Topological Interactions at the LHC and a Generalized Laudau-Yang Theorem

Jing Shu @ IPMU

Keung, Low, JS, arXiv:0806.2864 Phys. Rev. Lett. IOI, 091802 (2008)

Keung, Low, JS, arXiv:080X.XXXX

Outline

Generalized Landau-Yang theorem.
Angular distributons.
Measurements at the LHC.
Summary and Outlook.

Topological interactions are interactions which are independent of the space-time metric.

They are coming from anomalies of the UV physics which involves several gauge bosons or Goldstones.

Topological physics BSM typically involves at least one extra gauge boson (Z').

So, let's start our topic with topological interactions that involves a Z' particle.

What is Z'?

Z^{\prime} is a massive, neutral (no electromagnetic charge, anti-Z' = Z') , spin-one particle with its mass ranging from TeV to GUT scale.

Many extensions of SM predicts a Z' particle.
O As a massive gauge boson, its mass are generated by:
O symmetry breaking of the extended gauge group.

- compactification of extra spatial dimensions.

Z'@LHC

Z' in the extended gauge group) models

GUT, Little Higgs, TC, ETC,
Topcolor, etc.

Z' in extra dimensions models.

ADD, RS, UED,
Higgsless, etc.

Anomalies

Anomalies are powerful tools to probe the UV physics Its presence is irrelevent to the detailed dynamics of the theory (topological properties).
Topological interactions may present in TeV.
O In strongly coupled theory: Techicolor model, composite Higgs model.
WZW term in the nonlinear sigma model based on G/H. CS term in 5D theory (holographic dual)

O Just heavy (TeV) exotic fermions in the loop, or Green-Schwarz mechanism to cancel the mixed anomalies. (Stringy motivated Intersection brane model).

Anomalies@LHC

However, those topological interactions are always more than one loop suppressed. $\left(\frac{1}{48 \pi^{2}} \sim 0.00211\right)$
They might be completely overwhelmed by other kind of interactions, QCD radiations at the LHC.

Even we have discoveried such interactions? How can we know the interactions we have measured are topological?

Discrete symmetries

In contrast to the regular interactions, the Lorentz index in the topological interactions are always contracted through the antisymmetric tensor. $\epsilon_{\mu \nu \rho \sigma}$

The antisymmetric tensor in 4D violate P and T .
So the discremination becomes how to determine the discrete symmetry of the operators at the LHC!

Anomalies@LHC

We choose the three gauge boson couplings to study as they exsit in all cases and contain fewer particles. Then the anomalous operators are CP even and regular couplings are CP odd.

O In order to know the discrete symmetries of the coupling, one may need to know the gauge boson polarization, which requires to further decay the gauge bosons into light fermions.

Z' --->ZZ--> 4|

000

We consider the Z ' decay into two on-shell Zs .
O The bose symmetry greatly simplified the form of the couplings (only 2), comparing to Z'-Z-gamma (4) and Z'-W-W (7).

O The Z' might be produced in the cascade decay channel of some heavy particles instead of singly produced. We need a method that is independent of the Z^{\prime} production mechanism.
We consider the 4 I final states in our measurements.
They are very clean channels and our measurements based on azimuthal angle really require high energy resolution.

The 4 I final state is well studied in the $H \rightarrow Z Z \rightarrow 4 l$

Outline

Motivation. ○

Angular distributons.
Measurements at the LHC.
Summary and Outlook.

The Landau-Yang theorem

The Landau-Yang theorem: A massive spin-one particle can never decay into two on-shell photons.
Notice that it doesn't apply to two on-shell gluons

```
L. D. Landau, Dokl.Akad. Nawk., USSR 60, 207 (1948)
C. N. Yang, Phys. Rev. 77, 242 (I950)
```


Our arguments:

For a massive spin-one particle (Z') decaying into two identical on-shell massive spin-one particles (Z),
There are only two independent helicity amplitudes, which are from CP odd and CP even operators respectively.

The differential cross section depends on the kinematics solely through a phase shift in the azimuthal angle between the two Z decay planes.

The Setup

In the Z' rest frame $\epsilon_{0}^{(1)}=\gamma(\beta, 0,0,1\rangle$
$\epsilon_{0}^{(2)}=\gamma(-\beta, 0,0,1 \neq$
$\epsilon_{ \pm}^{(1)}=(0, \mp 1,-i, 0) / \sqrt{2}=\epsilon_{\mp}^{(2)}$

The ",,+- 0 " stands for the \mathbf{Z} helciity.

Notice that we choose both the longitudinal polarization of Z to be along the z axis.

The Landau-Yang theorem

We consider three symmetry transformations:
R^{ψ} : rotation around the z axis by an angle (angular momentum conservation along the z)
R^{ξ} : rotation around the x axis by π (Bose symmetry)
○ : space inversion (parity)

The Landau-Yang theorem

Helicity amplitude $\mathcal{M}_{\kappa}, \lambda_{1} \lambda_{2}$ in $Z^{\prime}(\kappa) \rightarrow Z_{1}\left(\lambda_{1}\right) Z_{2}\left(\lambda_{2}\right)$:

Spin-projection of z^{\prime} along the z axis. The z helicity.
As a convention, we define
$\epsilon_{0}^{\left(Z^{\prime}\right)}=(0,0,0,1)$

$$
\epsilon_{ \pm}^{\left(Z^{\prime}\right)}=\epsilon_{ \pm}^{(1)}
$$

The angular momentum conservation $\left(R^{\psi}\right)$ along the \mathbf{z} axis tells us that $\kappa=\lambda_{1}-\lambda_{2}$

The Landau-Yang theorem

Under R^{ξ} : it forbids $\mathcal{M}_{0,++} \mathcal{M}_{0,--}$ and $\mathcal{M}_{0,00}$
The angular momentum

The Landau-Yang theorem

There remain only four nonvanishing amplitudes
Under R^{ξ} :

$\mathcal{M}_{+, 0-}$

The Landau-Yang theorem

Under space inversion (P):

The Landau-Yang theorem

In summary, under R^{ξ} and P :
$\mathcal{R}^{\xi}: \mathcal{M}_{+,+0} \leftrightarrow-\mathcal{M}_{-, 0+}, \quad \mathcal{M}_{+, 0-} \leftrightarrow-\mathcal{M}_{-,-0} ;$
$P: \mathcal{M}_{+,+0} \leftrightarrow-\mathcal{M}_{+, 0-}, \quad \mathcal{M}_{-,-0} \leftrightarrow-\mathcal{M}_{-, 0+}$.
So there are two independent helicity ampitudes :
All P odd, CP even operators contribute to the real amplitude. (anomulous coupling)

All P even, CP odd operators contribute to the imaginary amplitude. (regular coupling)

The Landau-Yang theorem

O So we parametrize the amplitudes as:

$$
\begin{aligned}
\mathcal{M}_{+,+0} & =A+i B=C e^{i \delta}=-\mathcal{M}_{-, 0+} \\
\mathcal{M}_{+, 0-} & =A-i B=C e^{-i \delta}=-\mathcal{M}_{-,-0}
\end{aligned}
$$

Oxcept for an overall nomalization, everthing is embeded into the phase δ

$$
\delta=\tan ^{-1}(B / A)
$$

which is the relatively strength of the CP odd and CP even amplitudes.

Outline

Motivation
Generalized Landau-Yang theorem.
O
Measurements at the LHC.
Summary and Outlook.

Angular Distributions

It doesn't matter which Z is the Z_{1} as long as you pick up one.

The system are described by three angles $\left(\theta_{1}, \theta_{2}, \phi\right)$
The azimuthal angle $\phi \in[0,2 \pi]$ is defined from half plane that contains l_{2} to the one that contains l_{1} and the cross product is parrell to Z_{1} direction

The polar angle $\theta \in[0, \pi]$ is the angle between the lepton and Z moving direction in the Z rest frame

Angular Distributions

We can even know how δ enters into the angular distributions without specific calculations

$$
\mathcal{M}=\mathcal{M}_{0} \mathcal{M}_{1}\left(\theta_{1}, \phi\right) \mathcal{M}_{1}\left(\theta_{2}, 0\right)
$$

The azimuthal angle dependence is $e^{i m_{1} \phi}$
Consider $\mathcal{M}_{+, \lambda_{1}, \lambda_{2}}$

Angular Distributions

OOO
Now we turn to specific couplings at dim-4 level:

$$
O_{C P V_{K}}=f_{4} Z_{\mu}^{\prime}\left(\partial_{\nu} Z^{\mu}\right) Z^{\nu}, \quad O_{A} \equiv f_{5} \epsilon^{\mu \nu \rho \sigma} Z_{\mu}^{\prime} Z_{\nu}\left(\partial_{\rho} Z_{\sigma}\right)
$$

Both operators are
For the decay $Z^{\prime}\left(q_{1}+q_{2}, \mu\right) \rightarrow Z\left(q_{1}, \alpha\right) Z\left(q_{2}, \beta\right)$ motivated at the 1-loop
The form factor is comparable if both exsit.
$\Gamma_{Z^{\prime} \rightarrow Z_{1} Z_{2}}^{\mu \alpha \beta}=i f_{4}\left(q_{2}^{\alpha} g^{\mu \beta}+q_{1}^{\beta} g^{\mu \alpha}\right)+i f_{5} \epsilon^{\mu \alpha \beta \rho}\left(q_{1}-q_{2}\right)_{\rho}$.
The helcity amplitudes are

$$
\mathcal{M}_{+,+0}=-\mathcal{M}_{-, 0+}=R\left(-f_{5} \beta+i f_{4}\right),
$$

$$
\mathcal{M}_{+, 0-}=-\mathcal{M}_{-,-0}=R\left(-f_{5} \beta-i f_{4}\right)
$$

$$
\begin{aligned}
& \beta^{2}=1-4 m_{Z}^{2} / m_{Z^{\prime}}^{2} \\
& R=\frac{\beta m_{Z^{\prime}}^{2}}{2 m_{Z}} \\
& \delta=\tan ^{-1}\left(-f_{4} / f_{5} \beta\right)
\end{aligned}
$$

Angular Distributions

OOO

The differential cross section could be obtained from summing over the different helicity states.

Spin-projection of Z^{\prime} along the z axis.
$f_{m}^{h}(\bar{\theta}, \bar{\phi})=(1+m h \cos \bar{\theta}) \frac{e^{i m \bar{\phi}}}{2} \quad m= \pm$
spin-one rotation matrix
$f_{0}^{h}(\bar{\theta}, \bar{\phi})=\frac{h}{\sqrt{2}} \sin \bar{\theta}$

Angular Distributions

OOO

The normalized angular distribution is

$$
\begin{aligned}
\frac{8 \pi d N}{N d \cos \theta_{1} d \cos \theta_{2} d \phi}= & \frac{9}{8}\left[1-\cos ^{2} \theta_{1} \cos ^{2} \theta_{2}\right. \\
& -\cos \theta_{1} \cos \theta_{2} \sin \theta_{2} \sin \theta_{1} \cos (\phi+2 \delta) \\
& \left.+\frac{\left(g_{L}^{2}-g_{R}^{2}\right)^{2}}{\left(g_{L}^{2}+g_{R}^{2}\right)^{2}} \sin \theta_{1} \sin \theta_{2} \cos (\phi+2 \delta)\right] .
\end{aligned}
$$

All coefficients are completely fixed by the symmetry!
The kinematical variables only enters into the

$$
\begin{aligned}
& \beta^{2}=1-4 m_{Z}^{2} / m_{Z^{\prime}}^{2} \\
& \delta=\tan ^{-1}\left(-f_{4} / f_{5} \beta\right)
\end{aligned}
$$

Angular Distributions

Integrating over the polar angles, the ϕ dependence is highly suppressed by the partial \hat{C} symmetry $g_{L} \approx-g_{R}$ for leptonic decays, so we only integrate over the polar anglars
$\cos \theta_{1} \cos \theta_{2}>0$ or <0

$$
\begin{aligned}
\frac{2 \pi d N_{ \pm}}{N d \phi}= & \frac{\frac{1}{2}\left[1 \mp \frac{1}{8} \cos (\phi+2 \delta)\right.}{\left.+\frac{3 \pi^{2}}{128} \frac{\left(a_{I}^{2}-g_{R}^{2}\right)^{2}}{\left(g_{L}^{2}+g_{R}^{2}\right)^{2}} \cos (\phi+2 \delta)\right] \cdot} \begin{array}{l}
\delta=0 \quad \mathcal{O}_{A} \text { only } \\
\delta
\end{array}=\pi / 2 \quad \mathcal{O}_{C P V} \text { only }
\end{aligned}
$$

$N_{ \pm}$stands for $N\left(\cos \theta_{1} \cos \theta_{2}<0\right)$

Outline

Motivation.
Generalized Landau-Yang theorem.
Angular distributons.
O

Summary and Outlook.

Measurements at the LHC

Before we talked about the measurements, we may ask in what kind of models, it is possbile to discovery and discreminate the topological interactions at the LHC?

O Since the topological interactions are always very small, if we don't want it to suppress the overall cross section (number of signals), the only place it exists is in the Z' decay vertex where the BR is not small.

O Actually, quite a large number of interesting models does have such properties. For instance, little higgs model with anomalous T-parity where the lightest \mathbb{Z} ' only decay through topological interactions.

Measurements at the LHC

The discovery and discremination strategy:
O We first have to find a resonance ($5 \sigma \mathrm{CL}$) reconstructed from two identical Zs.

O We have to make sure that the resonance is spin-one (Z^{\prime}).
O. From the azimuthal angular dependence, we can discreminate the anomalous coupling from the regular one ($3 \sigma \mathrm{CL}$).

Measurements at the LHC

We first fix our Z' mass to be 240 GeV .

ATLAS - Z mass resolution in $Z \rightarrow \mu^{+} \mu^{-}$

The Z' decay width is always very small, typically leV (large Z'->ZZ BR), so the cuts on Z^{\prime} invariant mass window is always dominated by the detector energy resolution.

$$
\frac{\sigma}{E} \sim \frac{0.2}{\sqrt{E}}+0.01 \quad l \text { in PGS4 }
$$

We expect the $\sigma_{Z^{\prime}} \sim \sqrt{2} \sigma_{Z}$
A realistic simulation based on PGS4 shows that we can choose the cuts:
$234 \mathrm{GeV}<\mathrm{m}_{\mathrm{ZZ}}<246 \mathrm{GeV}$

Measurements at the LHC

A realistic simulation based on PGS4 shows that we can choose the cuts:
$234 \mathrm{GeV}<\mathrm{m}_{\mathrm{ZZ}}<246 \mathrm{GeV}$
After the cuts on $m_{Z Z}$, the SM backgroud will be reduced to 79fb from 15 pb .
The branching ratio for \mathbf{Z} decays leptonically is 6.7%, and assuming the luminosity for LHC is $100 \mathrm{fb}^{-1}$
Requring the significance to be 5 ,

$$
\frac{S \longleftarrow}{\sqrt{B}=5} \text { number of signals }
$$

, the ZZ production from Z' decay should be at last 67 fb .

Measurements at the LHC

The spin of the resonance could be determined from the angular distributions. For instance, the azimuthal angle ϕ distribution for a scalar decay has a $\cos (2 \phi+2 \delta)$ dependence.

$$
\begin{array}{|l|l|}
\hline \text { D. Chang, W.Y. Keung and I. Phillips, Phys. Rev. D 48, } 3225 \text { (I993) } \\
\qquad \begin{aligned}
& \text { V. D. Berger et. al., Phys. Rev. D 49, } 79 \text { (1994) } \\
& \hline \text { C. P. Buszello et. al., Eur. Phys. J. C 32, } 209 \text { (2004) }
\end{aligned}
\end{array}
$$

Since it is easier to determine the spin of the resonance (requrie less statistics of the signals) and they have been discussed in various references before. I will directly jump to the discremination.

If we include the SM bc, and assume it has a flat distribution, the expected disitribution becomes

$$
n_{ \pm}(\phi) \equiv \frac{d N_{ \pm}}{d \phi}=\frac{N}{4 \pi}\left\lfloor 1 \mp \frac{1}{8} \frac{S}{S+B} \cos (\phi+2 \delta)\right\rfloor .
$$

Measurements at the LHC

We can estimate the required production rate for Z' in order to discreminate the operators from a simple counting.

We define a "up-down" asymmetry in the absence of bc.

$$
\mathcal{A}_{u d}=\left(\int_{-\pi / 2}^{\pi / 2}-\int_{\pi / 2}^{3 \pi / 2}\right) \frac{n_{+}(\phi)-n_{-}(\phi)}{N} d \phi=-\frac{\cos (2 \delta)}{4 \pi} .
$$

If we want to discremiante the two cases O_{A} only $(\delta=0), \mathcal{A}_{\text {ud }}=-1 / 4 \pi$ at the $99.7 \% \mathrm{CL}$

$$
O_{C P V} \text { only }(\delta=\pi / 2), \quad \mathcal{A}_{\mathrm{ud}}=1 / 4 \pi
$$

For the asymmetric events $S_{A}=\mathcal{A}_{u d} \times S$

$$
\frac{\left|S_{A}(\delta=0)-S_{A}(\delta=\pi / 2)\right|}{\sqrt{S+B}}=\frac{S}{2 \pi \sqrt{S+B}}=3 .
$$

Measurements at the LHC

Then the required production rate of the Z boson from Z^{\prime} decay is 0.9 pb for a $240 \mathrm{GeV} \mathrm{Z}^{\prime}$

Now we turn to a typical parameter space (without any tuning of the parameter) in the littest Higgs model with anomalous Tparity as a benchmark senario.

The \mathbb{Z} ' is the B_{H}
$f=1.5 \mathrm{TeV}$
$m_{B_{H}}=\frac{g^{\prime}}{\sqrt{5}} f=240 \mathrm{GeV}$
$\mathrm{BR}\left(\mathrm{Z}^{\prime} \rightarrow \mathrm{ZZ}\right)=1 / 3$

In order to discreminate the Z'-Z-Z vertex, the required production for pair-produced Z^{\prime} is 1.3 pb

Measurements at the LHC

The domiante Z' production channel is coming from the heavy T-odd quark decay.

For one single T-quark,
M. S. Carena et. al., Phys. Rev. D 75, 09।70। (2007)

Considering six flavors, then even with a 750 GeV T-quark mass
(with the corresponding Yukawa coupling $\kappa=0.5$)

We could discovery and discremiante the topological interactions at the LHC at 99.7\% CL!!!

Outline

Motivation.
Generalized Landau-Yang theorem.
Angular distributons.
Measurements at the LHC.
○

Summary

O We study the decay of a Z' boson into two on-shell Zs by extending the Landau-Yang theorem. We find:

There are two independent helicity amplitudes (CP odd/even)
All kinematics are embeded through a phase shift in the azimuthal angle dependence between the two Z decay plane.

O Looking at the leptonic decay channel $Z^{\prime} \rightarrow Z Z \rightarrow 4 l$ (Golden channel to discover heavy higgs $h \rightarrow Z Z \rightarrow 4 l$), we could disentangle the topological interactions (CP even) from the regular one (CP odd) at the LHC.

Outlook

There are still some intriguing questions that I can' help to talk here.....................

O Measuring the N_{c} (free parameter of the theory)
Nc is the hyper-color number for underlying preon force (substructures for Higgs and other particles)

$$
f_{5} \propto \frac{N_{c}}{48 \pi^{2}} \quad O_{A}=f_{5} \epsilon^{\mu \nu \rho \sigma} Z_{\mu}^{\prime} Z_{\nu}\left(\partial_{\rho} Z_{\sigma}\right)
$$

However, one can never measure the strength of O_{A} directly.

Decay width from Z topological decay is only leV!

Decay width for heavy higgs is $\mathrm{I} \sim 2 \mathrm{GeV}$!

Outlook

It would be interesting if we find the phase shift δ between 0 to $\pi / 2$ where both O_{A} and $O_{C P V}$ exsit.

The operator $O_{C P V}$ is coming from the scalar loops and one can calculate its strength by observing the scalars and measuring their couplings to the gauge bosons.

Why we can't measure the number of charged perons or heavy fermions???

confinement none decoupling effects

Measuring δ, the relative strength
Caculate the $O_{C P V}$ strength

Nc!

Outlook

Anomalies are extremely powerful to probe the symmetry breaking pattern of the underlying theory.

One famous example is the QCD, we know from t'Hooft anomaly matching condition that it must have the chiral symmetry breaking.

The mixed anomalies $S U(3)_{L} \times S U(3)_{R} \times U(1)_{V}$ at the hadron level and the quark level doesn't have a solution to match!

Now there is another example for models beyond SM!

Outlook

The Z' interactions from the WZW term in any extension of SM based on the sigma model G/H arise from the following two gauge invariant operators

$$
\begin{aligned}
\mathcal{O}_{1} & =\frac{i K_{1}}{F^{2}} \epsilon^{\mu \nu \rho \sigma} \tilde{B}_{\mu}\left[H^{\dagger} F_{\nu \rho}^{W}\left(D_{\sigma} H\right)-\left(D_{\nu} H^{\dagger}\right) F_{\rho \sigma}^{W} H\right], \\
\mathcal{O}_{2} & =\frac{i K_{2}}{F^{2}} \epsilon^{\mu \nu \rho \sigma} \tilde{B}_{\mu} F_{\nu \rho}^{B}\left[H^{\dagger}\left(D_{\sigma} H\right)-\left(D_{\sigma} H^{\dagger}\right) H\right]
\end{aligned}
$$

How SM electroweak gauge group is embeded into the G/H completely determine the coefficients K_{1} and K_{2}.

The magic is: $Z^{\prime}-Z-\gamma$ interaction is coming from both operators, and their contributions may cancel each other!

Outlook

Examples:

Littlest higgs model based on SU(5)/SO(5) has no $Z^{\prime}-Z-\gamma$
Little higgs model based on minimal moose $\mathrm{SU}(3) * \mathrm{SU}(3) / \mathrm{SU}(3)$ has $Z^{\prime}-Z-\gamma$ with sizable strangth.

If we discovery the topological $Z^{\prime}-Z-Z$ coupling at the LHC, then whether the topological $Z^{\prime}-Z-\gamma$ coupling exsits will tell us both the underlying symmetry structure and breaking pattern!

Outlook

Another application for the techiques here is to consider non standard higgs (scalar) decay............

O Different opertors that decay the higgs will contribute to different helicity amplitudes which will affect the angular distributions.

O Because of different ratio of the helicty amplitudes that involves tranverse, longitude \mathbf{Z} gauge bosons. The high energy behavior of the decay is quite different.

O If CP odd operators exsit, there is also a phase shift in the azimuthal angle distributions.

