Results on the proton structure from HERA

Shima Shimizu (Univ. of Tokyo)

Introduction

HERA physics

Proton structure

The world only e-p collider: HERA

A unique collider at DESY, Hamburg

Circumference: 6.3 km

Operated since 1992 to 2007

2 collider experiments: H1 & ZEUS

- proton 920 GeV
- electron/positron 27.5 GeV

center of mass energy $\sqrt{s} = 318$ GeV

HERA looks into the proton

I

Proton has a structure

Proton has its subcomponents: partons

- Naive parton model
 u u d quarks: 'valence' quarks
- QCD

quark emits gluon. gluon splits to qq or gg.

→ Many quarks with lower momentum: 'Sea' quarks

HERA looks into the proton

ep collision

→ scattering of electron and a quark.

It reflects the proton structure.

Cross section of ep scattering = Cross section of eq scattering \otimes proton structure

Details come later, but;

- F_2 : structure function \propto total charge-squared weighted number of quarks in the proton
- Q^2 : momentum transfer \rightarrow resolution
- x : momentum fraction of a parton to the proton

Before HERA

Fixed target experiments only.

- It was unclear how to describe the proton structure at low-x.
 - perturbative QCD: quarks are asymptotically free.
 - hadronic view : partons are confined in the proton

HERA opened the new kinematic region

• HERA has expanded accessible kinematic region largely.

- 2 orders in both x and Q²

steep rise at low x→ pQCD descriptions is verified.

Plenty of Gluon and Sea quarks

- Steep rise of F₂ at low x.
- higher Q² = finer resolution
 → more low-momentum quarks
 - are 'visible'
 - i.e. Sea quarks
- Sea quarks are generated by gluon.

Abundant Sea quarks ⇔ Abundant gluons

Gluon and Sea quarks' physics is started by HERA.

Introduction

HERA physics

Proton structure

Deep Inelastic Scattering (DIS)

- Kinematic variables to describe DIS
 - Q²: Virtuality
 - \rightarrow probing power
 - x : Bjorken scaling variable
 - → momentum fraction of struck quark
 - y : Inelasticity

$$Q^2 = -q^2 = -(k-k')^2$$

$$\frac{p^2}{p \cdot q} \qquad y = \frac{p \cdot q}{p \cdot k}$$

$$Q^2 = sxy$$
 \sqrt{s} = center of mass energy

Deep Inelastic Scattering (DIS)

- Kinematic variables to describe DIS
 - Q²: Virtuality
 - \rightarrow probing power
 - x : Bjorken scaling variable
 - → momentum fraction of struck quark
 - y : Inelasticity

$$Q^{2} = -q^{2} = -(k - k')^{2}$$
 $x = \frac{Q^{2}}{2p \cdot q}$ y

$$y = \frac{p \cdot q}{p \cdot k}$$

 $Q^2 = sxy$ \sqrt{s} = center of mass energy

- DIS is a convolution of electroweak (EW) physics and the proton structure.
 - Good prove to the proton structure
 - Sensitive to EW physics from space-like view.
- Hadronic final state is also sensitive to QCD. (not covered in this talk)

DIS in the detectors

Neutral current (NC) process γ/Z^0 exchange $ep \rightarrow e'X$

<u>Charged current (CC) process</u> W⁺⁻ exchange $ep \rightarrow \nu X$

• Kinematic variables are reconstructed by two of measured variables;

energy
angleofscattered electron
jet (~ struck quark)

ZEUS

History of HERA

- 1992-2000: HERA-I (started with E_p=820GeV, until 1997)
 - measurements go down to low-Q²
 - → Make full use of large kinematic region. 1.5GeV²<Q²<30000GeV²

- ◆ 2002-2007: HERA-II
 - High luminosity to collect high-Q² data.
 (high-Q² ↔ Weak boson exchange)
 - lepton beams are polarized.
 - \rightarrow Increased sensitivity to EW.

Some of results will be shown in next slides.

F₂ measurement

F₂ is measured over 4 orders of magnitude in (x, Q²).

low x

→ strong dependence on Q² "scaling violation"

more $\frac{g \, \mathrm{u} \, \mathrm{v} \, \mathrm{v}^{\overline{q}}}{q}$ is visible.

EW unification (NC/CC cross sections)

Polarized CC cross sections

Weak process
= No right-handed current
CC is purely weak process
→ linear dependence on polarization.

Introduction

HERA physics

Proton structure

Parton Distribution Function (PDFs)

- Parton distribution functions are used to describe the proton structure. $q(x,Q^2) \quad \overline{q}(x,Q^2) \quad g(x,Q^2)$
 - Valence quarks:

 $u_{\text{Val}}(x,Q^2) = u(x,Q^2) - u_{\text{Sea}}(x,Q^2)$, same for d quark

- Sea quarks: $u_{\text{Sea}}(x,Q^2) = \overline{u}(x,Q^2) = s(x,Q^2) = \overline{s}(x,Q^2) \dots \text{ etc.}$
- PDFs evolve with Q².

Larger Q² allows to see more quarks.

• The Q² evolution is described by **DGLAP equation**, based on pQCD.

$$\frac{dF_2}{d\ln Q^2} = \sum_{q} e_q^2 \frac{\alpha_s(Q^2)}{2\pi} \int_{x}^{1} \frac{dy}{y} \Big[P_{qq}(x/y) \cdot q(y,Q^2) + P_{qg}(x/y) \cdot g(y,Q^2) \Big]$$

Structure functions

• DIS cross sections can be written with structure functions.

$$\frac{d^2\sigma(e^{\pm}p)}{dxdQ^2} = \frac{2\pi\alpha^2}{Q^4}Y_{+}\left[F_2(x,Q^2) - \frac{y^2}{Y_{+}}F_L(x,Q^2) \mp \frac{Y_{-}}{Y_{+}}xF_3(x,Q^2)\right] \quad Y_{\pm} = 1 \pm (1 - y^2)$$

cross section with point-like particle

Structure functions: they reflect momentum distribution of partons in the proton.

Structure functions are sensitive to PDFs.

• F_2 : total number of quarks

 $F_2 = \sum A_q x(q + \overline{q})$

- F_L : longitudinal structure function \longrightarrow gluon
 - only sizable at high-y \rightarrow Details will come up later
- xF₃ : parity violation term

$$xF_3 = \sum B_q x(q - \overline{q}) \longrightarrow \text{Valence quarks}$$

Extraction of PDFs

- Q² evolution of PDFs can be predicted by perturbative $q(x,Q^2)$ $g(x,Q^2)$ $q(x,Q^2)$ $q(x,Q^2)$ q(x,
 - x-dependence of PDFs can be extracted from fits to measured cross sections.

PDFs@
$$Q_0^2$$
 — Input
Fit to measured cross sections @ Q^2

PDFs are parameterized @ $Q_0^2 = 7 \text{GeV}^2$ @ZEUS $x f(x) = A x^b (1-x)^c (1+dx)$ for xu_v , xd_v , xS, xg, $x\Delta(=x\overline{d}-x\overline{u})$ A: Normalization, b: Low x, c: High x, d: smoothing for middle x Constraints from momentum and number sum rule, etc. \rightarrow 11 free parameters

PDF extraction at HERA

A single experiment can determine PDFs.

• Pure proton target \rightarrow Free from target correction, nuclear effect.

• Single experiment \rightarrow systematic uncertainties are well understood.

NC cross sections for PDF extraction

NC cross sections @ high-Q²

• At high Q², weak current (Z⁰) introduces parity violation.

$$\tilde{\sigma}(e^{\pm}p) = F_2(x,Q^2) \mp \frac{Y_-}{Y_+} x F_3(x,Q^2)$$

$$\widetilde{\sigma}(e^{-}p) - \widetilde{\sigma}(e^{+}p)$$
$$\longrightarrow xF_{3} \propto \sum x(q - \overline{q})$$

valence quark

CC cross sections for PDF extraction

 $e^+q^{(-)} \rightarrow \overline{\nu}q^{(+)}$ $e^-q^{(+)} \rightarrow \nu q^{(-)}$

1 b

CC is charge selective interaction.

positron-induced

→ negative-charged partons $\tilde{\sigma}(e^+p) \propto [(\overline{u} + \overline{c}) + (1 - y)^2(d + s)]$ d quark

electron-induced

→ positive-charged partons $\tilde{\sigma}(e^-p) \propto [(u+c)+(1-y)^2(\bar{d}+\bar{s})]$

u quark

Х

25

Jet Cross sections for PDF extractions

PDFs from HERA

- All 547 data points (ZEUS) are fitted simultaneously.
 → PDF extraction.
- Strong rise of gluon PDF at low x.
- Sea quarks are also many.
 (Note: in the plot they are 1/20)

H1/ZEUS difference

- data set
 - (H1 does not have jets, but results from fixed target exp.)
- parameterization
- systematic uncertainty

Why is PDF extraction at HERA important?

- ◆ LHC: proton-proton collision
 → Definitely needs PDFs.
- Main physics of LHC are at the x range which HERA covers.

We can improve our understanding further

Other (and/or more) measurements

- NC/CC
 - More statistics with polarized beam.
- Heavy Flavour production
 - Large statistics with the updated detector in HERA-II.
- F_L
 - First direct measurement at the end of HERA.

Understanding of systematic uncertainties of measured cross section in HERA-I

• Combining cross sections from the H1 and ZEUS experiments.

NC/CC cross sections with more statistics

- Increase of electron data
 NC → More sensitivity to xF₃
 i.e. valence quarks (u+d)
- Increase of positron data
 CC → More sensitivity to d quark

	HERA-I	HERA-II
e⁻p	20pb-1	180pb ⁻¹
e ⁺ p	100pb ⁻¹	170pb ⁻¹

Heavy Flavour production

- Dominant process of heavy quark production:
 Boson-Gluon-Fusion (BGF)
- Two schemes to treat heavy quarks in pQCD;
 - massive scheme (FFN)

appropriate for $Q^2 \sim M_q^2$

Heavy quarks are produced via BGF.

- \rightarrow Sensitive to gluon PDFs
- massless scheme (ZMVFN)

appropriate for $Q^2 >> M_q^2$

Heavy quarks are massless and exist in the proton if Q^2 is above the mass threshold.

→ Intrinsic heavy quarks' PDFs

• Cross check for current pQCD description for the proton.

$\mathbf{F}_{2}^{\mathbf{cc}}$

- F₂^{cc} is extracted for large kinematic region.
 - different methods
 - D mesons by slow pions
 - Impact parameter tagging
 - different data sets, theory
 - \rightarrow In good agreement
- Scaling violation is seen.
- Well described by NLO-QCD.

 $\mathbf{F}_2^{\ bb}$

- First measurement of F_2^{bb} at HERA.
- Different methods
 H1: Impact parameter tagging
 ZEUS: µ+jet
- More data to come

Longitudinal structure function: F_L

- Proportional to longitudinal photon interacting with proton.
- In naive QPM, proton has co-linear spin ½ quarks only.

 $\begin{array}{ccc} & \stackrel{\mathsf{q}}{\leftarrow} & & \text{Longitudinal photon cannot} \\ & & & & \text{interact with a quark} \rightarrow F_{\mathrm{L}} = 0 \end{array}$

gluon emission in the proton → F_L≠0
 i.e. F_I directly reflects gluon dynamics in the proton.

gluon PDF

In pQCD:
$$F_L = \frac{\alpha_s}{4\pi} x^2 \int_x^1 \frac{dz}{z^3} \left[\frac{16}{3} F_2 + 8 \sum_q e_q^2 \left(1 - \frac{x}{z} \right) zg(z) \right]$$

Measurement of F_L is good test for the current understanding of proton structure and QCD.

F_L @ HERA

$F_L \Leftrightarrow$ gluon \rightarrow Probably HERA is the best place to measure F_L .

- Why had F_L not been measured before the end of HERA? Ans. <u>Technical difficulties</u>
 - Needs cross section measurements with different beam energies.
 - Needs to tag scattered electrons with lowest energies as possible.
- The last 4 months of HERA operation were dedicated to F_L measurement.
 - → Operation with lowered proton beam energy.

$$E_p = 460 \text{ GeV}$$
 : 14 pb⁻¹
 $E_p = 575 \text{ GeV}$: 8 pb⁻¹

Successfully done!

F_L measurement

• Cross section is combination of F_2 and F_L .

$$\tilde{\sigma} = \frac{Q^4 Y_+}{2\pi\alpha^2} \frac{d^2\sigma}{dxdQ^2} = F_2(x,Q^2) - \frac{y^2}{Y_+} F_L(x,Q^2)$$

• $\mathbf{F}_{\mathbf{L}}$ \leftarrow Comparison of $\widetilde{\sigma}$ at the same (x, Q²) but different y

 $Q^2 = sxy$ different beam energy

Sizable only at high-y \Leftrightarrow Low energy of scattered electron.

 Linear fit on cross sections at each (x, Q²) bin.

 \rightarrow slope = F_L

\mathbf{F}_{L} from two experiments

- The first F_L measurement at low x.
- The measured F_L is consistent with pQCD description.

x-averaged F_L

• Again, consistent with pQCD prediction.

Combining H1 and ZEUS cross sections

All HERA-I inclusive DIS cross sections from H1 and ZEUS are combined by averaging. HERA I e⁺p Neutral Current Scattering – H1 and ZEUS

 $\sigma_r(x,Q^2)$

x=0.002

H1 2000 PDF **ZEUS-JETS**

- Averaged each data point by simultaneous χ^2 fit.
 - Assumption: H1 and ZEUS measure the same cross sections.
 - taking account of correlated systematics within/between experiments.
 - \rightarrow Cross calibration Reduction of sys. errors.
- It is also an consistency check of two experiments.

Uncertainty gets improved by more than sqrt(2).

• HERA I (prel.)

 \Box ZEUS

PDFs from combined cross sections

- QCD-Fit on combined cross section.
 - Good constraint on PDFs.

- HERA PDFs have strong impact on W/Z physics at LHC.
- Combination is done only for HERA-I. \rightarrow HERA-II will come.

Summary

- During its operation over 15 years, HERA provided plenty of physics through electron-proton collision.
 - Not only the proton structure, but Electroweak and QCD physics.
- Proton structure has been vigorously investigated at HERA.
 We have precise understanding of the proton structure.
 - Steep rise of gluons and Sea quarks at low-x
 - Good description by pQCD
 - \rightarrow Good input to LHC!
- Still, many results from HERA will come up.
 - \rightarrow We can improve our understanding of the proton structure.

Backup

Extrapolation to $P_e = \pm 1 \rightarrow limits$ on RH σ_{cc}		
$\sigma_{cc}(e^{-}p)$ [pb] extrapolated to $P_e^{} = +1$		
H1 (prel.)	-0.9±2.9 _{stat} ±1.9 _{syst} ±2.9 _{pol}	
ZEUS (prel.)	0.8±3.1 _{stat} ±5.0 _{syst+pol}	
	, ,	
σ _{cc} (e⁺p) [p	ob] extrapolated to P _e = -1	
σ _{cc} (e⁺p) [p H1 (pub.)	-3.9±2.3 _{stat} ±0.7 _{syst} ±0.8 _{pol}	

95% CL on heavy W_R boson

- M_{WR}>208GeV (H1, e+p)
- M_{WR}>186GeV (H1, e-p)
- M_{WR} >180GeV (ZEUS, e-p)

assuming $g_L = g_R$ and ν_R is light

Chi2 definition for averaging

 m_i^e = measured cross section in bin *i* by exp *e*

 μ_i^e = true cross section in bin *i*

 σ_i^e = statistical uncertainty in bin *i* by exp *e*

$$\beta_{ji}^{e}$$
 = correlated syst. unc. in bin *i* by exp *e*

$$s_i, r_j \sim N(0,1)$$

$\alpha_{\rm S}$ measurement

Inclusive jet cross sections in NC DIS ZEUS (Phys Lett B 649 (2007) 12) Inclusive-jet cross sections in NC DIS H1 (DESY 07-073) HERA combined 2007 inclusive-jet NC DIS (this analysis) HERA average 2004 (hep-ex/0506035) World average 2006 (S. Bethke, hep-ex/0606035)