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Motivations

The low energy effective theory on the Higgs
branch in N = 2 sQCD is hyperKähler
. . .N = 1 sQCD is Kähler
Topology, metric
→ low energy effective action

Topology
→ topological excitations in the gauge theories
→ non-perturbative effects

In extension of the line of research of Nitta et.al.
(BPS domain walls) and Eto et.al. (BPS domain
walls and SO/USp vortices)
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A simple model : O(3)

Let us consider a simple model with a scalar field
Φ = (φ1, φ2, φ3) and target space S2:

L =
1
4
|∂µΦ|2 + ν

(
1− |Φ|2

)
,

with a constraint by means of a Lagrange
multiplier. This is a conformal field theory with
equation of motion

�Φ− (Φ ·�Φ) Φ = 0 ,

which bears the name non-linear sigma model.
Finite energy solutions are constant at spatial infinity,
hence symmetry breaking occurs

O(3) →
SSB

O(2) .
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Lumps : topological solitons

Topological solutions to this equation exist and are
characterized by the map

Φ : S2 7→ S2 , π2(S2) = Z ,

and this integer can be calculated as the pull-back of
the standard area-form on S2.

In this model there exists a Bogomol’nyi bound

E ≥ 2π|N| .
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The CP1-model
Rewriting in terms of the Riemann sphere coordinate
on the target space the O(3) model

R(z, z̄) =
φ1 + iφ2

1 + φ3
, L =

∂µR∂µR̄
(1 + |R|2)2 ,

which is indeed the CP1-model in which the
Bogomol’nyi equation is

∂̄R = 0 ⇒ R = R(z) , [A.A.Belavin & A.M.Polyakov,

JETP Lett.22:245-248 (1975)]

which is also known as the Cauchy-Riemann equation.
In fact, the solution is every holomorphic function
which can be written as a rational map

R(z) =
p(z)
q(z)

.
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Non-Abelian Vortices
In non-Abelian gauge theory U(1)×G′ with a fully
Higgsed vacuum

〈H〉 ∼ 1 ,

vortices are supported by

π1
(
U(1)×G′

)
' Z .

The true gauge group should be considered as

G =
U(1)×G′

Zn0

⇒ TG =
TANO

n0
.
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Color-flavor symmetry

The vortex vacuum 〈H〉 ∼ 1 is color-flavor symmetric
G′c+f . However, it is broken down by the vortex
solution giving rise to orientational moduli:

G′c+f

Hc+f
.
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The U(N) non-Abelian vortex
A U(N) gauge theory with NF flavors of squarks in the
fundamental representation

L = Tr
[
− 1

2g2 F2
µν + DµH(DµH)† − g2

4

(
HH† − ξ1N

)2
]
,

which has to be considered as the bosonic sector of
an N = 2 supersymmetric theory.

[Eto et.al., Phys.Rev.Lett.96:161601,2006 [hep-th/0511088].

Hanany & Tong, JHEP 0307:037,2003 [hep-th/0306150]; JHEP 0404:066,2004 [hep-th/0403158].

Shifman & Yung, Phys.Rev.D70:045004,2004 [hep-th/0403149].

The FI parameter ξ > 0 puts the theory on the Higgs
branch and it has the moduli spaceM = GrN,NF . The
(BPS) vortices are supported by a non-trivial
π1(U(N)) = Z and they have a SU(NF) flavor
symmetry acting from the right.



A primer

An introduction to
non-Abelian
vortices

The Kähler
quotient of a
gauge theory

The SO,USp
Kähler quotients

Expansion of the
Kähler potential

The SO,USp
hyperKähler
quotients

Non-linear σ
model lumps

Interlude :
vortices and
lumps

Lump results

Constructing the
new vortices

Explicit example:
U(1)× SO(2M)

Conclusion

The fundamental U(N) vortex

The fundamental vortex in U(N) with N flavors is the
embedding of the ANO vortex

H = U
(

HANO 0
0 1N−1

)
U† , U ∈ SU(N)c+f ,

where all internal zero modes are Nambu-Goldstone
modes generated by the symmetry breaking of the
vortex

CPN−1 =
SU(N)c+f

SU(N − 1)c+f ×U(1)c+f
.



A primer

An introduction to
non-Abelian
vortices

The Kähler
quotient of a
gauge theory

The SO,USp
Kähler quotients

Expansion of the
Kähler potential

The SO,USp
hyperKähler
quotients

Non-linear σ
model lumps

Interlude :
vortices and
lumps

Lump results

Constructing the
new vortices

Explicit example:
U(1)× SO(2M)

Conclusion

BPS equations
Performing a Bogomol’nyi type completion

T =
∫

C
Tr

[
1
g2

∣∣∣∣F12 −
g2

2

(
HH† − ξ1N

)∣∣∣∣2 + 4|D̄H|2 − ξF12

]

> −ξ
∫

C
Tr F12 .

we obtain the Bogomol’nyi bound.
To solve the BPS equations we take the ansatz

H ≡ S−1(z, z̄)H0(z) , W̄ = −iS−1(z, z̄)∂̄S(z, z̄) ,

with z = x1 + ix2, while the other BPS equation is
rewritten to the master equation

∂
(

Ω−1∂̄Ω
)

=
g2

4

(
Ω−1H0H†0 − ξ1N

)
, Ω ≡ S(z, z̄)S(z, z̄)† ,

where H0(z) is an N ×NF holomorphic matrix
containing all the moduli of the BPS vortex.
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Supersymmetric non-linear σ-model

We now want to write down the low energy effective
theory of a supersymmetric model.

Taking the Kähler potential describing the theory in
question in terms of chiral superfields :

K = K(Φ, Φ̄) ,

the bosonic part of the non-linear σ-model can be
written as

L = −gīı∂µφ
i∂µφ̄ı̄ , with gīı ≡

∂

∂φi
∂

∂φ̄ı̄
K ,

gīı being the metric on the Kähler manifold.
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Kähler potential for a gauge theory

Consider an N = 1 gauge theory with a simple gauge
group G with NF chiral superfields in the fundamental
representation � of the gauge group along with a
vector superfield V ′

K = Tr
[
QQ†e−V′

]
notice that the invariance of the Lagrangian is GC, e.g.
for SU(N) it is SU(N)C = SL(N,C) or for U(N) it is
U(N)C = GL(N,C)

Q→ eiΛQ

eV′ → eiΛeV′e−iΛ† , with eiΛ ∈ GC

we would now like to calculate the Kähler quotient i.e.
integrating out the vector multiplet
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Roads to a low energy effective theory
[M. A. Luty and W. Taylor, Phys. Rev. D 53, 3399 (1996)]1st road

fix the gauge, i.e. Wess-Zumino gauge↔ resolve
the D-term constraints
take the limit g→∞
mod out the gauge symmetry

2nd road
take the limit g→∞
mod out the full complexified gauge symmetry

3rd road
write down the holomorphic invariants
identify algebraic relations (e.g. the Plücker
relation)

In fact, these ways are all identical.
A comment in store is that the validity is strongly
dependent on being in the full Higgs phase, i.e. full
rank of Q
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A quick example : SU(N) gauge theory

Let us consider a quick example of an SU(N) gauge
theory.

K = Tr
[
QQ†e−V′

]
= N

[
det QQ†

] 1
N 2nd road

= N

∑
〈A〉

∣∣∣B〈A〉∣∣∣2
 1

N

3rd road

where det QQ† = 0 resembles the Coulomb branch.
This is a point on the target space which is a ZN
conifold singularity. As the name suggests, gauge
fields become massless at this point, which gives rise
to the singularity.
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Lifting the singularity : U(N) gauge theory

U(N) : the singularity can be lifted by an FI
parameter ξ > 0

K = Tr
[
QQ†e−V′e−Ve

]
+ ξVe

=
ξ

N
log det QQ† 2nd road

=
ξ

N
log

∑
〈A〉

∣∣∣B〈A〉∣∣∣2
 3nd road

with Ve being a U(1) vector superfield
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CP1 revisited

Using the last result, we can re-obtain the CP1 model.
U(1) gauge theory with NF = 2, gauge fixing Q ∼ (1,b).

K = ξ log QQ† = ξ log
(

1 + |b|2
)
,

which yields the Lagrangian

L =
∂µb∂µb̄

(1 + |b|2)2 ,

as we expected.



A primer

An introduction to
non-Abelian
vortices

The Kähler
quotient of a
gauge theory

The SO,USp
Kähler quotients

Expansion of the
Kähler potential

The SO,USp
hyperKähler
quotients

Non-linear σ
model lumps

Interlude :
vortices and
lumps

Lump results

Constructing the
new vortices

Explicit example:
U(1)× SO(2M)

Conclusion

1 A primer

2 An introduction to non-Abelian vortices

3 The Kähler quotient of a gauge theory

4 The SO,USp Kähler quotients

5 Expansion of the Kähler potential

6 The SO,USp hyperKähler quotients

7 Non-linear σ model lumps

8 Interlude : vortices and lumps

9 Lump results

10 Constructing the new vortices

11 Explicit example: U(1)× SO(2M)

12 Conclusion



A primer

An introduction to
non-Abelian
vortices

The Kähler
quotient of a
gauge theory

The SO,USp
Kähler quotients

Expansion of the
Kähler potential

The SO,USp
hyperKähler
quotients

Non-linear σ
model lumps

Interlude :
vortices and
lumps

Lump results

Constructing the
new vortices

Explicit example:
U(1)× SO(2M)

Conclusion

N = 1, SO(N) and USp(2M = N) gauge
theories

The Kähler potential can be written as

K = Tr
[
QQ†e−V′

]
,

where the following constraints on the gauge fields
kick in

V ′TJ + JV ′ = 0 ⇔ e−V′TJ e−V′ = J ,

with J =
(

0 1M
ε1M 0

)
where ε = ±1 for the SO,USp

gauge group respectively.



A primer

An introduction to
non-Abelian
vortices

The Kähler
quotient of a
gauge theory

The SO,USp
Kähler quotients

Expansion of the
Kähler potential

The SO,USp
hyperKähler
quotients

Non-linear σ
model lumps

Interlude :
vortices and
lumps

Lump results

Constructing the
new vortices

Explicit example:
U(1)× SO(2M)

Conclusion

D-flatness conditions

The D-flatness conditions in Wess-Zumino gauge read

DA = Tr FQ†WZTAQWZ = 0 ,

with TA ∈ {so(N), usp(N = 2M)}. These conditions fix
{SO(N)C,USp(2M)C} to {SO(N),USp(2M)}

These conditions are difficult and as far as we know
they have not been solved in the literature.
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The moduli space of vacua : SO case
The VEVs can after fixing global and local symmetries,
be put on the form

〈QWZ〉 = diag
(
a1, . . . ,aN,0, . . . ,0︸ ︷︷ ︸

NF−N

)
,

and the classical moduli space of vacua in a generic
point (that is ai 6= aj for i 6= j) is

MSO(N) ' RN
+ ×

U(NF)
U(NF −N)× (Z2)N−1

' quasi-NGs×NGs .

While in the most symmetric vacuum ai = a1, ∀i

MSO(N) ' R
1
2 N(N+1)
+ n

U(NF)
U(NF −N)× SO(N)color+flavor

.
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The moduli space of vacua : USp case
The VEVs can after fixing global and local symmetries,
be put on the form (N = 2M)

〈QWZ〉 = 12 ⊗ diag
(
a1, . . . ,aM,0, . . . ,0︸ ︷︷ ︸

MF−M

)
,

and the classical moduli space of vacua in a generic
point (that is ai 6= aj for i 6= j) is

MUSp(2M) ' RM
+ ×

U(NF)
U(NF − 2M)×USp(2)M

' quasi-NGs×NGs .

While in the most symmetric vacuum ai = a1, ∀i

MUSp(2M) ' RM(2M−1)
+ n

U(NF)
U(NF − 2M)×USp(2M)color+flavor

.
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Key point : enlarging the algebra
Let’s take the vector multiplet to be in SU(N) 3 e−V′

K = Tr
[
QQ†e−V′ + λ

(
e−V′TJe−V′ − J

)]

e.o.m.s for λ solve the constraint of the algebra of
SO/USp
e.o.m.s for V ′ include λ, but λ can be eliminated
from these

The solution is obtained as

X =
√

QQ†e−V′
√

QQ†

X2 =
(

QTJ
√

QQ†
)† (

QTJ
√

QQ†
)

K = Tr X 2nd road
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The solution in terms of holomorphic
invariants

Using another trick, i.e. rewriting a color trace as a
flavor trace

Tr C
√

AA† = Tr F
√

A†A

we can write the solution as

K = Tr F
√

MM† 3rd road

with M = QTJQ being the meson field
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Target spaces

USp

MUSp =
{

M |M ∈ CNF × CNF , MT = −M,

rankM = 2MC
}

reflects the fact that there are no independent
baryons in this USp gauge theory

SO

MSO =
{

M, B〈A〉 |M ∈ CNF × CNF , MT = M,

det M〈A〉〈B〉 = (det J) B〈A〉B〈B〉,
NC − 1 ≤ rankM ≤ NC

}
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Extending the gauge group with an overall
U(1)

Thus, we consider the theories in the class

G = U(1)×G′ , with G′ = {SO(N),USp(2M)} .

Using the result from previously together with the
e.o.m. for Ve, the Kähler potential can now be written
as

K = Tr
[
QQ†e−V′e−Ve

]
+ ξVe

= ξ log Tr F
√

MM†

with Ve being a U(1) vector superfield
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VEVs as expansion point

For large N (NF) it is a hard task to compute the
Kähler potential. It will prove convenient to develop
an expansion formula.
We expand around the VEVs which can be written as

MSO
vev ≡ uMuT = diag(µ1, µ2, · · · , µN,0, · · · ) ,

MUSp
vev ≡ uMuT =

(
0 1
−1 0

)
⊗ diag(µ1, µ2, · · · , µM,0, · · · ) .

These can be written as

(Mvev)ij = µi(J)ij = (J)ijµj , (1)

with J the invariant tensor of SO,USp.
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Expansion formula
Considering a small fluctuation

φ = M −Mvev ,

we can write a trace of a function f as

Tr[f (X0 + δX)] =
1

2πi

∮
C

dλ f (λ)Tr
[

1
λ1− X0 − δX

]
= Tr[f (X0)]

+
∞∑

n=1

1
2πn i

∮
C

dλ f ′(λ)Tr
[(

1
λ1− X0

δX
)n]

,

where

X = MM† , X0 = diag(µ2
1, · · · , µ2

NC
) ,

δX = Mvevφ
† + φM†vev + φφ† .
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Integrations

We just need to evaluate the line integrals around the
positive real axis excluding the origin as it is a
branch point of f (x) =

√
x

An(µ1, · · · , µn) ≡ 1
2πi

∮
C

dλ√
λ

n∏
i=1

1
λ− µ2

i
,

which can easily be done, then it’s just summing up the
terms to arrive at the expanded Kähler potential
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The expanded Kähler potential for SO(N)

KSO =
1
2

∑
i,j

φijφ
†
ji

µi + µj

− 1
2

∑
i,j,k

µi φijφ
†
jkφki

(µi + µj)(µj + µk)(µk + µi)
+ c.c.

+
1
2

∑
i,j,k,l

µjµkC(1)
ijkl

Pijkl
φijφjkφklφ

†
li + c.c.

+
1
2

∑
i,j,k,l

µjµlC
(1)
ijkl

Pijkl
φijφjkφ

†
klφ
†
li −

1
4

∑
i,j,k,l

C(3)
ijkl

Pijkl
φijφ

†
jkφklφ

†
li

+ Kähler trf. +O(φ5) ,

with P and C being standard symmetric polynomials



A primer

An introduction to
non-Abelian
vortices

The Kähler
quotient of a
gauge theory

The SO,USp
Kähler quotients

Expansion of the
Kähler potential

The SO,USp
hyperKähler
quotients

Non-linear σ
model lumps

Interlude :
vortices and
lumps

Lump results

Constructing the
new vortices

Explicit example:
U(1)× SO(2M)

Conclusion

Scalar curvature for SO(N)

From the expanded potential we can compute the
curvature

R|φ=0 = −2gIJ̄∂I∂J̄ log det g
∣∣∣
φ=0

= 2
∑
i>j

(
1

µi + µj
+
∑

k

µk
(µk + µi)(µk + µj)

)
> 0 ,

Note that a singularity emerges at 2 vanishing
eigenvalues, that is rank M ≤ N − 2
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Scalar curvature for USp(2M)

For the USp case

R|φ=0 = 4
MC∑
i>j

 1
µi + µj

+
MC∑
k

4µk
(µk + µi)(µk + µj)

 > 0 .

Note that again a singularity emerges at 2 vanishing
eigenvalues, however, this time we have
rank M ≤ N − 4
We would naively expect it to arise already at
rank M ≤ N − 2, that is, we need full rank to have a
regular solution
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Deformed Kähler potential
Inspired by the conical singularity, we consider
deforming to Kähler potential to detect a singularity
arising already at rank M = N − 2, we consider the
deformation

KUSP,deformed = Tr
√

MM† + ε2 .

Taking now only one eigenvalue, µ1 → 0 we find a term
in the scalar curvature

lim
µ1→0

R|φ=0 ⊃
2
ε
,

which shows the presence of a singularity for one
vanishing eigenvalue, that is corresponding to an
unbroken USp(2) ' SU(2) symmetry.
For USp(4) we have found by direct computation an
orbifold singularity emerging at rank M = 2
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N = 2 SUSY : hyperKähler quotient for
SO(N) and USp(2M = N)

Considering the N = 2 gauge theory, we can write the
Kähler potential as

K̃ = Tr
[
QQ†e−V′ + Q̃†Q̃eV′ + λ

(
e−V′TJe−V′ − J

)]
with the superpotential

W = Tr
[
QQ̃Σ′ + χ

(
Σ′TJ + JΣ′

)]
Using the algebra of SO,USp, eV′T = JTe−V′J the
Kähler potential can be written as

K̃ = Tr
[
QQ†e−V′ + JTe−V′J(Q̃†Q̃)T + λ

(
e−V′TJe−V′ − J

)]
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Defining now a field with 2NF flavors

Q =
(

Q, JQ̃T
)

the Kähler potential can be written as

K̃ = Tr
[
QQ†e−V′ + λ

(
e−V′TJe−V′ − J

)]

then the N = 1 solution readily applies!

K̃ = Tr F

√
MM† ,

where the meson field now is

M = QTJQ .
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Constraint coming from the superpotential

The following constraint

QJ̃QT = 0 , where J̃ =
(

0 1M
−ε1M 0

)
,

that is
MT = εM , MJ̃M = 0 ,

and NC − 2 < rankM≤ NC which shows the
well-known result, that

An SO(NC) gauge theory has a USp(2NF) flavor
symmetry
A USp(2MC) gauge theory has an SO(2NF) flavor
symmetry
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Resultant spaces for the hyper-Kähler
quotients

USp(2NF) and SO(2NF) isometries act on the SO(NC)
and USp(2MC) spaces, respectively. Locally in generic
points we have

MHK
SO(NC) ' RNC

>0 ×
USp(2NF)

USp(2NF − 2NC)× (Z2)NC−1

⊃ RNC
>0 ×

U(NF)
U(NF −NC)× (Z2)NC−1 ,

MHK
USp(2MC) ' RMC

>0 ×
SO(2NF)

SO(2NF − 4MC)×USp(2)MC

⊃ RMC
>0 ×

U(NF)
U(NF − 2MC)×USp(2)MC

,

These spaces are HK spaces of cohomogeneity NC and
MC, respectively.
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Non-linear σ model lumps

Lumps are stringy topological textures which are
supported by a non-trivial π2(M) associated with a
holomorphic map from the C-plane (spatial) to a
2-cycle of the target space of the non-linear σ model.

The lumps we want to consider here are 1/2 BPS
configurations.
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Lumps in U(1)×G′ Kähler quotients

Considering a non-linear σ model of a U(1)×G′ Kähler
quotient. Let φα ∈ {Ii}//U(1)C be inhomogeneous
coordinates on the manifold then a static lump
solution is obtained by

φα(t, z, z̄, x3)→ φα(z;ϕi) ,

with ϕi being complex constants which indeed are the
moduli parameters of the lump and the tension is

T = 2
∫

C
Kαβ̄∂φ

α∂̄φ̄β̄
∣∣∣∣
φ→φ(z)

= 2
∫

C
∂̄∂K

∣∣∣∣
φ→φ(z)

.
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Description of lumps
It will prove convenient to use the holomorphic G′
invariants Ii satisfying constraints as homogeneous
coordinates

Ii(z) = Ii
vevzniν +O(zniν−1) ,

with ni the U(1) charges of the invariants Ii.

ν is some number

ν =
k
n0

, k ∈ Z+ , n0 = gcd({ni} | Ii
vev 6= 0) ,

such the invariants are holomorphic

Finally, the inhomogeneous coordinates {φα} can be
found from the ratios of these G′ invariants, namely
being U(1)C invariants, which is analogous to the
rational maps in the Abelian case
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The lump condition - small lump
singularity

Lump condition
All points in the base
manifold C must be
mapped to the full Higgs
phase by the
holomorphic map

Common zeros
Common zeros in the G′
invariants give rise to a
small lump singularity -
zero size ∼ local vortex

for U(N) the two conditions above are in fact
identical
the lump condition is stronger than the other
condition
the existence of the difference implies that there
exists a type of singularity of non-vanishing size
this singularity is a typical property of lumps in
NLσMs with a singular submanifold
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Taking the strong coupling limit

gauge theory

semi-local vortex
−−−−→g→∞

NLσM

lump

even for finite gauge coupling there the two are
closely related
in fact the dimensions of their moduli spaces have
relations
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Dimensions of the moduli spaces : U(N)

Grassmann sigma model:

dimCMk−vortex
U(N), NF

= dimCMk−lump
U(N), NF

= kNF .

[A.Hanany & D.Tong, JHEP 0307, 037 (2003) [arXiv:hep-th/0306150]]

[Eto et.al. J.Phys.A 39, R315 (2006) [arXiv:hep-th/0602170]]

In fact the moduli spaceMk−vortex
U(N), NF

is identical to

Mk−lump
U(N), NF

when the lump condition has been applied,
that is

Mk−vortex
U(N), NF

⊂Mk−lump
U(N), NF

.
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Dimensions of the moduli spaces : SO(N)
The dimension of the moduli space for k vortices in a
U(1)×G′ gauge theory with NF = N is

dimCMk−vortex
U(1)×G′ =

kN2

n0
,

where n0 is the greatest common divisor of the
Abelian charges of the G′ invariants.
[Eto et.al., arXiv:0802.1020 [hep-th]]

In fact we find for both odd and even N (and NF = N)
that

dimCMk−vortex
SO(N) = dimCMk−lump

SO(N) =
kN2

n0
,

where n0 = 2 for SO(N = 2M) and n0 = 1 for
SO(N = 2M + 1).
There are internal moduli in the lump solutions and
the moduli of the lump solutions are sufficient to
describe the vortex moduli space. This is quite
different from the Grassmann lump.
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Dimensions of the moduli spaces :
USp(2M)

The number of moduli for MF = M is

# moduli in M(z) = dimCMk−vortex
USp(2M) − kM ,

Note, there exists no regular solution in this NLσM.
The difference is due to the surviving color flavor
symmetry USp(2)M even at a generic point in the
vacuum.
We would guess that

Mk−vortex
USp(2M) ∼M

k−singular lump
USp(2M) ×

(
CP1

)kM
.

To cure this singular configuration, we need more
flavors MF > M.
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Moduli matrix formalism

Both in the case of U(1)× SO(N) and
U(1)×USp(2M), additional NG modes can emerge
as moduli at special points of a vortex Mvev = J.
To study the vortex moduli, it proves convenient to
consider the moduli matrix Q(z) which is redundant
up to V-equivalence

Q(z) ∼ V(z)Q(z) .

[Eto et.al. J.Phys.A 39, R315 (2006) [arXiv:hep-th/0602170]]

The boundary conditions for the moduli matrix are

SO(2M), USp(2M) : QT(z)JQ(z) = Mvevzk +O(zk−1) ,

SO(2M + 1) : QT(z)JQ(z) = Mvevz2k +O(z2k−1) .

[Eto et.al., arXiv:0802.1020 [hep-th]]
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Relation between the vortex moduli space
and the lump moduli space

We expect on the grounds of the former results the
following relation

Mk−lump '
{

a|a ∈Mk−vortex, the lump condition
}
.
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Effective action of lumps

By promoting the moduli parameters to superfields on
the lump world volume

φα(t, z, z̄, x3)→ φα(z;ϕi(t, x3)) .

we can write the effective action

Klump =
∫

dzdz̄ K
(
φ(z, ϕi(t, x3), φ†(z̄, ϕ̄i(t, x3)

)
.
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Identifying non-normalizable modes

We can identify non-normalizable modes by finding a
divergence in the Kähler potential which cannot be
removed by Kähler transformations.

The only normalizable modulus in a single lump
in U(1)× SO(2M) and U(1)×USp(2M) is the center
of mass.
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Constructing vortices from the new lumps
We can use the our technology from the lumps to
construct the vortices or similarly consider the lumps
configurations and turning on a finite gauge coupling.
The BPS equations in the case of SO(N) and USp(2M)
are

D̄H = 0,

F0
12 −

e2
√

2N

(
Tr (HH†)− v2

)
= 0 ,

Fa
12ta − g2

4

(
HH† − J†(HH†)TJ

)
= 0 ,

and we can apply the same ansatz as for the U(N) case

H = S−1
e (z, z̄)S

′−1(z, z̄)H0(z) ,

with Se ∈ U(1)C and S′ ∈ G′C = {SO,USp}C.
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Constructing the vortices from the new
lumps

This leaves us with the master equations for SO(N)
and USp(2M)

∂̄∂ψ = − e2

4N
(
Tr (Ω0Ω′−1)e−ψ − v2), (2)

∂̄(Ω′∂Ω′−1) =
g2

8
(
Ω0Ω′−1 − J†(Ω0Ω′−1)TJ

)
e−ψ,

where eψ ≡ SeS†e, Ω′ ≡ S′S′† and Ω0 ≡ H0H†0.
Now, inserting the moduli matrices found for the lump
we have obtained the vortices of the SO(N) and
USp(2M) gauge theories.

[Eto et.al., arXiv:0802.1020 [hep-th]]
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Local vortices

Having the construction of the vortices for a general
gauge group and explicitly for SO(N) and USp(2M),
we can restrict them to local/ANO-like vortices.
This corresponds to having common zeros in the
holomorphic invariants

Ii
G′(H0,local) =

[ k∏
l=1

(z− zl)

] ni
n0

Ii
vev ,

which in terms of the moduli matrix is

HT
0,local(z)JH0,local(z) =

k∏
l=1

(z− zl)J .
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Local single vortex in SO(2M) or USp(2M)

A single local vortex in SO(2M) or USp(2M) can be
written as

H0,local(z) =
(

(z− z0)1M 0
BA/S 1M

)
,

with BA/S being anti-symmetric for SO(2M) and
symmetric for USp(2M).
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A simple example : U(1)× SO(2) lumps
with NF = 2
The moduli space is

M = CP1 × CP1 ,

of which the second homotopy group is

π2(M) = Z+ ⊗ Z− .

The quark fields i.e. the moduli matrix can be written
as

Q(z) =
(

Q+
1 (z) Q+

2 (z)
Q−1 (z) Q−2 (z)

)
,

which are holomorphic functions of degree k±,
respectively. The tension reads

T =
∫

C
2∂∂̄KU(1)×SO(2) = πξ(k+ + k−) ≡ πξk .
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The minimal U(1)× SO(2) lump solution

Taking a moduli matrix for a k = 1 solution

Q(z) =
(

z− z1 c1
0 1

)
,

which has the meson field

M(z) =
(

0 z− z1
z− z1 2c1

)
,

and the Kähler potential

K = ξ log
(

2
√
|z− z1|2 + |c1|2

)
.

where z1 is the position and c1 is a size/regularizer.
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The minimal U(1)× SO(2M) lump solution

Extending this solution for k = 1

Qk=1 =
(

z1M −A C
0 1M

)
,

{
A = diag(z1, z2, · · · , zM) ,
C = diag(c1, c2, · · · , cM) .

and the Kähler potential

K = ξ log

(
2

M∑
i=1

√
|z− zi|2 + |ci|2

)
.

where zi are M positions and ci are sizes/regularizers.
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Multi-center solutions
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Conclusion
We have obtained explicitly the Kähler metric and
potential for SO(N), USp(2M), U(1)× SO(2M)
and U(1)×USp(2M) theories
Key point : bigger algebra with constraints in
the form of Lagrange multipliers
Expansion of the Kähler potential around the
VEV, from which we have obtained the scalar
curvatures
We have obtained explicitly the Hyper-Kähler
metric and potential for SO(N) and USp(2M)
theories
We have studied the normalizability in the new
lump solutions



A primer

An introduction to
non-Abelian
vortices

The Kähler
quotient of a
gauge theory

The SO,USp
Kähler quotients

Expansion of the
Kähler potential

The SO,USp
hyperKähler
quotients

Non-linear σ
model lumps

Interlude :
vortices and
lumps

Lump results

Constructing the
new vortices

Explicit example:
U(1)× SO(2M)

Conclusion

Further developments
Metrics and potentials for other representations,
especially the adjoint representations
Hyper-Kähler quotients of exceptional groups, E6,7
etc.
Admission of a Ricci-flat non-compact Calabi-Yau
metric
Construction of a massive deformed theory and
domain wall solutions
Q-lumps in the U(1)× SO(N) and
U(1)×USp(2M) Kähler quotients
Dynamics of lumps
Cosmic lump strings and their reconnection
Composite lumps like triple lump-string
interactions
Lump-strings stretched between domain walls
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