

The family of advective-acoustic instabilities

whistling kettle

supersonic black hole

Ruffert 1994

asymmetric supernova

Outline

Core-collapse supernovae, before and after SASI (2003)

How far do we understand SASI ?

->the link with whistling kettles

Observational constraints

Perspectives

The difficult energy budgets of supernovae

(orders of magnitude)

$$E_{\mathrm{K}} \sim 1-2 \times 10^{51} \mathrm{erg}$$

Collapse of the core of a massive star to a <u>neutron</u> star (SNII, Ib/c): E_{grav}>>E_K

$$\frac{3GM^2}{5R} = 3.1 \times 10^{53} \left(\frac{M}{1.4M_{\rm sol}}\right)^2 \frac{10\rm km}{R} \ \rm erg$$

but ... $p^+ + e^- \rightarrow n + \nu$ essentially carried away by neutrinos

White Dwarf thermonuclear disruption (SNIa) : tight budget

$$\frac{3GM^2}{5R} = 1.6 \times 10^{51} \left(\frac{M}{1.4M_{\rm sol}}\right)^2 \frac{2000 \rm km}{R} \rm ~erg$$

1 MeV/nucleon ~ 2 × 10⁵¹ erg/M_{sun}

Core-collapse supernovae: delayed explosion mechanism

(Bethe & Wilson 1985)

but ... inefficient in 1D (Liebendörfer et al. 2001)

Core-collapse supernovae in 2003: « What was missing? »

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime™ et un décompresseur codec YUV420 sont requis pour visionner cette image.

Buras et al. 03

Stationary Accretion Shock Instability : SASI

the mechanism of SASI must be fundamentally different from neutrino-driven convection (Foglizzo et al. 06, Yamasaki & Yamada 07)

-> an advective-acoustic cycle ? (Blondin et al. 03, Galletti 05, Ohnishi et al. 2006, Foglizzo et al. 07, ...)

Abouseif, Keklak & Toong (1984)

SASI in numerical simulations: ubiquitous since 2003

		initial setting	symmetry	SASI	v-driven convection	NS g-modes
2003	Blondin et al.	stalled	2D axi.	Х	-	-
2004	Scheck et al.	collapse	2D axi.	Х	Х	-
2006	Scheck et al.	collapse	2D axi.	Х	Х	-
	Burrows et al.	collapse	2D axi.	Х	Х	Х
	Ohnishi et al.	stalled	2D axi.	Х	Х	-
	Blondin & Mezzacappa	stalled	2D axi.	Х	-	-
2007	Blondin & Mezzacappa	stalled	3D	spiral	-	-
	Kotake et al.	stalled	2D axi.	Х	Х	-
	Burrows et al.	collapse	2D axi.	Х	Х	Х
	Blondin & Shaw	stalled	2D eq.	spiral	-	-
	Fryer & Young	collapse	3D	Х	Х	?
2008	Scheck et al.	collapse	2D axi.	Х	Х	-
	lwakami et al.	stalled	3D	Х	Х	-
-	Marek & Janka	collapse	2D axi.	Х	Х	weak
-	Ott et al.	collapse	2D axi.	Х	Х	?
-	Murphy & Burrows	collapse	2D axi.	X	Х	?

Unexpected consequences of SASI

[--> [-1] with

-05 00 05 Rusius [10" cm]

QuickTime™ et un décompresseur TIFF (LZW) sont requis pour visionner cette image.

-successful explosion mechanism based on neutrino energy deposition, $15M_{sol}$ (Marek & Janka 08)

- new explosion mechanism based on acoustic energy, 11-25M_{sol} (Burrows et al. 06, 07, Yoshida et al. 2007, Weinberg & Quataert 08)

- pulsar kicks (Scheck et al. 04, 06, Iwakami et al. 09)
- pulsar spin (Blondin & Mezzacappa 07, Yamasaki & Foglizzo 08, Iwakami et al. 09)
- H/He mixing in SN1987A (Kifonidis et al. 06)
- additional source of gravitational waves (Ott et al. 06, Kotake et al. 07, Marek et al. 08, Ott 08)

QuickTime™ and a TIFF (Uncompressed) decompr are needed to see this picture

QuickTime™ and a TIFF (Uncompressed) decompresso are needed to see this picture.

Observational constraints on the explosion mechanism

Kick-spin alignement (Wang, Lai & Han 06, Ng & Romani 04)

Explosion asymmetry deduced from -spectropolarimetry (Leonard et al. 06, Wang et al. 03, ...) -oxygen spectroscopy (Maeda et al. 08)

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

> QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime ¹⁴ and a TIFF (Uncompressed) decompress are needed to see this nicture.

SNR composition gradients ? (Katsuda et al. 08)

SASI in 3D: dominated by a spiral mode ?

even if the progenitor is not rotating ?

Blondin & Mezzacappa 07, Iwakami et al. 08, 09

QuickTime™ et un décompresseur Animation sont requis pour visionner cette image.

If the spiral mode of SASI always dominates the sloshing mode, what is the relevance of all previous 2D axisymmetric simulations ?

- -> successful 2D explosion mechanism(s) ?
- -> successful 2D pulsar kicks ?

-> prediction of kick-spin misalignement ?

Should we trust the simulations of SASI ?

Existing debates about	- the explosion threshold
	 the growth of the neutron star g-mode
	- the kick amplitude

- the spiral mode of SASI in a non-rotating progenitor

-> Validation of the simulations of SASI in the linear regime

Do we really understand the mechanism of SASI ?

Advective-acoustic cycle in a decelerated, cooled flow

Foglizzo et al. 07

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

 $R_c \sim R_v$

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Acoustic feedback generated by the deceleration

of a vorticity wave (Sato, Foglizzo & Fromang 08)

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Numerical check of analytical formulae (Sato, Foglizzo & Fromang 08)

Numerical convergence: only linear at the shock (Sato, Foglizzo & Fromang 08)

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Quick Tim e™ and a TIFF (Uncompressed) de compressor are need ed to see this pic ture.

-high frequency: stabilized above the cut off -high I: evanescent pressure feedback

->SASI is a low frequency, low I instability

- Growth rate of the spiral mode

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture. First order effect of rotation: - negligible centrifugal force $\alpha \Omega^2$ -Doppler shifted frequency ω -m Ω

Domination of the spiral mode without rotation ???

- WKB interpretation

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture. SASI in 2D is able to produce - a successful neutrino driven delayed explosion - a powerful pulsar kick

The mechanism responsible for SASI is the advective-acoustic cycle (the same family as the whistling kettle)

A toy model can explain why SASI is a low frequency, low I instability

A « moderate » progenitor rotation favours the spiral mode of SASI in 3D

Numerical difficulties associated to the - lower boundary condition - shock treatment/grid size Numerical confirmation of 2D results: explosion, kick ?

How marginal is the spiral mode of SASI? 3D

-spiral mode even without core rotation ?

-successful neutrino driven explosion in 3D ?

-powerful kick in 3D ?

-kick-spin misalignment?

Towards a MHD SASI ?

Energy and momentum budget of SASI?

More observational constraints ?