higgs model. 

WZW term in the nonlinear sigma model based on G/H. CS term in 
5D theory (holographic dual)

Just heavy (TeV) exotic fermions in the loop, or Green-Schwarz 
mechanism to cancel the mixed anomalies. (Stringy motivated 
Intersection brane model). 



Anomalies@LHC

However, those topological interactions are always 
more than one loop suppressed. 

They might be completely overwhelmed by other 
kind of interactions, QCD radiations at the LHC.

Even we have discoveried such interactions? How can 
we know the interactions we have measured are 
topological? 

(
1

48π2
∼ 0.00211)



The antisymmetric tensor in 4D violate P and T. 

So the discremination becomes how to determine 
the discrete symmetry of the operators at the LHC!  

In contrast to the regular interactions, the Lorentz 
index in the topological interactions are always 
contracted through the antisymmetric tensor. εµνρσ

Discrete symmetries



Anomalies@LHC

We choose the three gauge boson couplings to study as they 
exsit in all cases and contain fewer particles. Then the 
anomalous operators are CP even and regular couplings are 
CP odd. 

In order to know the discrete symmetries of the coupling, 
one may need to know the gauge boson polarization, which 
requires to further decay the gauge bosons into light 
fermions.



Z’ --->ZZ--> 4l

We consider the Z’ decay into two on-shell Zs.

The bose symmetry greatly simplified the form of the couplings (only 
2), comparing to Z’-Z-gamma (4) and Z’-W-W (7). 

The Z’ might be produced in the cascade decay channel of some heavy 
particles instead of singly produced. We need a method that is 
independent of the Z’ production mechanism.

We consider the 4l final states in our measurements.

They are very clean channels and our measurements based on 
azimuthal angle really require high energy resolution. 

The 4l final state is well studied in the H → ZZ → 4l
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The Landau-Yang theorem

Our arguments:  
For a massive spin-one particle (Z’) decaying into two 

identical on-shell massive spin-one particles (Z), 

The Landau-Yang theorem:  A massive spin-one 
particle can never decay into two on-shell photons.

L. D. Landau, Dokl. Akad. Nawk., USSR 60, 207 (1948)

C. N. Yang, Phys. Rev. 77, 242 (1950)

There are only two independent helicity amplitudes, which are from CP 
odd and CP even operators respectively.   

The differential cross section depends on the kinematics solely through  
a phase shift in the azimuthal angle between the two Z decay planes. 

Notice that it doesn’t apply to two on-shell gluons 
because of the additional color d.o.f.



The Setup
2

respectively. In our coordinate system, the helicity state
of the two Z’s are defined as

ε(1)0 = γ(β, 0, 0, 1) =
mM

2mZ
(β, 0, 0, 1), (1)

ε(2)0 = γ(−β, 0, 0, 1) =
mM

2mZ
(−β, 0, 0, 1), (2)

ε(1)± = (0,∓1,−i, 0)/
√

2 = ε(2)∓ , (3)

where mM is the mass of the parent particle M . We
follow closely the notation and convention of [5] where
ε0123 = −ε0123 = 1. Also notice that we have chosen
both of the longitudinal polarizations to be along +z,
even though the direction of motion is opposite. In the
end there are nine possible polarization states for the ZZ,
Ψλ1λ2 , where λ1,2 = +,−, 0.

With the above definitions, it is straightforward to
work out the action on Ψλ1λ2 under the following three
symmetry transformations: 1) Rψ is the rotation around
the z axis by an angle ψ, 2) Rξ is the rotation around
the x axis by π, and 3) P is the space inversion. In effect
Rψ imposes angular momentum conservation along the
z axis and Rξ enforces the Bose symmetry. The selection
rule for a parent with spin J ≤ 1 and parity P = ± is
summarized in Table I.

We would like to focus on a J = 1 parent particle and
denote the helicity amplitude of M(κ) → Z1(λ1)Z2(λ2)
as Mκ,λ1λ2 , where κ is the spin projection of the par-
ent along the +z axis. (We define ε(M)

± = ε(1)± and
ε(M)
0 = (0, 0, 0, 1).) Immediately we see that the only

non-vanishing amplitudes are M+,+0,M+,0−,M−,−0,
and M−,0+. In particular, amplitudes M0,++, M0,−−,
and M0,00 are forbidden by the Bose symmetry, whereas
all others vanish due to angular momentum conservation.
It is interesting to further consider the action of the non-
vanishing amplitudes under Rξ and P :

Rξ : M+,+0 ↔ −M−,0+, M+,0− ↔ −M−,−0; (4)
P : M+,+0 ↔ −M+,0−, M−,−0 ↔ −M−,0+. (5)

The minus sign is due the fact that ε(1,2)
0 are obtained

from boosting ẑ = (0, 0, 0, 1) in the direction of the re-
spective motion of the Z. Therefore under Rξ and P ,
ẑ → −ẑ and ε(1)0 = γ(β, 0, 0, 1) → −ε(2)0 . Moreover the
spin-projection of the parent particle remains unchanged
under P . One important implication of Eq. (4) is there
are only two independent helicity amplitudes for any
spin-1 particle decaying into two Z bosons. On the other
hand, the observation that a vector boson is odd un-
der charge conjugation (C) implies all the P -odd ampli-

TABLE I: Helicity states Ψλ1λ2 of the Z bosons

P\J 0 1
+ Ψ++ + Ψ−−, Ψ00 Ψ+0 − Ψ0−, Ψ+0 − Ψ0−

− Ψ++ − Ψ−− Ψ+0 + Ψ0−, Ψ+0 + Ψ0−

FIG. 1: Two decay planes of Z1 → !1!̄1 and Z2 → !2!̄2 define
the azimuthal angle φ ∈ [0, 2π] which rotates !2 to !1 in the
transverse view. The polar angles θ1 and θ2 shown are not
defined in the Z′ rest frame, but are actually defined in Z1

and Z2 rest frames respectively.

tudes should be CP-conserving and real, whereas the P -
even amplitudes are CP-violating and purely imaginary.
Therefore we can parametrize the four non-vanishing am-
plitudes as follows:

M+,+0 = A + i B = Ceiδ = −M−,0+,

M+,0− = A − i B = Ce−iδ = −M−,−0. (6)

The parameter C is an overall normalization and will
drop out when considering normalized differential cross
section. The phase δ = tan−1(B/A) is 0 for B = 0 and
π/2 for A = 0.

To see how δ enters into the angular distributions when
Z1Z2 further decay, it is useful to recall that Zi(λi) will
produce an angular dependence exp(iλiφi), where φi is
the azimuthal angle in the rest frame of the Zi. Obviously
only the relative angle φ is physical and we can set φ2 = 0
and φ = φ1. Then it is clear that δ only enters as a phase
shift in φ → φ + 2δ. For example, focusing only on the φ
dependence,

∣∣a1M+,+0e
iφ + a2M+,0−

∣∣2 ∼ |a1e
i(φ+2δ) + a2|2, (7)

and similarly for M−,λ1λ2 . This argument also makes it
clear that the angular distribution has the form

dN

Ndφ
∼ c1 + c2 cos(φ + 2δ). (8)

Therefore, by measuring the phase shift δ we could de-
termine the relative strength between the CP-conserving
and CP-violating amplitudes.
Angular Distributions – Now we turn to the specific in-
teractions between a Z ′ and two Z bosons. The effective
Lagrangian, when all particles are on-shell, includes only
two operators at dim-4:

OCPV = f4Z
′
µ(∂νZµ)Zν ,OA = f5ε

µνρσZ ′
µZν(∂ρZσ) .

(9)
In momentum space the form factor for Z ′(q1 + q2, µ) →
Z(q1, α)Z(q2, β) can be written as

Γµαβ
Z′→Z1Z2

= if4(qα
2 gµβ + qβ

1 gµα) + if5ε
µαβρ(q1 − q2)ρ.

(10)

ε(1)0 = γ(β, 0, 0, 1)

ε(2)0 = γ(−β, 0, 0, 1)

ε(1)± = (0,∓1,−i, 0)/
√

2 = ε(2)∓

z

x

y

In the Z’ rest frame The “+, - , 0” stands 
for the Z helciity.

Notice that we choose 
both the longitudinal 

polarization of Z to be 
along the z axis.



The Landau-Yang theorem

We consider three symmetry transformations:

      : rotation around the z axis by an angle (angular 
momentum conservation along the z)

     : rotation around the x axis by    (Bose symmetry)

P : space inversion (parity)

Rψ

Rξ π



The Landau-Yang theorem

ε(Z
′)

± = ε(1)±ε(Z
′)

0 = (0, 0, 0, 1)

Helicity amplitude               in                                  :Mκ,λ1λ2 Z ′(κ)→ Z1(λ1)Z2(λ2)

As a convention, we define

Spin-projection of Z’ along the z axis. The Z helicity.

The angular momentum conservation 
along the z axis tells us that κ = λ1 − λ2

(Rψ)



The Landau-Yang theorem

The polarization 
direction.

The angular momentum 
direction.

Under     : it forbids                       and Rξ M0,++ M0,−− M0,00

z

x

y



The Landau-Yang theorem

Under     :                       Rξ The polarization 
direction.

The angular momentum 
direction.

M+,+0

M+,0−

M−,−0−

= − “       ”“       ”

There remain only four nonvanishing amplitudes                      

M−,0+−

“− ”sign



The Landau-Yang theorem

Under space inversion (P):

M+,+0

M−,−0M+,0−−

M−,0+

−



The Landau-Yang theorem

In summary, under      and P :Rξ

Rξ : M+,+0 ↔ −M−,0+, M+,0− ↔ −M−,−0;
P : M+,+0 ↔ −M+,0−, M−,−0 ↔ −M−,0+.

So there are two independent helicity ampitudes :

All P odd, CP even operators contribute to the real amplitude. 
(anomulous coupling)

All P even, CP odd operators contribute to the imaginary amplitude. 
(regular coupling)



The Landau-Yang theorem

So we parametrize the amplitudes as:

M+,+0 = A + i B = Ceiδ = −M−,0+,

M+,0− = A− i B = Ce−iδ = −M−,−0.

Except for an overall nomalization, everthing is 
embeded into the phase δ
δ = tan−1(B/A)

which is the relatively strength of the CP odd and CP 
even amplitudes.
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Angular Distributions2

respectively. In our coordinate system, the helicity state
of the two Z’s are defined as

ε(1)0 = γ(β, 0, 0, 1) =
mM

2mZ
(β, 0, 0, 1), (1)

ε(2)0 = γ(−β, 0, 0, 1) =
mM

2mZ
(−β, 0, 0, 1), (2)

ε(1)± = (0,∓1,−i, 0)/
√

2 = ε(2)∓ , (3)

where mM is the mass of the parent particle M . We
follow closely the notation and convention of [5] where
ε0123 = −ε0123 = 1. Also notice that we have chosen
both of the longitudinal polarizations to be along +z,
even though the direction of motion is opposite. In the
end there are nine possible polarization states for the ZZ,
Ψλ1λ2 , where λ1,2 = +,−, 0.

With the above definitions, it is straightforward to
work out the action on Ψλ1λ2 under the following three
symmetry transformations: 1) Rψ is the rotation around
the z axis by an angle ψ, 2) Rξ is the rotation around
the x axis by π, and 3) P is the space inversion. In effect
Rψ imposes angular momentum conservation along the
z axis and Rξ enforces the Bose symmetry. The selection
rule for a parent with spin J ≤ 1 and parity P = ± is
summarized in Table I.

We would like to focus on a J = 1 parent particle and
denote the helicity amplitude of M(κ) → Z1(λ1)Z2(λ2)
as Mκ,λ1λ2 , where κ is the spin projection of the par-
ent along the +z axis. (We define ε(M)

± = ε(1)± and
ε(M)
0 = (0, 0, 0, 1).) Immediately we see that the only

non-vanishing amplitudes are M+,+0,M+,0−,M−,−0,
and M−,0+. In particular, amplitudes M0,++, M0,−−,
and M0,00 are forbidden by the Bose symmetry, whereas
all others vanish due to angular momentum conservation.
It is interesting to further consider the action of the non-
vanishing amplitudes under Rξ and P :

Rξ : M+,+0 ↔ −M−,0+, M+,0− ↔ −M−,−0; (4)
P : M+,+0 ↔ −M+,0−, M−,−0 ↔ −M−,0+. (5)

The minus sign is due the fact that ε(1,2)
0 are obtained

from boosting ẑ = (0, 0, 0, 1) in the direction of the re-
spective motion of the Z. Therefore under Rξ and P ,
ẑ → −ẑ and ε(1)0 = γ(β, 0, 0, 1) → −ε(2)0 . Moreover the
spin-projection of the parent particle remains unchanged
under P . One important implication of Eq. (4) is there
are only two independent helicity amplitudes for any
spin-1 particle decaying into two Z bosons. On the other
hand, the observation that a vector boson is odd un-
der charge conjugation (C) implies all the P -odd ampli-

TABLE I: Helicity states Ψλ1λ2 of the Z bosons

P\J 0 1
+ Ψ++ + Ψ−−, Ψ00 Ψ+0 − Ψ0−, Ψ+0 − Ψ0−

− Ψ++ − Ψ−− Ψ+0 + Ψ0−, Ψ+0 + Ψ0−

FIG. 1: Two decay planes of Z1 → !1!̄1 and Z2 → !2!̄2 define
the azimuthal angle φ ∈ [0, 2π] which rotates !2 to !1 in the
transverse view. The polar angles θ1 and θ2 shown are not
defined in the Z′ rest frame, but are actually defined in Z1

and Z2 rest frames respectively.

tudes should be CP-conserving and real, whereas the P -
even amplitudes are CP-violating and purely imaginary.
Therefore we can parametrize the four non-vanishing am-
plitudes as follows:

M+,+0 = A + i B = Ceiδ = −M−,0+,

M+,0− = A − i B = Ce−iδ = −M−,−0. (6)

The parameter C is an overall normalization and will
drop out when considering normalized differential cross
section. The phase δ = tan−1(B/A) is 0 for B = 0 and
π/2 for A = 0.

To see how δ enters into the angular distributions when
Z1Z2 further decay, it is useful to recall that Zi(λi) will
produce an angular dependence exp(iλiφi), where φi is
the azimuthal angle in the rest frame of the Zi. Obviously
only the relative angle φ is physical and we can set φ2 = 0
and φ = φ1. Then it is clear that δ only enters as a phase
shift in φ → φ + 2δ. For example, focusing only on the φ
dependence,

∣∣a1M+,+0e
iφ + a2M+,0−

∣∣2 ∼ |a1e
i(φ+2δ) + a2|2, (7)

and similarly for M−,λ1λ2 . This argument also makes it
clear that the angular distribution has the form

dN

Ndφ
∼ c1 + c2 cos(φ + 2δ). (8)

Therefore, by measuring the phase shift δ we could de-
termine the relative strength between the CP-conserving
and CP-violating amplitudes.
Angular Distributions – Now we turn to the specific in-
teractions between a Z ′ and two Z bosons. The effective
Lagrangian, when all particles are on-shell, includes only
two operators at dim-4:

OCPV = f4Z
′
µ(∂νZµ)Zν ,OA = f5ε

µνρσZ ′
µZν(∂ρZσ) .

(9)
In momentum space the form factor for Z ′(q1 + q2, µ) →
Z(q1, α)Z(q2, β) can be written as

Γµαβ
Z′→Z1Z2

= if4(qα
2 gµβ + qβ

1 gµα) + if5ε
µαβρ(q1 − q2)ρ.

(10)

z

x

y

The system are described by three angles (θ1, θ2, φ)

It doesn’t matter which 
Z is the     as long as 

you pick up one. 
Z1

Negative 
charged 

Z1

The azimuthal angle                  is defined from half plane that contains   
to the one that contains    and the cross product is parrell to     direction

The polar angle               is the angle between the lepton and Z moving 
direction in the Z rest frame

l1 Z1

φ ∈ [0, 2π]

θ ∈ [0, π]

l2



Angular Distributions

∣∣a1M+,+0e
iφ + a2M+,0−

∣∣2 ∼ |a1e
i(φ+2δ) + a2|2|

dN

Ndφ
∼ c1 + c2 cos(φ + 2δ)

Z decay 
amplitude

We can even know how    enters into the 
angular distributions without specific calculations 

δ

M =M0M1(θ1, φ)M1(θ2, 0)

eim1φThe azimuthal angle dependence is 

spin-projection of Z1

M+,λ1,λ2Consider



Angular Distributions

Now we turn to specific couplings at dim-4 level:
OCPV = f4Z

′
µ(∂νZµ)Zν , OA = f5ε

µνρσZ ′
µZν(∂ρZσ)

Γµαβ
Z′→Z1Z2

= if4(qα
2 gµβ + qβ

1 gµα) + if5ε
µαβρ(q1 − q2)ρ.

M+,+0 = −M−,0+ = R(−f5β + if4) ,

M+,0− = −M−,−0 = R(−f5β − if4)

β2 = 1− 4m2
Z/m2

Z′

R =
βm2

Z′

2mZ

δ = tan−1(−f4/f5β)

Z ′(q1 + q2, µ)→ Z(q1, α)Z(q2, β)For the decay

The form factor is 

The helcity amplitudes are 

Both operators are 
motivated at the 1-loop 
level, and their sizes are 
comparable if both exsit.



Angular Distributions

∑

κ,h1,h2

∣∣∣∣∣∣

∑

λ1,λ2

Mκ,λ1λ2 gh1f
h1
λ1

(θ1, φ) gh2f
h2
λ2

(θ2, 0)

∣∣∣∣∣∣

2

fh
m(θ̄, φ̄) = (1 + mh cos θ̄)

eimφ̄

2

fh
0 (θ̄, φ̄) =

h√
2

sin θ̄

The differential cross section could be obtained from 
summing over the different helicity states.

Spin-projection of Z’ along the z axis.

The Z helicity. chirality of the leptons

coupling between leptons of 
chirality h and Z

spin-one rotation matrixm = ±



Angular Distributions

8πdN

Nd cos θ1d cos θ2dφ
=

9
8

[
1− cos2 θ1 cos2 θ2

− cos θ1 cos θ2 sin θ2 sin θ1 cos(φ + 2δ)

+
(g2

L − g2
R)2

(g2
L + g2

R)2
sin θ1 sin θ2 cos(φ + 2δ)

]
.

The normalized angular distribution is 

All coefficients are completely fixed by the symmetry!

β2 = 1− 4m2
Z/m2

Z′

δ = tan−1(−f4/f5β)
The kinematical variables only enters into the 

angular dependence through phase  δ



Angular Distributions

2πdN±
Ndφ

=
1
2

[
1∓ 1

8
cos(φ + 2δ)

+
9π2

128
(g2

L − g2
R)2

(g2
L + g2

R)2
cos(φ + 2δ)

]
.

Integrating over the polar angles, the    dependence is highly 
suppressed by the partial     symmetry               for leptonic 

decays, so we only integrate over the polar anglars
gL ≈ −gRĈ

cos θ1 cos θ2 > 0 < 0

φ

or 

N(cos θ1 cos θ2
>
< 0)N± stands for

δ = π/2 OCPV only

δ = 0 OA only
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Measurements at the LHC

Before we talked about the measurements, we may ask 
in what kind of models, it is possbile to discovery and 
discreminate the topological interactions at the LHC?

Since the topological interactions are always very small, if we don’t want 
it to suppress the overall cross section (number of signals), the only 
place it exists is in the Z’ decay vertex where the BR is not small.

Actually, quite a large number of interesting models does have such 
properties. For instance, little higgs model with anomalous T-parity 

where the lightest Z’ only decay through topological interactions. 



Measurements at the LHC

The discovery and discremination strategy:

We first have to find a resonance (5    CL) reconstructed from two 
identical Zs. 

We have to make sure that the resonance is spin-one (    ).

From the azimuthal angular dependence, we can discreminate the 
anomalous coupling from the regular one (3    CL). 

σ

σ

Z ′



Measurements at the LHC
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ATLAS -  Z mass resolution in Z → µ+µ−

The Z’ decay width is always very 
small, typically 1eV (large Z’->ZZ BR), 

so the cuts on Z’ invariant mass 
window is always dominated by the 

detector energy resolution.  

We first fix our Z’ mass to be 240GeV.

We expect the σZ′ ∼
√

2σZ

A realistic simulation based on 
PGS4 shows that we can choose 

the cuts: 
234 GeV < mZZ < 246 GeV

l in PGS4
σ

E
∼ 0.2√

E
+ 0.01



Measurements at the LHC

S√
B

= 5

A realistic simulation based on PGS4 shows that we can 
choose the cuts: 

234 GeV < mZZ < 246 GeV

Requring the significance to be 5,

, the ZZ production from Z’ decay should be at last 67fb. 

After the cuts on         , the SM backgroud will be reduced to 79fb 
from 15pb. 

mZZ

The branching ratio for Z decays leptonically is 6.7%, and assuming the  
luminosity for LHC is 100 fb−1

number of signals

number of backgrounds



Measurements at the LHC
The spin of the resonance could be determined from the angular 
distributions. For instance, the azimuthal angle    distribution for a 

scalar decay has a                     dependence.    
φ

cos(2φ + 2δ)

Since it is easier to determine the spin of the resonance (requrie less 
statistics of the signals) and they have been discussed in various 

references before. I will directly jump to the discremination. 

V. D. Berger et. al., Phys. Rev. D 49, 79 (1994)

 C. P.  Buszello et. al., Eur. Phys. J. C 32, 209 (2004)

D. Chang, W. Y. Keung and I. Phillips, Phys. Rev. D 48, 3225 (1993)

If we include the SM bc, and assume it has a flat distribution, the 
expected disitribution becomes

n±(φ) ≡ dN±
dφ

=
N

4π

[
1∓ 1

8
S

S + B
cos(φ + 2δ)

]
.



Measurements at the LHC
We can estimate the required production rate for Z’ in order to 

discreminate the operators from a simple counting.

Aud =

(∫ π/2

−π/2
−

∫ 3π/2

π/2

)
n+(φ)− n−(φ)

N
dφ = −cos(2δ)

4π
.

|SA(δ = 0)− SA(δ = π/2)|√
S + B

=
S

2π
√

S + B
= 3 .

We define a “up-down” asymmetry in the absence of bc.

If we want to discremiante the two cases 
at the 99.7% CL

OA only (δ = 0), Aud = −1

OCPV only (δ = π/2), Aud = 1

For the asymmetric events SA = Aud × S

/4π

/4π



Measurements at the LHC
Then the required production rate of the Z boson from Z' 

decay is 0.9 pb for a 240 GeV Z'

Now we turn to a typical parameter space (without any tuning 
of the parameter) in the littest Higgs model with anomalous T-

parity as a benchmark senario.

f = 1.5TeV

mBH =
g′
√

5
f = 240GeV

The Z’ is the BH

BR(Z′ → ZZ) = 1/3

In order to discreminate 
the Z’-Z-Z vertex, the 

required production for 
pair-produced Z’ is 1.3pb



Measurements at the LHC

pared to f . In large parts of the parameter space, the
B̃ is the LTP, and is stable. Since the B̃ is weakly in-
teracting, its stability poses no cosmological difficulties,
and in fact it can act as WIMP dark matter [8,9]. In
the analysis of this letter we will assume that the heavy
photon is the LTP. The scale f is bounded from below
by precision electroweak data [7] and the corresponding
bound on the LTP mass is M(B̃) > 80 GeV.

The masses of the T-quarks and T-leptons are given
by

Mij(Q̃) = κQ
ijf, Mij(L̃) = κL

ijf, (2)

where the couplings κ are free parameters. In this let-
ter, we will focus on the T-quarks of the first two gen-
erations, and assume that they have a common mass,
M̃ . This degeneracy eliminates any potential loop-level
flavor-changing effects via the GIM mechanism [10]. Ex-
perimental bounds on the flavor-conserving four-fermion
operators such as eeuu and eedd imply the bound [7]

M̃ < 4.8 TeV

(

f

TeV

)2

. (3)

T-quark contributions to precision electroweak observ-
ables have been computed in [7], and do not impose any
new bound on M̃ . To avoid charged/colored LTP, we
require M̃ > M(B̃).

The LHT model contains additional states in the top
sector, required to cancel the one-loop quadratic diver-
gence in the Higgs mass from top loops. The collider
phenomenology of these states [8,21], however, does not
play a role in this analysis.

Before proceeding, it is useful to compare and contrast
the spectrum of the LHT model with the more famil-
iar case of the minimal supersymmetric standard model
(MSSM). In both models, SM states acquire parity-odd
partners with the same gauge quantum numbers. For
example, the W̃ a and B̃ bosons of the LHT model are
the analogues of the wino and bino of the MSSM; the
T-quarks and T-leptons are the counterparts of squarks
and sleptons. The two important differences are: (1) the
LHT partners have the same spin as the SM states; and
(2) in the LHT, partners only exist for a subset of the
SM: for example, the right-handed SM fermions and the
gluon do not acquire T-odd partners.

Collider Signatures — At a hadron collider, the
T-quarks can be pair-produced via QCD processes:

qq̄ → Q̃i
¯̃Qi, gg → Q̃i

¯̃Qi. (4)

The produced T-quarks decay promptly. Due to con-
served T Parity, their decay products necessarily contain
the LTP B̃, leading to a missing energy signature in the
detector. In particular, the decay channel

Q̃i → qiB̃ (5)
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FIG. 1. Cross section of T-quark pair production (per fla-
vor) at the Tevatron Run II and at the LHC. Solid, dashed
and dotted lines correspond to µ = M̃, M̃/2 and 2M̃ , respec-
tively.

is open throughout the parameter space for qi = u, d, s, c,
with the exception of very narrow bands where the
T-quarks and the LTP are nearly-degenerate. Events
with both T-quarks decaying in this channel result in a
2j + E/T signature with acoplanar jets both at the Teva-
tron and the LHC. Within the T-quark mass range ac-
cessible at the Tevatron, the branching ratio in the chan-
nel (5) is very nearly 100%. For heavier T-quarks, com-
peting channels such as qW̃ may open up, which could
be relevant for LHC studies.

To analyze the experimental reach in terms of the
model parameters, we have implemented the relevant sec-
tor of the LHT model in the MadGraph [11] parton-level
event generator and simulated the reaction (4), (5). The
total T-quark production cross sections (per T-quark fla-
vor) at the Tevatron Run II and the LHC are shown
in Fig. 1. The CTEQ6L1 PDF set [12] was used, and
renormalization and factorization scales, µ, were varied
between M̃/2 and 2M̃ to obtain an estimate of the associ-
ated uncertainty. The rather large uncertainty (typically
about 30%) is primarily due to the use of the leading-
order matrix element, and could be improved by a next-
to-leading order calculation of the process (4) in the LHT
model. Based on the studies of squark production pro-
cesses with similar kinematics, we expect that the NLO
cross section is enhanced by K ∼ 1.3 compared to the LO
estimate. However, we do not rescale our leading order
result, and so we expect our estimate is conservative.

The counterpart of the process (4), (5) in the MSSM
is the production of squark pairs followed by the decay
q̃ → qχ̃0

1. The production cross section of T-quark pairs
is larger than that of squarks with the same mass due to
the spin sum of the final state. However, if the T-quark
and squark masses, as well as the LTP and LSP masses
are equal, we find that the properties of the final-state
jets (e.g. transverse energy and rapidity distributions)
are essentially identical. Therefore, with the appropriate
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The domiante Z’ production channel is coming 
from the heavy T-odd quark decay.

Considering six flavors, then even 
with a 750GeV T-quark mass

For one single T-quark,

We could discovery and discremiante 
the topological interactions at the 

LHC at 99.7% CL!!!

κ = 0.5
(with the corresponding Yukawa 

coupling             )
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Motivation.

Generalized Landau-Yang theorem.

Angular distributons.

Measurements at the LHC.

Summary and Outlook.



Summary

We study the decay of a Z’ boson into two on-shell Zs by extending the 
Landau-Yang theorem.  We find:

There are two independent helicity amplitudes (CP odd/even)

All kinematics are embeded through a phase shift in the azimuthal 
angle dependence between the two Z decay plane.

Looking at the leptonic decay channel                         (Golden channel 
to discover heavy higgs                       ), we could disentangle the 
topological interactions (CP even) from the regular one (CP odd) at the 
LHC.  

Z ′ → ZZ → 4l
h→ ZZ → 4l



Outlook
There are still some intriguing questions that I can’ help 

to talk here......................

Measuring the Nc

Nc is the hyper-color number for underlying preon force 
(substructures for Higgs and other particles)

f5 ∝
Nc

48π2

However, one can never measure the strength of       directly.

Decay width from Z’ 
topological decay is only 1eV!

Decay width for heavy 
higgs is 1~ 2 GeV!

OA = f5ε
µνρσZ ′

µZν(∂ρZσ)

OA

(free parameter of the theory)



Outlook

The operator           is coming from the scalar loops and one can 
calculate its strength by observing the scalars and measuring their 

couplings to the gauge bosons. 

Why we can’t measure the number of 
charged perons or heavy fermions???

It would be interesting if we find the phase shift 
between 0 to        where both      and           exsit.OA OCPVπ/2

δ

OCPV

confinement none decoupling effects

Nc !Caculate the           strength OCPV

Measuring    , the relative strengthδ



Outlook

One famous example is the QCD, we know from t’Hooft anomaly 
matching condition that it must have the chiral symmetry breaking. 

The mixed anomalies                                             at the hadron 
level and the quark level doesn’t have a solution to match! 

SU(3)L × SU(3)R × U(1)V

Now there is another example for models 
beyond SM!

Anomalies are extremely powerful to probe the 
symmetry breaking pattern of the underlying theory.



Outlook
The Z’ interactions from the WZW term in any extension of SM 

based on the sigma model G/H arise from the following two gauge 
invariant operators 

O1 =
iK1

F 2
εµνρσB̃µ[H†FW

νρ (DσH)− (DνH†)FW
ρσ H] ,

O2 =
iK2

F 2
εµνρσB̃µFB

νρ[H
†(DσH)− (DσH†)H]

How SM electroweak gauge group is embeded into the G/H 
completely determine the coefficients      and      .K1 K2

The magic is:                    interaction is coming from both 
operators, and their contributions may cancel each other! 

Z ′ − Z − γ



Outlook
Examples:

Littlest higgs model based on SU(5)/SO(5) has no Z ′ − Z − γ

Little higgs model based on minimal moose SU(3)*SU(3)/SU(3) 
has                   with sizable strangth.Z ′ − Z − γ

If we discovery the topological Z’-Z-Z coupling at the LHC, then 
whether the topological                   coupling exsits will tell us both 

the underlying symmetry structure and breaking pattern!
Z ′ − Z − γ



Outlook
Another application for the techiques here is to 
consider non standard higgs (scalar) decay.............

Different opertors that decay the higgs will contribute 
to different helicity amplitudes which will affect the 
angular distributions.

Because of different ratio of the helicty amplitudes that 
involves tranverse, longitude Z gauge bosons. The high 
energy behavior of the decay is quite different. 

If CP odd operators exsit, there is also a phase shift in 
the azimuthal angle distributions. 


